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Inhomogeneous random sequential adsorption on bipartite lattices
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We consider the inhomogeneous random sequential adsorption of particles on bipartite lattices.
The jamming coverages of each sublattice and the total jamming coverage are calculated for a linear
chain and for a square lattice as a function of the probability p of adsorbing a particle in a given
sublattice. For the linear chain, we obtain an exact closed expression for the coverages as functions
of time. For the square lattice, we present results coming from numerical simulations.
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I. INTRODUCTION

We consider here the problem of random sequential
adsorption (RSA) of particles on a regular lattice [1—
13] in which the Bux of particles is not homogeneous in
space. In the homogeneous RSA problem particles are ir-
reversibly and sequentially deposited on a substrate, each
one in a site of the lattice. The occupation of a certain
site excludes the occupation of sites belonging to a cer-
tain neighborhood. Usually this neighborhood is chosen
to be the nearest neighbor sites of a given site. One quan-
tity of interest is the jamming coverage HJ, that is, the
density of occupied sites in the long time limit. In one
dimension the exact result for the case of nearest neigh-
bor exclusion is 8g ——(1 —e )/2 = 0.432332... [2]. In a
square lattice, nuxnerical calculations coming &om series
expansions [10] give 8g = 0.364133(3).

In this paper we study the problem of the inhomoge-
neous RSA of particles on a lattice [1,14,15]. We consider
bipartite lattices and suppose that sites belonging to one
of the sublattices have a higher probability to adsorb a
particle than the other. Or, in other words, the Bux of
particles into sites of one sublattice is larger than that
of the other. We treat only the case of nearest neighbor
exclusion where an occupied site excludes the occupation
of the nearest neighbor sites which, for bipartite lattices,
belong to the other sublattice. In a square lattice, this
model has been considered previously [14] for its jamming
coverage behavior and percolation properties.

Let us denote by A and B the two sublattices and
let p be a parameter defined in the interval 0 & p & l.
When p ) 1/2 the adsorption of particles in sublattice
A is favored whereas when p ( 1/2 the adsorption of
particles in sublattice B is favored. At each time step
of the adsorption process one site of the lattice is chosen
at random. If the chosen site is empty and its nearest
neighbor sites are also empty then the selected site is
occupied by a particle with probability p if it belongs to
sublattice A and with probability q = 1 —p if it belongs
to sublattice B.

For the case of a linear chain, we were able to solve the
problem exactly by two xnethods. One of them, shown in
the next section, is a generalization of the original tech-

nique of Flory [1,2] and is based on the property that in a
finite open chain the adsorption of one particle breaks the
chain in smaller pieces. It is possible then to set up recur-
sion relations in which the average number of adsorbed
particles on a chain with a certain number of sites is writ-
ten in terms of the average number of adsorbed particles
on a chain with a lesser n»mber of sites. These recursion
relations are then solved by repeated iterations.

The other method, presented in Sec. III, relies on the
general empty site Markov property [1] of one dimen-
sional RSA models. One solves exactly the hierarchic
set of equations for the correlations corresponding to a
string of empty sites, coming &om the master equation
that governs the process. In this method one obtains an-
alytical closed expressions for the coverage as functions
of time. The total coverage behaves asymptotically as
8(t) —8~ e 't where c = min(a, b) and a and b are
the particle Huxes into sites of sublattice A and B and
proportional to p and q, respectively.

In Sec. IV, we present nuxnerical simulation for the
square lattice.

II. JAMMING COVERAGE FOR A CHAIN

Let P~(n, E) and Ps(n, E) be the probability of having
n particles adsorbed on sites of sublattice A in a linear
and open cha of 8 sites in which the first site of the
chain belongs to sublattice A and B, respectively. These
probabilities refer to the Gnal state. To set up recursive
equations for these probabilities we proceed as follows.

Consider first a chain of E sites beginning with a site
of sublattice A, initially unoccupied. Suppose that the
first particle has been adsorbed on the Swath site and let
us ask for the probability of having nq particles adsorbed
on sublattice A at left and n2 particles adsorbed on sub-
lattice A at right. Since the sites on the left are not
adjacent to any one of the sites on the right the proba-
bility will be P~ (ng, Eg —2)P~ (n2, E —Eg —1) if Eg is odd
and P~(n, E —2)P~(n2, E —I. —1) if I. is even. To
obtain, for instance, P~(n, I) we should consider all the
possibilities of placing the first particle and all possible
values of nq and n2. Therefore
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P~(n, ~) = „) ) P (n', e' —2)
& S' odd n~

xP„(n —n' —1,g —g' —1)

+ ~ ) }Pg(n, ', f —2)
g' even n'

x Pgy (n —n', g —g' —1),
where q = 1 —p, and D&+ = E/2 if E is even and D&

p+ (E —1)/2 if E is odd. The prefactor p/D&+ of the first
summation stands for the probability of placing the 6rst
particle in one of the D& sites of sublattice A whereas the
factor q/D& is the corresponding probability for the sites
of sublattice B. We also set Pg(0, —1) = P~(0, —1) =
P~(0, 0) = P~(0, 0) = 1. A similar equation can be set
up for P~(n, l), namely,

TABLE I. Jamming coverages 8z of sublattice A and 8z
of sublattice 8 and total coverage Hg ——8& + 8& as a function
of p for the linear chain.

p 0 0.1 0.2 0.3 0.4 0.5

8g 0 0.029144 0.066303 0.110695 0.161142 0.216166
8~ 0.5 0.447683 0.391576 0.333155 0.274095 0.216166
8g 0.5 0.476827 0.457879 0.443850 0.435236 0.432332

(& l n t'&
I

- + q I ~~pi =
I

——1+ 3q I ~~ + 2f ~g" +I,)

P~(n, E) = ) )
4' odd n'

x Pgy(n', E' —2)P~(n —ii', g —E' —])
+ ~ ) ) P~(n', E' —2)

e' even n'

x P~(n —n' —1, E —E' —1),

where DP = I/2 if I. is even and DP = q + (E —1)/2 if E

1s odd.
Next we set up a recursion relation for N& and N&,

the average number of particles adsorbed on sites of sub-
lattice A in chains beginning with a site of sublattice A
and B, respectively, and defined by

&Ng =
I

2
—q IN~ i+ I

2
—J IN~ i+2' 2+»,(I 't

)

valid for E = 2, 4, 6, ... . We have used the property
N&+ valid for E even. Equations (7), (8), and

(9) are solved numerically by repeated iterations begin-
ning with the initial conditions No ——No ——0, Nz ——1,
Nz ——0, The jamming coverage of sublattice A can be
obtained by the ratio N& /E or NP /E. To increase the
convergence we consider, instead, a periodic chain with
an even number E of sites. Prom the average number
of particles Ng adsorbed on sites of sublattice A of the
periodic chain, given by

N,"=) nP~(n, e),

Nr ——) nP~(n, l) .

Using Eq. (1) we get

(3) Ne =S(N&" s+1)+qN&'.

we calculate the jamming coverage 8& by

Ng
OJ ——lim

e-+~

(10)

NA ) (~A
S' odd

+N,", , +1)+ „) (N,", , +N,~, , ) .
e' even

Similarly, we get from Eq. (2) the following equation for

N~ = n ) (N~, 2+N~ ~,)Da

) (Nq, 2+N~ ~, , +1).DB (6)

t'&
I
-+&

I
Nr"+i =

I

——1+3s'
I
N~"-i+ 2qN~"-2+ J2 ) (2

Equations (5) and (6) can be written in the equivalent
form

The jamming coverage 8J is obtained by using the prop-
erty Hf (p) = 8~~(1 —p).

Table I shows the coverages 9J, 0J, and the total
coverage OJ ——0J + 61& for some values of p obtained
by this procedure. For p = 1/2 we obtain the result
OJ ——0.432 332... which should be compared. with the ex-
act result (1 —e )/2 = 0.432332... .

III. EXACT CLOSED SOLUTION
FOR A CHAIN

Let us denote by ( = ((i, (2, ..., (~) the configuration
of a linear chain with N sites where the variable (; = 1
or 0 according to whether site i is vacant or occupied
by a particle. Notice that we are using a representation
in which the variable (, takes the value 0 when the site
is occupied and the value 1 when it is empty. The Hux
of particle into site i is denoted by p,. and the sticking
probability by m, (() which is given by

~'g) = 6—i('('+i
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The time evolution of the probability P(f, t) that the
system is in configuration ( at time t is governed by the
master equation

d
d—,P(& t) =). '( '((')P(e, t) — '(()P(&, t)), (»)

where the configuration (' is obtained from ( by the
transformation (; m 1 —(;. In the inhomogeneous model
studied here we consider that particle Bux into odd sites is
distinct &om particle Bux into even sites, that is, y; = a
if i is even and y; = b if i is odd.

Let us define now the following correlations:

and

(n —3 n —i)
X„(t) A(t=) exp( —

~

e+ t
~

t
2 2

)n-3
Y„'(t) = B(t) exp —

~

b+ a
I
t

(22)

(23)

for n = 3, S, ... (odd), and

implies that X„(0)= 1 and Y„(0) = 1 for n = 1, 2, 3, ... .
For n even the following property holds: X„(t) = Y„(t)
To solve this coupled set of equations one makes the fol-

lowing ansatz:

and

X„(t)= ) (p(i f„ iP(g, t) (i4)
X„(t) =Y (t) = t (t)exp( —

~ ~

(a+ tt)t)
(n —2l

(24)

Y-(t) =) .(6" 6.P((, t)
for n = 2, 4, ... (even). Inserting these expressions into
Eqs. (18), (19), (20), and (21), we obtain the following
equations for the quantities A(t), B(t), and C(t):

These n point correlations are, in general, distinct due to
the inhomogeneity of the system. They are interpreted
as the probability of finding a string of n empty sites
in which the first site is even and odd, respectively. The
coverages 8+(t) and 8+(t) of the sublattice A (even sites)
and sublattice B (odd sites) are given by 8+ = (1—Xi)/2
and 8 = (1 —Yi)/2, respectively, and the total coverage
8 by 8 = 8~ + 8+ = 1 —(Xi + Yi)/2.

From the master equation one obtains the following
hierarchic set of equations for the correlations:

and

dA —2
—atg

dt

—btg
dt

-t,~= —ae B —be A,
dt

(25)

(26)

(27)

and

—X~ ———aY3
dt

d—Yj ———bX3
dt

which should be solved with the initial condition A(0) =
1, B(0) = 1, and C(0) = 1. It is straightforward to show,
from these equations, that C (t) = A(t)B(t). Now, if one
defines the quantities q(t) = QA(t) and R(t) = QB(t)
and uses the property C2(t) = A(t)B(t) one gets the
equations

and, for n = 2, 4, 6, ...,
d n —2—X„=-bX„+, —aY„+, — (a+ b)X„

—at
dt

= —ae R (28)

and

d n —2—Y„=—bX„+i —aY„'+i — (a+ b)Y„dt" " "
2

and, for n = 3, 5, 7, ...,
d (n —3a+
dt

" " "
2 2

(i9)

dR
dt

(29)

which should be solved with the initial conditions q(0) =
1 and R(0) = 1. If the solutions of these equations are
obtained, then A(t), B(t), and C(t) are determined by
A(t) = Q (t), B(t) = R2(t), and C(t) = q(t)R(t).

Let us define a new variable x by

and

(20) —(a+6)t

and perform the following transformations:

(30)

(n —3 n —1)—Y„= bX +i ——bY+i —
(

b+ a
~

Y„.
dt 2 2

(21)

These sets of equations should be solved with the initial
condition that at time t = 0 the lattice is empty, which

z = 2/pqz

(32)

where p = a/(a + b) and q = b/(a + b) = 1 —p. One
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concludes from Eqs. (28) and (29) that W(z) obeys the
modi6ed Bessel equation

z, +z —(p +z )W = 0.2d R' de
dz dz

This equation has to be solved with the conditions

W(2vtpq) = 1

TABLE II. Jamxaing coverages Hz of sublattice A and Hz

of sublattice B and total coverage Hg = Hz +8+ as a function
of p for a square lattice.

p 0 Q.l 0.2 0.3 0.4 0.5

g~ 0 0.0157(1) 0.0399(2) 0.0756(7) 0.1234(8) 0.1820(5)
8J 0.5 0.4459(4) 0.3845(6) 0.3175(9) 0.2482(9) 0.1821(6)
Hg 0.5 0.4616(3) 0.4244(3) 0.3931(4) 0.3716(2) 0.3641(l)

W'(2~pq) =— (35) the total coverage will be 8(t) —gg e " where c =
min(a, b)

A solution of the modified Bessel equation is I„(z), the
modified Bessel function of order p [16]. For the case in
which p is not an integer, another independent solution
is I ~(z) [16]. If one denotes by W~(z) the solution of
Eq. (33) with the conditions given by (34) and (35) then

W„(z) = c~I„(z) + d~I ~(z), (36)

where c and d~ are constants such that conditions (34)
and (35) are fulfilled. Using the usual recurrence rela-
tions [16] for Bessel functions one gets

(37)

and
px

di, = . I,+,(2V&&) .
sin px

(38)

To obtain the coverage of sublattice A we integrate
Eq. (16) remembering that 8+ = (1 —Xi)/2. We obtain
the result

1

8 = —p W„(2i/pqy)dy . (39)

A similar expression can be written for the coverage of
sublattice B. Summing up the results for two sublattice
coverages it is possible to write the total coverage 6] =
8++8+ in the form

8 = — 1 —~zW&(2i/pqx) Wq(2i/pqz) . (40)
1-

These expressions are the desired closed forms for the
coverages as functions of time since x = exp( —(a + b)t).

Taking the limit t ~ oo, that is, x ~ 0, we obtain the
following closed expression for the total jamming cover-
age:

Ii+ (2Mpq)Ii+ (2Mpq) ~
(41)

1 ( n. ~pq
2 ( sinpm ~

Of course this expression gives, for the case p = 1/2, the
well known result for the coverage of the homogeneous
RSA on a chain, gg = (1 —e )/2.

The asymptotic behavior of 8 can be obtained &om
Eq. (39), which gives

gA (t) gA at—
(42)

Similarly one gets

gB (t) —8B bt—
Since 8(t) = 8 (t) + 8 (t), the asymptotic behavior of

IV. NUMERICAL SIMULATIONS

According to the de6nition of the RSA process, a site
of the lattice should be chosen at random at each time
step of the process. If the chosen site is blocked no par-
ticle is adsorbed. The numerical simulation of the model
becomes, therefore, inefficient for later times when the
number of blocked sites is large. To avoid this problem
one uses a procedure in which one particle is added at
each time step so that the process terminates in a num-
ber of time steps smaller then N/2. At each time step, we
6rst select which sublattice to place a particle. Sublattice
A is chosen with probability p' = pR~/(pR~ + qR~) and
sublattice B with probability 1—p' where B~ and B~ are
the number of available adsorption sites of sublattice A
and B, respectively. After that, we choose at random one
of the available adsorption sites of the selected sublattice
to place a particle.

We have performed numerical simulation on a square
lattice for several values of p. We used periodic lattices
with L x L sites with sizes suKciently large so that the
6nite size deviations were always smaller than the statis-
tical errors. Table II shows results obtained for L = 100
for some values of p. For p = 1/2 the value 0.3641(1)
should be compared with the value gg = 0.364133(3)
obtained from series expansion [10].

V. CONCLUSION

We have studied the inhomogeneous random sequen-
tial adsorption of particles on a bipartite lattice in which
the Huxes of particles in each one of the sublattices are
distinct. The coverage of each sublattice and the total
coverage were calculated as a function of the Quxes for a
linear chain and for a square lattice. For the linear chain,
we have have solved the problem by two methods: one
which generalizes a technique due to Flory and the other
which relies on the general empty site Markov property.
For the square lattice we have presented numerical results
coming &om simulations.
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