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Bose-Einstein condensation in a system of q-bosons
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We introduce a q-boson system with infinite range interaction which exhibits in the thermody-
namic limit a Bose-Einstein condensation. Young tableaux analysis is used to solve the quantum
problem of the system and to show that for a particular value of the deformation parameter the
system behaves as a Bose gas with hard-core repulsion on a full graph. The method used to solve
our system is of general validity and can be applied to other Hamiltonians with in6nite range inter-
actions.
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The possibility that a system of interacting bosons
can undergo a Bose-Einstein condensation represents one
of most fascinating problems in the area of statistical
physics. This possibility was erst conjectured by London
in connection with the A transition of the liquid He and
since then much work has been done on this problem [1].
In spite of this, a rigorous proof of the occurrence of a
Bose condensation in a system of interacting bosons is
still lacking. Very recently, Toth and Penrose considered
this problem in connection with a Bose gas with hard-
core repulsion on a complete graph [2,3]. These authors
calculated, by diferent methods, the thermodynamic &ee
energy per site and showed the existence in the system of
a Bose-Einstein condensation. The aim of the present pa-
per is to consider the above problem in connection with
a system of q-bosons. More precisely, we introduce a
system of q-bosons on a full graph which is exactly solv-
able through the number state method (NSM) and which,
for a particular value of the deformation parameter, re-
duces to the Bose gas with hard-core repulsion consid-
ered by Toth and Penrose. This proves the existence,
in our system, of a Bose-Einstein condensation. Besides
the hard-core repulsion, our model includes other type of
interactions, such as the ones which put no more than
two particles per site, etc. , and it allows us to deform
continuously &om one type to another. We think the
interest of this paper is twofold: it shows the existence
of a Bose-Einstein condensation in a system of q-bosons
and it provides an example in which a q-deformed alge-
bra (quantum group) is e8'ectively used to solve a con-
crete physical problem. Furthermore we remark that the
method used to solve our system is of general validity and
can be applied to other Hamiltonians which are invariant
under the permutation group.

Let us start by introducing the following Hamiltonian:

f
H = ——) m, ,btbs+N,

and N is the corresponding q-deformed number operator
[4,5]. This deformed algebra (also called quantum group
H~) implies the following action of the creation and anni-
hilation operators on the Fock space of states of a single
particle [4]:

b, in) = [n], in —1)

btin) = [n+ l]qin+ 1)

with [n]~ = ( + l . When the coupling matrix m, ~ is

taken to be the tridiagonal next neighbor coupling ma-
trix, Hamiltonian (1) represents a quantum chain of an-
harmonic oscillators coupled through dispersive interac-
tions, also known as the quantum Ablowitz-Ladik system
[6]. In this case the system is exactly solvable both by the
algebraic Bethe Ansatz [7] and by the NSM [5,4]. This
system, being one dimensional, does not possess phase
transitions at Gnite temperatures. On the other hand, it
is of interest to consider the case of symmetric couplings,
i.e., m;~ = 1 —b,.~, for which the Hamiltonian becomes
invariant under the action of the group SI (permutation
group of f objects). From a physical point of view this
system can be seen as a gas of interacting q-bosons on
a lattice which is a complete graph. Since each q-boson
interacts equally with each other we have that the sys-
tem is in a sense "in6nite-dimensional" and can exhibit a
phase transition at Gnite temperatures. As it was shown
in Ref. [8], a Hamiltonian of type (1) can be block diago-
nalized by using the conservation of the number operator
and by taking advantage of its invariance under the ac-
tion of the symmetric group Sf. In this paper we mill

restrict to the case q = —2. This case is quite important
since it corresponds to a repulsive hard-core interaction
between the q-bosons (i.e. , a generic site of the lattice
can be occupied at most by one particle). For q = —2,
we have, from Eqs. (2), that the commutation relations
become a mixture of bosonic and fermionic ones

where ht and 6 are q-boson creation and annihilation op-
erators satisfying the deformed Heisenberg algebra

jb;, b j= 0, jb, b j~= 0, jb;,bj = (1+qb b,;) b;,z (2j

{b;,bJ j = 0, [b;, bs t] = 0, [b, , b,.] = [bJ, b~t] = 0,

and the action of the creation and annihilation opera-
tors in Eq. (4) on the states i0), il) is the same as for
fermionic operators. Furthermore, in this limit the q-
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deformed number operator is equivalent to

f
N =) 5th, (6)

so that the Hamiltonian (1) can be rewritten as

f fI=-- ) ttt, +) its;. (7)

d„= dim(K~) =
~(f )

This leads to the diagonalization (for each n) of a finite
d„x d„matrix. On the other hand, the invariance of the
Hamiltonian under the action of the permutation group
Sf implies that each d„x d„matrix can be further block
diagonalized according to the irreducible representations
of this group. In Ref. [8] it was shown how to construct
the eigenspaces of N with a given Sf symmetry property
by using Young tableaux filled with n quanta. Here we
recall (for details see Ref. [8]) the rule used to fill in
the tableaux with n quanta for a system of q-bosons.
First, partition n in the numbers n1, n2, ..., nI, such that

i n; = n and then put these numbers in the boxes of
a given Young tableau in such a way that they must not
increase when moving &om left to right in each row, and
they must decrease when moving down each column of a
given tableau.

The eigenstates of N spanning each irreducible repre-
sentation of Sf are then constructed by applying sym-
metrizer and anti'symmetrizer operators to each filled
tableau. More precisely, by denoting with B a permu-
tation within the rows, by denoting with C a permuta-
tion within the columns, and by denoting with b~ the
parity of this permutation, one constructs the operator
P& R P& hc C and applies it to each filled tableau {this
amounts to symmetrizing each filled tableau with respect
to the rows and antisymmetrizing each filled tableau with
respect to the columns). One can prove that the dimen-
sions of the blocks into which the Hamiltonian matrix
decomposes for each symmetry class of Sf and for a fixed

In the following we show that systems (7) and (5) have
the same thermodynamic properties of the Bose gas
with hard-core repulsion considered by Toth and Pen-
rose. To this end we construct the partition function
and the thermodyna~~c free energy for our system (for
q = —2) and prove that they coincide with the-expres-
sions of Ref's. [2,3] for a Bose gas with hard-core repulsion.
In order to diagonalize Hamiltonian (7) for arbitrary f
(nnmber of lattice sites) and for arbitrary n (number of
quanta) we use the conservation of the number operator
together with the invariance of H under Sg. More pre-
cisely, the fact that [H, N] = 0 allows us to decompose
the Hilbert space K of quantnm states into the direct
sum of eigenspaces K„, corresponding to a fixed eigen-
value n of the nn~ber operator. The dimension of these
spaces is just the number of ways n quanta (fermions)
can be placed on f sites, i.e.,

value of n is obtained by counting the diferent ways in
which a given tableau can be filled with n quanta accord-
ing to the above rule. Furthermore, the number of times
a given diagonal block is repeated in H (i.e., the degener-
acy of the eigenvalues of that block) is simply the dimen-
sion of the corresponding tableau (i.e., the dimension of
the corresponding irreducible representation of Sy) [9].
In the case q = —2 (i.e. , for hard-core repulsion) we have
that the anticommutator in Eq. {5) limits the number
of quanta which can occupy a generic site of the lattice
to be 0 or 1. As a consequence we have that the possi-
ble tableaux filled with n quanta cannot have more than
two rows (due to the antisymmetry property of a tableau
along columns). More precisely, for a fixed value of f and
n we can have all the tableaux of type (f —r, r) where
r = 0, 1, ..., min(n, f —n). The dimension d„of these
tableaux is obtained by counting the number of different
ways they can be filled with the numbers 1, 2, ..., f in the
standard manner (see [9]). One can easily prove that this
number is given by

d. = f'(f —2r+ 1)
r!(f—r + 1)! (8)

Furthermore, for each tableau of a given type there
is only one way to fill it with n quanta according to
the above rule. This means that in the block diago-
nalization of H the blocks associated with the possible
Young tableaux have dimensions of one. The correspond-
ing eigenvalues are then obtained &om the expectation
values of H with respect to the states constructed &om
the corresponding filled tableaux, with the degeneracy of
these eigenvalues simply given by Eq. (8). As an illustra-
tive example, let us consider the case f = 4, n = 2. In
this case we can have only the following filled tableaux
of type:

(f —r, r), r = 0, 1, 2

1 1 0 0 1 1 0

0 0 0

I&2) = (I»oo& + lo»1) —Io»o) —I»0»)
1

(4)

&om which the eigenvalues E„are obtained

E. = {@.IRIS'.) r = 0, 1, 2. (9)

For the above example, we find Eo ——2, E1 ——2, E2 ——2

To each of these tableaux we construct the corresponding
states IQ„) as

I/0) = (I1100) + Iooll) + I0101) + I1001) + I1010)
1

(6)
+Io11o)),

1
(I11oo) + I1o1o) —Io1o1) —Ioo11)),

V (4)
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with degeneracy respectively given by 1, 3, 2. The ad-
vantage of this method of diagonalizing H in the sub-
space of the Hilbert space with n fixed and according to
the irreducible representations of Sf, is that it is com-
pletely algebraic so that it can be easily implemented
on a computer using symbolic languages such as Math-
ematica. This allows us to compute in a very effective
way the eigenvalues of H for arbitrary values of f and n
By fixing n and solving the problem for arbitrary f one
can extract recursion relations which allow us to get the
general formula for the eigenvalues of H for arbitrary n.
Thus, for example, for r=0, 1,2,3,4 and arbitrary f and
n, we find that to the tableau of type (f —r, r] are as-
sociated, respectively, the following eigenvalues:

n (n —1)0—

n (n —1)
Eg ——1+

n(n -1)—2
E2 ——2+

n(n —
1, ) —6

E3 =3+ '

n (n —1) —12
E4 ——4+

From these expressions we easily get the general result

n (n —1) —r (r —1)E, =r+

r = 0, 1, . .. , min(f —n, n) (10)

with degeneracy given by Eq. (8). From Eqs. (8) and (10)
the partition function for our system is readily written as

1 1 —pln
1 —2p p

(12)

and p is the number of particle per site (p g [0, 1]). Fur-
thermore, one can prove that this phase transition is ac-
tually a Bose-Einstein condensation, with the condensate
density given by p —p'(P)[1 —p —p*(P)] if P & P'(p)
and equal to 0 if P ( P*(p). This directly follows from
Sec. (9) of Ref. [3] after noting that the operator giving
the number of particles in the zero state in our case co-
incides with operator A+A of Ref. [3]. This proves the
existence in our system of a Bose-Einstein condensation.

We remark that the method of solution presented here
works for arbitrary values of q. In these cases, however,
one Gnds the blocks in the decomposition of H to depend
both on f and n, thus making the solubility of the model
more involved. In the case in which the deformation pa-
rameter is a k-th root of unity (i.e. , the system cannot,
have more than k q-bosons per site), the block diagonal-
ization of H involves only Young tableaux with no more
than 0+1 rows, this simplifying the problem. Finally, we

remark that the method used to solve this q-bose system
can be generalized to fermionic systems invariant under
the permutation group such as the Hubbard model with
infinite range hopping [10].

tition function of the Bose gas with hard-core repulsion
on a complete graph considered in Refs. [2,3], this prov-
ing the thermodynamic equivalence of the two systems.
We remark that in our approach the hard core repulsion
has been included through a suitable deformation of the
commutation relations, this providing an alternative way
of dealing with quantum systems of interacting particles.
The fact that our system, for q = —2, has the same parti-
tion function as the system studied by Toth and Penrose
implies that it exhibits a phase transition for P = P '(p),
where

min( f—n, n)

where P denotes the inverse temperature. We think it is
remarkable that this expression coincides with the par-
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