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In laser welding with laser intensities of approximately 10"W/m, a hole, called a keyhole, is formed
in the material. In this keyhole a plasma is detected, which is characterized by high pressure as well as
being in8uenced by the boundary of the keyhole. Experimental data on plasma parameters are rare and
ditscult to obtain [W. Sokolowski, G. Herziger, and E. Beyer, in High Power Lasers and Laser Machin

ing Technology, edited by A. Quenzer, SPIE Proc. Vol. 1132 (SPIE, Bellingham, WA, 1989), pp.
288-295]. In a previous paper [C. Tix and G. Simon, J. Phys. D 26, 2066 (1993)] we considered just a
simple plasma model without excited states and with constant ion-neutral-atom temperature. Therefore
we neglected radiative transport of excitations and underestimated the ion-neutral-atom temperature
and the ionization rate. Here we extend our previous model for a continuous CO2 laser and iron and
take into account radiative transfer of excitations and a variable ion-neutral-atom temperature. We
consider singly charged ions, electrons, and three excitation states of neutral atoms. The plasma is divid-

ed in plasma bulk, presheath, and sheath. The transport equations are solved with boundary conditions
mainly determined through the appearance of walls. Some effort is made to clarify the energy transport
mechanism from the laser beam into the material. Dependent on the incident laser power, the mean
electron temperature and density are obtained to be 1.0-1.3 eV and 2.5X10 —3 X 10 m '. Radiative
transport of excitations does not contribute significantly to the energy transport.

PACS number(s): 52.50.Jm, 42.62.Cf, 52.40.Hf

I. INrRODUCwrON

When a continuous laser beam with intensity of about
10' -10" Wm and beam radius of about 10 m is
directed on a metal surface, a hole is formed in the ma-
terial. In this hole (sometimes called a keyhole) a plasma
is detected with electron densities and temperatures of
about 1023—1024 m and 1 eV, respectively [1].

Such a situation arises in laser welding, when a laser is
wielded over the contact line of two work pieces. It is ob-
served that the keyhole enhances the energy transfer
from the laser beam to the material [2]. The keyhole
arises for laser intensities of about 10 Wm and the
plasma is observed for intensities of about 10' Wm
[3]. At this threshold intensity the depth of penetration
of the laser beam into the material undergoes a large in-
crease which is usually connected with the appearance of
the plasma. Typical diameters of the laser beam are in
the range of some 10 m and the keyhole is observed to
attain a radius in the same order of magnitude. To get a
penetration depth 10 m, a laser power of about 10 W
is needed [3]. Above the threshold intensity for the ap-
pearance of the plasma, the penetration depth increases
roughly linearly with increasing laser power [4).

To understand the welding process, it is important to
know the dominating energy absorption mechanism and
to answer questions like what keeps the keyhole open.
Two processes of energy absorption are considered in the
literature: the laser energy can be absorbed by the pro-
cess of inverse bremsstrahlung in the keyhole plasma and
then transported by plasma transport processes into the
material [5—7], or the laser energy can be absorbed
directly at the walls of the keyhole (Fresnel absorption)
[8]. Without having a plasma in the keyhole but a neu-

tral gas, the keyhole is held open by the pressure arising
from neutral atoms evaporating from the wall as is shown
in [9]. This picture can change completely when a plas-
ma is present, where a lot of pressure components con-
tribute to the total pressure.

The keyhole plasma is a high pressure plasma, which
fills a small volume and hence is in6uenced by the sur-
rounding walls. Some attempts to investigate the keyhole
plasma have already been made [5—7, 1,10—12]. Howev-
er, the experimental results are obtained only for the plas-
ma plume at the top of the keyhole [10—12] or for a half
bounded plasma [1]and all theoretical models suffer from
some shortcomings. The most sophisticated model given
in [7] neglects radiative transport of excitations and excit-
ed states of neutral atoms and assumes a constant neutral
gas temperature.

In the present paper we drop these restrictions. We
give a radially symmetric model for the keyhole plasma
with a fixed keyhole radius and consider the model for
different incident laser powers. The only input parame-
ters are the laser power and the keyhole radius. We solve
the equations numerically and give all numerical results
and material parameters for a cw CO& laser and iron.

The radial behavior of the hydrodynamic variables and
some mean plasma quantities dependent on the incident
laser power are obtained. The energy loss by radiative
transport of excitations is calculated. The dominating
energy transport mechanisms are determined and the re-
sults are discussed with respect to the application of laser
welding.

In the following section we take a closer look at the ex-
pected transport mechanisms and describe our model.
The hydrodynamic balance equations and their explicit
form are given in the next section. Crucial for the self-
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consistent model are the boundary conditions, contained
in Sec. IV. Finally we discuss the results. The appen-
dixes contain the explicit form of the source terms, some
calculations connected with radiative transfer of excita-
tions, and formulas for ionization and excitation rates.

II. THE SELF-CONSISTENT MODEL
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The main ingredients of our plasma model were al-
ready stated in [7]. Here we give a short summary.

The transport mechanisms of the laser power into the
material are illustrated in Fig. 1. The laser energy is ab-
sorbed by the process of inverse bremsstrahlung by the
electrons. In the main part of the plasma, the plasma
bulk, there is nearly no convective transport of ionization
and thermal energy because of the high particle densities;
just a small mean velocity of electrons and ions arises
from a thermal difFusion efFect. Therefore, the absorbed
energy is transported by heat conduction and radiative
transport of excitations towards the wall. Near the wall,
in the so called presheath (for a review on the terms
sheath, presheath, and Bohm criterion, see [13]) the elec-
trons and ions are accelerated in the arising electric 6eld.
Only a small part of the laser energy is absorbed in the
presheath. Consequently, by conservation of energy, the
heat Aux will decrease and the main transport mechanism
becomes transport of ionization and thermal energy. In
the small sheath with nonvanishing space charge density,
the total energy fiux, the particle cruxes, and the total
pressure remain constant and hence a detailed descrip-
tion of the sheath is not necessary in our model. The
electrons and ions recombine at the wall and their mass
Aux is compensated by evaporating neutral atoms.

We describe the presheath and the plasma bulk with
stationary hydrodynamic balance equations. Quasineu-
trality and an isotropic pressure are assumed. Also, the
plasma is considered to be ideal and to contain ions, elec-
trons, ground state neutral atoms, and two excited states
of neutral atoms. Doubly ionized iron atoms become im-

portant only for electron temperatures greater than about
1.6 eV. We will not get such high temperatures and con-
sider therefore just singly ionized atoms.

It is assumed that the keyhole is radially symmetric
and that the plasma quantities do not change in the direc-
tion of the keyhole axis (here the z axis). Of course, the
laser energy is absorbed in the keyhole and, therefore,
there is a trivial dependence on the z direction. Further-
more, the laser beam is afFected by refraction, diffraction,
and rejections at the wa11 while propagating through the
keyhole. However, the real part of the refractive index
wi11 be shown to be nearly 1 at the center of the keyhole
and the radius of the keyhole is about ten times greater
than the laser wavelength. Therefore, the inhuence of re-
fraction and difFraction on the laser beam should be
small. The inhuence of refiections at the wall was investi-
gated in [14] without considering a plasma. A consider-
able in6uence can arise for a long and narrow keyhole.
Hence, the model should be best thought of to describe a
small slice of the keyhole far enough from the surface for
a keyhole with ratio of diameter to length of about 10.

FIG. 1. The transport mechanisms in the keyhole plasma.

The main assumption made in the model to get the
dominating collision terms is that the electron tempera™
ture is greater than approximately 5000 K or, equivalent-

ly, that the charged particle density is greater than about
10 m . This is consistent with all experimental data
[1,10—12], when we assume that these results are also val-
id within the keyhole.

III. THE TRANSPORT EQUATIONS

A heuristic derivation of the transport coef6cients and
the hydrodynamic balance equations without excitations
was given in [7]. Therefore, we simply state the equations
and just mention some new features connected with excit-
ed states.

We use the notation 7„:=d /dI", where r is the distance
from the center of the keyhole.

A. The continuity equations

The continuity equation for the ions and electrons
reads in cylindrical coordinates

1—V'„(rnu) =C,

where n is the density of electrons and ions, u is the radi-
al component of the electron-ion velocity, and C the
source term, explicitly stated in Appendix A. C contains
just electron impact ionization and ternary recombina-
tion because of the high electron density. No electric Aux

can arise in this planar model because of the radial sym-

metry. Consequently, because of quasineutrality ions and
electrons possess the same mean velocity u. Also, the to-
tal particle Aux has to vanish: n„,u„,+nu =0, ~here
u„, is the mean velocity of the ground state neutral
atoms and n„, the ground state density.

We neglect the rnomenturn of the excited states, which
is a good approximation because of their low densities.
This yields for the continuity equations of the excited
atoms

dn
0 ' =C

dt

with the source terms C,„(see Appendix A), the densi-

ties n„. of the excited state j, and j =2,3.

8. The momentum balances

We take as momentum balance for the charged parti-
cles
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V, [nk(T, +T)]+ —V„(rnmu )=R,1
(2)

with the thermal conductivities A,;,A,„ofthe ion and neu-
tral atoms, respectively, and the sum of both A, .

where m is the mass of iron atoms and R the friction
force (Appendix A). The left hand side of Eq. (2) con-
tains the isotropic pressure nk(T, +T) of electrons and
ions and their convective momentum flux. The tempera-
tures of ions and neutral atoms, T, are assumed to be
equal because of the strong interaction via charge ex-
change collisions, but they may diSer from the electron
temperature T, . Because of momentum conservation no
collision term appears in the total momentum balance:

D. Explicit form of the system

To get some insight into the structure of the equations
we solve the system for the derivatives. We obtain with

C„:=C n—u/r, C„= C—m—n„&u„&lr,

R„:=R —mnu Ir, R„:= —R —mn„&u„& Ir

the explicit equations

V„[nk(T, +T)]+ V, (—rnmu )
T

V„(n—„kT) V—„(rn„—,mu„~ ), (3)
1

V„u= R„+k '+
n [mu —k(T, +T)]

With nn n1+ n2+ n3

C. The energy balances

[rnu +k(T, +T)]

1
V„n =—(C„—nV„u },

(7)

To determine the temperatures two energy balances are
needed. The total energy balance is

V r q +q +nu kTe +EIoll 1 + u
1

un, 1
V„un1-

n„,(rnu„, —kT)

n„1kq
X Rn+

"n, 1

(mu„, +kT} (9)

+n„&u„&—u„& =Qt t (4)
m

V„T,=—q, /A, „V,T= —q/A, ,

qe 1
V„q, =Q«, — ——V„rq+ rnu

(10)

where q is the sum of the radial ion and neutral heat flux,

q, is the radial electron heat flux, E;,„, the ground state
ionization energy, and Q„, contains the absorbed laser
energy via inverse bremsstrahlung and the energy trans-
port by emitted and reabsorbed photons (Appendix A).
The left hand side of Eq. (4) exhibits the possible hydro-
dynamic energy transport mechanism, namely, head con-
duction and convective transport of ionization, thermal,
and kinetic energy. Later on we will see that the energy
of the escaping photons is small compared with the other
terms in Eq. (4). Hence, we do not have to worry about
absorption or reflection at the wall and assume all escap-
ing photons to be absorbed at the wall.

Considering neutral atoms and ions leads to

1—V„rq+ rnu (u —u„, ) —nueE =Q;„—,
m

where Q;„contains the gain of energy by elastic collisions
with electrons and the energy transport by photons (see
Appendix A). The electric field E is obtained from the
generalized Ohm's law V, (nkT, }= neE. We close the-
system of equations by giving expressions for the heat
fluxes (see [7]). The electron heat flux q, is determined
from Fourier's law q, = —

A,,V„T, with the electron
thermal conductivity A, Similarly, for the ion and neu-
tral atom heat fluxes we choose

q:=q+qn ~jVpT ~nV pT ~VpT

X E + kT+ —(—u —u )
5 m q 2

IOIl 2 8 n, 1

V„q =Q;„—+——V, rnu (u —u„& } uV„(nkT, )—.

Equation (7) indicates a singularity at the Bohm velocity
ua,h«=+k(T, +T)lm; and Eq. (9) at the neutral atom
thermal velocity u„th=+kT/m;. Note that A,;,A,„«A,,
because of the small electron mass. Therefore the heat
flux of ions and neutral atoms q is expected to contribute
not significantly to the total energy flux into the wall.
However, the term q„/A, „=—V, T in Eq. (9) and the term

q, /A, ,= V, T, in Eq. (7) a—re of the same order of magni-
tude and both have therefore an influence on the veloci-
ties.

As already noted, the numerical solutions of the system
(7)—(13) will show that the mean velocities can be neglect-
ed in the plasma bulk. In this case, the system (7}—(12}
simplifies to the equations of heat conduction,

V,q, +q, Ir+V„q+q/r =Q„, and V„q+q Ir =Q,

and the total momentum balance nk(T, +T}+kTn„
=const, where the heat fluxes are given by the Fourier
law. The densities are determined from Eq. (2} and
C =0.
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IV. BOUNDARY CONDITIONS

Seven boundary conditions (for n, T, T„q, q„u, and

u„, ) are necessary to determine the solution of Eqs.
(7)—(12) uniquely. The conditions are given at r =0, the
center of the keyhole, and at r „the presheath-sheath
boundary. Some quantities remain constant in the small
sheath (like the total pressure). For these quantities it is
also possible to give boundary conditions at the wall
(r =r ).

The radial symmetry requires that the mean velocities
and heat fluxes vanish at r =0. Because the plasma is
sustained from evaporating neutral atoms, vapor pressure
of the neutral atoms is assumed at the presheath-sheath
boundary; a formula for iron is given in [7]. Further-
more, the total pressure at the wall has to be atmospheric
pressure po plus the pressure y/r due to the surface ten-
sion of the melt surrounding the keyhole to obtain
mechanical stability [9]. Therefore we require that the
sum of all pressure terms [see Eq. (3)] is equal to
po+y/r, which is under normal conditions approxi-
mately 1.2X 10 Pa. At the presheath-sheath boundary
r „ the ions and electrons attain the Bohm velocity
u (r~, ) =un, h [13], which indicates that a considerable
charge density arises and the approximation of quasineu-
trality is not valid in the sheath. Finally, we specify the
electron heat flux at the presheath-sheath boundary by
choosing the electron distribution function f, at r =r, to
be

8
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FIG. 2. The electron heat flux density at the wall divided by
the electron density at the wall q, /n and the potential drop in

the sheath P dependent on the electron temperature T, for two

different ion-neutra1-atom temperatures T& and T, .

f,(u)= An(r, )
2~kT,

]. /2

exp
m, U

2kT,
3 me

2
~nphfgkTe (re )

2
+ noh/

for u ) —+2eg/m,

and zero elsewhere, with the potential drop P in the
sheath [15]. A positive v means a velocity towards the
wall. Therefore no electron emission from the wall and
no reflections of electrons at the wall are assumed. The
parameters A, P, and T, may now be chosen in such a
way that the first three moments of the distribution func-
tion f, coincide with the quantities obtained from the

transport equations. With A =2/[1+erf(+eglk/T, )]
we get ff, (u)du =n(r, ). From ff, (v)vdu

I

=n(rz, )u,a h we obtain the potential drop P in the
sheath,

f f,(u)udu= An(r~, }QkT, /2mm,—v'2eg/m,

Xexp

The quantity q, /n(r~, } depends on the electron and
ion-neutral-atom temperature at the presheath-sheath
boundary rp, and is shown in Fig. 2.

V. RESULTS

02

10
"n, l

In Fig. 3-Fig. 7 the radial behavior of some plasma
quantities is shown. If not stated otherwise, the mean

laser intensity I&, ,= fo"I2~rdr/(~r„) is taken to be

2 X 10' W m . We take for the keyhole radius
r =r~ „=10 m and normalize the radial coordinate
to the keyhole radius. Note that just about 63% of the
laser power enters the keyhole because of the assumed

=n (rz, )Qk [T,(r, )+T(r, )]/m

The parameter T, is specified by the requirement that the
temperature given by f, is equal to the temperature ob-
tained from the hydrodynamic balance equations:

E 10

1021
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"n,3

U U Q gob~ dU 7l fps kT l'p

Finally, we can calculate the electron heat flux q, at the
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FIG. 3. Radial dependence of the densities n, n„ l, n„& n„3.
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FIG. 6. Radial dependence of the velocities of electrons and
«1ions and neutral particles. The plasma bulk with u/u~h

is not shown.

Gaussian profile of the laser intensity I (see Appendix A .
The ion-electron density (Fig. 3) is nearly constant in

the plasma bulk because of the constant pressure and t e
hi h de ree of ionization, while the neutral atom densi-
ties are increasing rapidly towards the wall.

1 t d the mean velocities of the excited states, the
densities of the excited states do not vanish at r .
would be expected by estimating the densities of the ex-
cited states in the neutral vapor at the wall from a
Boltzmann distribution. However, the density o t e
second excited state n„3 decreases near the wall because
of the decreasing electron temperature. The density o
the ions and electrons decreases in the presheath by ap-
proximately a factor of 3 because of the rapidly increas-
ing mean velocity (Fig. 6). In Fig. 4 the difFerent energy
density fluxes are shown normalized to the total energy
density flux at the wall j„„1,where

5j 1= q+q +nu —kTe+Eion1+
m

Qjtotal e

m+,1,1 2 n, 1

ps

As already noted, the energy transport in the plasma bulk
is mainly governed by the electron heat flux. Near the

ll th convective transport of ionization energy be-
comes im ortant. Only in the presheath are the mean ve-comes impo an .
locities significantly different from zero ig. . e,Fi . 6). Near the

11 th
'

-neutral-atom heat flux becomes more im-
ortant because of the high neutral atom densi y.portan ecau

temperatures decrease towards t e wa ig.wall (Fi . 5). At the
center of the keyhole the electron and ion-neutral-atom
temperatures epa ys de art by about 10% from each other. The
difference increases towards the wall, where T, is approx-
imately twice T Note that the vapor pressure was
given as ethe boundary condition. This restricts t e

a smallion-neutral-atom temperature at the wall to a sma
range around 3000 K.

The energy emitted or absorbed by radiative transi-
tions per time and volume is shown

' 'g.
excie sae't d t t gives just an emission of radiation in the
whole plasma, increasing towards the wall, whereas e
second excited state shows an emission of radiation in t e
plasma bulk and an absorption of radiation in the
presheath. We remark that the radiative energy flux at
r, which is approximately the area under the curves, is
of the order of 1% of the total energy flux. The radiation
arising romf om the excited states of the ions was not con-
sidered, even though they may give a significant con ri u-
tion to the number of emitted photons because of the

ver the excit-high ion density in the plasma bulk. However, e

1.5 =- -- —.

09

C4
g O.6

~ 4
I

E

o 2

0
t

A2]82 on, 2 E12
A3]03 on, 3 E13
Z; A;, 8; o„„E„

0.3
0.2 0.4 0.6 0.8 1.0

r/r

0.2 0.4 0.6
r/r„

0.8 1.0

FIG. 5. Radial dependence of the electron and ion —neutral-
atom temperatures T, and T for two incident laser powers.

FIG. 7. Radial dependence of the source terms inin . (4) con-
nected with radiative transfer for the Srst and second excited
states and the sum of both.
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FIG. 8. The total energy flux at the wall j„„~divided by the
mean laser intensity I&, , over the mean laser intensity. Alter-
natively, the absorbed laser power P,b, divided by the incident
laser power P& „depending on the incident laser power for a 1

mm deep keyhole is shown.

ed ion states have only small transition probabilities.
Hence, the influence of radiative transport of excitations
on the energy transport towards the wall is small.

The dependence of some mean plasma quantities on
the incident laser intensity is shown in Fig. 8-Fig. 10.
The mean electron temperature (Fig. 10) is increasing be-
cause of an increasing heat flux q, (see also Fig. 5). The
ion-neutral-atom temperature then follows the electron
temperature. The pressure is given as the boundary con-
dition and is nearly constant in the whole keyhole.
Therefore the electron density at the center decreases
(Fig. 9) and the degree of ionization increases, or
equivalently the neutral-atom density decreases. A de-
creasing electron density and increasing electron ternper-
ature lead to a decreasing degree of absorbed energy (Fig.
8). Extrapolating the results to a 10 m deep keyhole,
about 20% of the incident laser power will be absorbed.
Considering only the laser power which enters the
keyhole, the degree of absorption is about 30%.

For a half bounded plasma, experiments give values of

3.0-
n(0)
n(r„)

2.6-

12 16 20

1„,.„[10W m ]

0.6
I

24

FIG. 9. The charged particle density at the wall n{r ) and at
the center of the keyhole n{0) depending on the mean laser in-

tensity.

16 20

1)„.„[10W m ]

FIG. 10. The mean electron and ion-neutral-atom tempera-
ture ( T, ) and ( T ) depending on the mean laser intensity.

0.8 —1 eV and 102 —3X10 m [1]. For the plasma
plume at the top of the keyhole near the surface, electron
densities of about j.0 m and electron temperatures of
0.6 eV were measured [12,11]. The difFerence of our re-
sults from the last cited results may be expected because
of the plasma cooling by the surrounding atmosphere,
which is absent within the keyhole.

To apply our results to the process of laser keyhole
welding, it should be noted that the assumed keyhole
form may restrict the model to low welding speed. In ad-
dition, the model cannot give correct quantities near the
top of the keyhole (see above), because we have neither
considered the ambient gas nor have we taken into ac-
count heat fluxes or mean velocities in the direction of
the keyhole axis.

VI. SUMMARY AND CONCLUSIONS

Hydrodynamic balance equations for the keyhole plas-
ma were set up and solved. Electrons, ions, and three ex-
cited states were considered. Quasineutrality and equal
ion and neutral atom temperature were assumed and the
momentum of the excited neutral atoms was neglected.
As boundary conditions the total pressure and the vapor
pressure were given at the wall and the electron heat Aux

and the Soho velocity at the presheath-sheath boundary.
The solutions of the transport equations suggested divid-

ing the quasineutral region of the plasma into the plasma
bulk and the presheath, where heat conduction and con-
vective transport of ionization energy were the dominat-
ing transport mechanisms, respectively. %bile the elec-
tron temperature was about twice the ion —neutral-atom
temperature near the wall, at the center of the keyhole
the temperatures di6er by less than 10% from each other
because of the high charged particle density. Since the
transport of excitation energy by photons was smaB com-
pared to the total energy flux, the main reason for the

plasma bulk not being in a local thermodynamic equilib-
rium was the strong electron heat flux. The small
influence of the radiation arises from the fact that the
keyhole plasma occupies a small volume and the number
of emitted photons is approximately proportional to this
volume. However, the emitted radiation can be used for
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experimental diagnostics when the radially emitted radia-
tion is measured as in [1].

Calculations with different incident laser powers and a
fixed keyhole radius were carried out. For an incident
laser power of about 10' W m the mean electron tem-
perature and the mean charged particle density were ob-
tained to be about 1.1 eV and 3 X 10 m, which fits in
the range of values measured in [1].

Compared with the simpler model in [7] we got a lower
electron temperature and a higher ion—neutral-atom tem-
perature because of the higher ionization rate and the
variable ion-neutral-atom temperature, respectively.
Nevertheless, the main transport mechanisms are ob-
tained to be the same.

Applied to laser keyhole welding, we conclude that the
keyhole plasma contributes significantly to the energy
transport from the laser into the material.
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APPENDIX A: THE SOURCE AND COLLISION TERMS
AND TRANSPORT COEFFICIENTS

gy and the escaping photons,

m, 3nk(T, —T)

Te

me+ 3 m
~,„n„,n k(T, —T)+——(u —u„ l )

Aj, H n„jRco
J =2~3

with the mean electron-electron collision time r, [17, p.
191].

It remains to specify the thermal conductivities. We
choose for the electrons

Q«, =a„I— g Aflejnn j
J =2,3

where a„ is the inverse bremsstrahlung absorption
coefBcient, and ficoJ-, the photon energy emitted from
state j. The laser intensity I is assumed to have a Gauss-
ian proSle I =[P, ,/(~re, )]exp( r /—r2, ) with the
laser beam radius r1, and the laser power in the con-
sidered slice of the keyhole P1,. The elastic ion-
electron and neutral-atom-electron collisions are exhibit-
ed in the ion-neutral-atom energy balance,

The continuity equation Eq. (1) contains the source
term

3
ion,j nn, jn +coll, jn

j=1,2, 3,

where a;,„J and a„11J are the electron impact ionization
and ternary recombination rates from and into state j, re-
spectively. The source terms for the excited states have
to contain also excitation, quenching, and radiative tran-
sitions:

where

n, k T, 1 5n, k2T,
A,« = r, 1.28 — and A,, „=

2 me n en 2 me

The thermal conductivity A, , arises from electron-ion
electron-electron collisions, whereas 1(,, „arises from elas-
tic electron-neutral-atom collisions. Similarly, for ions
and neutral atoms we take

Cex, J.
—AJ18 nn - —nn naJ 1+nn, 1na1 J

3—a;,„.nnn a 11n

with the electron impact excitation or quenching rate
ak J from k into state j, the rate of spontaneous transition

Ajk from state j into state k, and 8J explained in Appen-
dix B. In the case of a homogeneous plasma, 8J gives ap-
proximately the effective lifetime of a photon [16]. Some
formulas for the ionization and excitation rates are given
in Appendix C and some remarks on radiative transport
of excitation and special features of the iron spectrum
can be found in Appendix B. The dominant terms in the
friction force R are the charge exchange collisions,

3
(~ionj nnj munj ~coll j n

j=1,2, 3

K;nmnn ln(u u„ l) Kcnmnnn ln(u u„ l),
where m, is the electron mass, ~;„ the rate for charge ex-
change collisions, and ~,„ the rate for elastic neutral-
atom-electron collisions. The right hand side of the total
energy balance Q«, contains just the absorbed laser ener-

where the thermal conductivities A, & arise from col-
lisions of particle a with particle P and are given by

5nkT
Ar~ p n&x~ 2 m

The most important heat flux in our model is q, and the
dominating elastic collisions are Coulomb collisions.
Hence, we used for the heat conductivity A, , a precise
expression obtained from the Grad expansion [17, p.
247].

APPENDIX B: RADIATIVE TRANSPORT OF
EXCITATIONS AND SOME SPECIAL FEATURES

OF THE IRON SPEC IRUM

An excited atom can undergo a spontaneous transition
in its ground state by emitting a photon. This photon can
be readsorbed from another atom or can escape to out-
side the plasma. Therefore, connected with radiative
transport of excitations is an energy transport and an
influence on the densities of excited states.
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where 321 is the rate of spontaneous transitions from
state 2 into state 1 and H(r, r')d r' is the probability,
that a photon emitted at r is absorbed at r' [16,18]. The
integral term gives the rate of absorbed photons at the
point r emitted in the volume V and the term dn„/ddt
may be thought to contain all other collision terms. %e
will see that radiative transfer has only a small infj.uence
on the plasma quantities. Therefore, we perform a zeroth
order perturbation calculation, i.e., we calculate the right
hand side of (Bl) with given densities and do not have to
solve the complicated integral equation (81). The right
hand side of Eq. (Bl) was abbreviated in previous sections
to A2182n„2 with the integral operator 82 acting on n„2.
The integral kernel H is given by

H(r, r') =
2 f e„(r')k (r)e 'dco, (82)

4nr —r'.

with r = f ', k (r")dr", where r" runs over the line r-r'.
The spectral li.ne shape c. and the absorption

coefficient k are given by

F12

2m[(co —co)z) +(y,2/2) ]

kp

1+(co—co,z) (2/y, 2)

with the spectral linewidth y12. The absorption
coefficient at the center of the line kp is

1 2g2 2
kp A'12 ~ 21 nn, 1

g1 ~Y 12

where A, ,2 is the corresponding wavelength and gk is the
statistical weight of the state k.

The line shape and the absorption coefficient are given
for purely collisional line broadening, which is a good ap-
proximation because of the high particle densities. For
charged particle densities greater than 10 m the Stark
efFect is the main broadening mechanism [19]. There are
only a few papers existing which have dealt with the mea-
surement or calculation of the radiation linewidth y for
iron arising from the Stark efFect [19,20]. Unfortunately,
no experimental data were given for the lines considered
here. Therefore, we used an estimate given in [21] which
yields

kT, e ap
' 1/6

12 3 3' fu
epfime

2/3 g/3

E,

where ao is the Bohr radius E'p the permittivity of vacu-
um, and A the Rydberg constant. The keyhole plasma is
highly inhomogeneous; in particular, the densities of the
neutral atoms and excited atoms change by some orders

For a plasma with neutral atom ground state density
n„, and one excited state n„2 the balance equation or
Biberman-Holstein equation for n„2 is

7ln 2 I I 3 I(r)= n„—z(r)A z, + n„z(r'}32,H(r, r')d r',
di y 7

(81)

r coordinate system
for radiative transport'

I coordinate
for hydrod

2 rw

'
, center

FIG. 11. The coordinate system for the evaluation of radia-
tive transport.

f k„(r")dr"=y 0, f n„,(t)dt .
r Z' 0

Going back to the coordinates used in the hydrodynamic
calculations, where r is the distance from the center of
the keyhole, we obtain

r

f n„2(r')H(r, r')d r'= f "
dgn„z(!g! )

XJ f n„&(!t!)dt

yon„, (r)
X (83)

with

J(z)= f p [Io(t)—I, (t)]dt .
Z t

The last integral can be evaluated by series expansion,
—ln(z)+ g a,z~ for z (3.75,

j=0
J(z}=

g b,z' for z &3-.75,
Z j—P

with some numerical constants a. and b . The remaining
two integrations in (83) cannot be done analytically be-

cause the densities depend on the integration variables.
The iron spectrum is one of the best known and con-

tains some thousand lines. It was not at all the objective

of magnitude. However, the charged particle density
varies only slightly and therefore is assumed to be con-
stant, which yields y =const. Now, k can be written as
k„(r}=yon„,(r}, where yo does not depend on r and the
integral in (82) can be evaluated as

yon„, (r)
H (r, r') = ' e '~ [Io(~/2) —I t (~/2) ],

4~!r —r'!'
where I. are the modified Bessel functions of j's order.

To simplify the integral in (81), we assume a planar
keyhole geometry and introduce cylindrical coordinates
as illustrated in Fig. 11. The origin of the coordinate sys-
tem is put at the point r. A11 quantities should vary only
in the z' direction. This yields for ~
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TABLE I. The oscillator strengths f,k, excitation energy E,J
(eV), ionization energy E;„1(eV), and the statistical weights gj
of the three neutral atom states and the ion ground state.

with E;,„& the ionization energy of the hydrogen atom
and the number of equivalent electrons g . The function

ttr, is given by

State

1

2
3

Ion

0.17
0.33

Eg. (eV)

3.3
4.9

E... (eV)

7.1

3.3
3.0

81
170
75
58

and
P

1 Q —1G(u)=-
Q Q+1

3/2

g&(t)= f e "G —xdx

28 cokjgj
2 2

Akj f;,
47TGPm, C gk

(84)

where c is the speed of light.

APPENDIX C: IONIZATION AND EXCIIATION RATES

The rates for elastic collisions were obtained by averag-
ing the transport cross section of the considered collision
over a Maxwellian distribution and are already given in
[7]. Therefore we need to give only excitation and ioniza-
tion rates. The recombination and quenching rates can
then be obtained by a detailed balance relation.

The ionization cross sections given in [24] lead to the
ionization rate from state j,

of this work to consider all of them. Therefore, we coarse
grained the iron spectrum (see [22]). From an atomic en-
ergy level diagram (see, e.g., [23]) it can be obtained that
the spectrum can be approximated by a three level system
with no transitions between the two excited states. In
Table I we give the statistical weights of the levels and
the averaged excitation energy and oscillator strength.
The oscillator strength f,„ is related to the Einstein
coeScient Akj is

X 1+—1 — ln(2. 7++u —1)
2 1

3 2Q

A2gk

2g)~„2%7rl~ kT~

' 3/2
Eion, jexp +ion, j

For the excitation cross section we used the formula from
Drawin [25] and obtained for the excitation rate

a k =8@a& fjk+2kT, lnrrt,Ry Ek;

kj e

Ekj
~' kTe

with the excitation energy Ekj and

Pz(t)= I 1 ——e 'ln 1.25—dx .-x X

X

The recombination rate can be obtained from a detailed
balance relation [22]

Xf)
Eion, j
kT,

a;,„t=8nao+2kT, lmrrt, g
ion, j The rate of quenching is given by [22],

Ekjak. = exp a k .
gk e
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