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Braid analysis of a bouncing ball
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I identify the template organizing the chaotic dynamics of a bouncing ball system. I further
show how to estimate the topological parameter values of the system directly from a time series —a
process I call "topological time series analysis. " Two distinct methods to determine the topological
parameters are illustrated and compared —the "pruning front" procedure and a "braid analysis. "
Both procedures lead to compatible results.

PACS number(s): 05.45.+b, 47.52.+j

I. INTRODUCTION

Braids arise as periodic orbits in dynamical systems
modeled by three-dimensional fiows [1—4]. The existence
of a single periodic orbit of a dynamical system can imply
the coexistence of many other periodic orbits [5—8]. The
most well known example of this phenomenon occurs in
the field of one-dimensional dynamics and is described
by Sarkovskii's Theorem [9]. Less well known is the fact
that analogous results hold for two-dimensional systems
[3]. In one-dimensional dynamics it is useful to study
the period (or the permutation) of an orbit [10]. In two-
dimensional systems it is useful to study the bruid type of
an orbit [2]. Given this specification, we can ask whether
or not the existence of a given braid (periodic orbit) forces
the existence of another; as in the one-dimensional case,
algorithms have recently been developed for answering
this question [11—13].

As originally observed by Auerbach and co-workers,
unstable periodic orbits are available in abundance Rom
a single chaotic time series using the method of close re-
currence [8,14,15]. By a "braid analysis" I propose to
analyze a chaotic time series by first extracting an (in-
cornplete) spectrum of periodic orbits, and second order-
ing the extracted orbits according to their orbit, forcing
relationship. As shown in this paper, it is often possi-
ble to find a single periodic orbit, or a small collection
of orbits, which forces many orbits in the observed spec-
trum. These orbits also force additional orbits of arbi-
trarily high period. This analysis is restricted to "low-
dimensional" fiows (roughly, fiows which can be modeled
by systems with one unstable Lyapunov exponent); how-
ever it has a strong predictive capability.

I would also like to point out that this analysis gives
us an efFective and mathematicaQy well defined "pruning
procedure" for chaotic two-dimensional difFeomorphisms
[16]. Instead of asking for rules describing which orbits
are m~ssing (pruned), I instead look for those orbits which
must be present. For low-period orbits (say, up to period
11) t&is procedure can predict all those orbits which must
be present in the Sow. This procedure will usually miss
orbits of higher period; however, from an experimental
viewyoint, the low-period orbits are the most important

and accessible. Orbits of low period often force an infinity
of other orbits. This is illustrated in one-dimensional dy-
namics by the famous statement "period 3 implies chaos"
[17]. An analogous statement in two-dimensional dynam-
ics is that a non-well-ordered period 3 braid implies chaos
[1S].

This paper is organized as follows. Section II reviews
the dynamics of the bouncing ball system. In Sec. IIII
identify the template organizing the chaotic Bow of the
bouncing ball system. It is a horseshoe with a full twist.
In Sec. IVI show how braid analysis works by apply-
ing it to times series data generated from the bouncing
ball system. The analysis builds directly on the original
topological analysis of such data sets attributed Mindlin
et al. [19]. This section also illustrates how easily mea-
sured braid invariants of the periodic orbits lead to strong
dynamical information about the flou~without the need
for a problematic and detailed symbolic description of
the orbits in phase space. Section V illustrates how a
pruning fl.ont can be estimated &om a collection of low-
period orbits. The results are compatible with the braid
analysis of the preceding section. Section VI offers some
concluding remarks.

In the example studied in this paper I do have good
control of the symbolics. In principle, though, a braid
analysis does not require good control of the symbolics
(a good partition) and can thus overcome some of the
current difficulties associated with finding good symbolic
descriptions for (nonhyperbolic) strange attractors [20].

II. BOUNCINC BALL SYSTEM

Consider the motion of a ball bouncing on a period-
ically vibrating table. This bouncing ball system arises
quite naturally as a model problem in several engineer-
ing applications: examples include the generation and
control of noise in machinery such as jackhammers, the
transportation and separation of granular solids such
as rice, and the transportation of components in au-
tomatic assembly devices which commonly employ os-
cillating tracks. Several researchers have studied one-
dimensional models of the bouncing ball system which
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include the coefficient of restitution (0 ( a ( 1), and
many have also noted the existence of a large class pe-
riodic, chaotic, and eventually periodic orbits known as
"sticking solutions" [21]. More details can be found in
Ref. [22]. All these models have been termed the "exact"
one-dimensional model of the bouncing ball system. The
phrase "one-dimensional" refers to the number of degrees
of &eedom the ball moves in and not to the dimension of
the phase space model.

To fix a notation which allows an easier comparison
with experiments, recall that the dynamics of the bounc-
ing ball system can be found by solving the (implicit)
nonlinear coupled algebraic equations known as the phase
map,

&[»n(6) + 1] &- ~~ —(~s+i —6)
- 2

and the vetocity map,

(1 + cx)ldA cos(OA, +y )

1
&I —g —6k+i —Ov

where OI,
——~t + Oo and vt, are the phase and velocity of

the kth impact between the ball and oscillating table, A
and ~ are the table's amplitude and angular frequency,
o. is the coeKcient of restitution, and g is the gravita-
tional acceleration. The table's forcing period is denoted
by T = 2x/w. The implicit phase map and explicit ve-

locity map constitute the exact model of the bouncing
ball system. Earlier experimental studies showed an ex-
cellent correspondence between the exact model and the
dynamics of an experimental bouncing ball system; all
the major bifurcations predicted by the exact model oc-
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FIG. 1. Bifurcation diagram for the bouncing ball system.
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FIG. 3. Two-dimensional
plot of a chaotic trajectory in
the bouncing ball system. Inset
shows template governing the
evolution of the orbits.
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III. BOUNCING BALL TEMPLATE

The first step in analyzing the structure of the chaotic
set in the bouncing ball system is the identification of
a template which captures the organization of its pe-
riodic orbits [19]. The template is a nice (canonical)
representation of the stretching, folding, and twisting
of phase space resulting in a particular chaotic form.
To visualize the template arising in the bouncing ball
system I plot a chaotic orbit in the three-dimensional
space, (sin(ut), v(t), z(t)), where the first coordinate is
the table's (normalized) time dependent forcing ampli-
tude, and the remaining coordinates are the ball's veloc-
ity and height.

Inspection of Fig. 2(a) reveals a bandlike structure with
a half twist occurring where the ball reverses velocity
when it hits the table, and an additional smaller fold on
the outer edge of the band near the top of the figure. A
schematic of the sheetlike structure is presented in Fig.
2(b). A template is nothing more or less than this sheeted
structure collapsed to a single sheet and moved by a
sequence of isotopes to a standard form. This sheeted
structure is perhaps easier to see in Fig. 3. Here the
pre-image of the fold can be traced back to its impact
point with the table. The impact phase of the fold point
is in the vicinity of Oy = 0. The folding of the strange
attractor in phase space occurs in the region where the
table's impact velocity is maximal: roughly, orbits hit-
ting at phases greater or lesser than this value get less of
a kick from the table and hence do not travel as high.

Figure 4 shows how this sheeted structure can be put
into a template of standard form. In Fig. 4(a) the evo-
lution of a small section of an unstable manifold (repre-
sented by an arrow) is shown as it is carried by the tem-

pull

~W&

b
full tv~st

FIG. 4. Transformations taking the template found in the
phase space to a template in standard form.
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plate. To reach a canonical form I first pull the fold point
all the way to the left (thus going from a pruned to an
unpruned system), and second identify and cut through
the trajectory of the fold point. In the language of Cvi-
tanovic, Gunaratne, and Procaccia [5], this fold point is
a primary tangency. As shown in Fig. 4(b), each branch
of the template is now given a symbolic label. I also put
the insertion layer of the template in standard form (back
to front) and slide all the branch twists to the top of the
diagram [4]. The template of the bouncing ball system
in standard form is shown in Fig. 4(c). At this point
I notice that by subtracting a full twist from the entire
template I arrive at a horseshoe template in standard
form [Fig. 4(d)]—thus, the template in the bouncing ball
system for the parameter range considered is the horse-
shoe with a global torsion of —1. In the next section I
verify that the template identified is correct by compar-
ing topological invariants calculated from the horseshoe
template and those extracted directly from a chaotic time
series.

IV. BRAID ANALYSIS

A braid analysis of a low-dimensional chaotic time
series consists of four steps once an appropriate three-
dimensional space is created [19]: (i) the periodic orbits
are extracted by the method of close recurrence [22,26],
(ii) the braid type of each periodic orbit is identified and
the orbits are ordered by their two-dimensional forcing
relationship [11,27], (iii) a subset of braids is selected
which has maximal forcing and which forces the orbits

extracted in step (i), and (iv) if possible, an attempt is
made to verify that some of the predicted orbits [not
originally extracted in step (i)] are found in the system.

In practice, steps (i) and (ii) are greatly simplified if
the template or knot holder organizing the How can be
identi6ed using the procedure described by Mindlin and
co-workers [4,19,28,29]. Knowledge of the template helps
in obtaining the symbolic names of the periodic orbits
and in calculating the forcing relationship for the specific
braids in that template. For instance, if the template is
identified as a two-branch horseshoe knot holder (as is
the example studied in this paper), then the theory of
quasi-one-dimensional (QOD) orbits of Hall [6,27] can
be applied to simplify the analysis.

Although template identi6cation is very valuable, it
is not essential for a braid analysis, nor is the symbolic
identi6cation of the extracted orbits. In the worst case,
a braid analysis does require that the the braid conju-
gacy class of each extracted periodic orbit be identified
(see Elrifai and Morton [30], or Jaquemard [31] for algo-
rithms), and that the minimal Markov model (a "train
track" in the language of Thurston) can be constructed
for each braid (see Bestvina and Handel [11], Los [12],
and Franks and Misiurewicz [13] for algorithms). Algo-
rithms exist for both of these steps, although the most
computationally efBcient version of the braid conjugacy
algorithm is probably not an effective solution for braids
beyond period 8.

To illustrate braid analysis I simulated the bounc-
ing ball system for 105 impacts with system parameters
0; = 0.5, u = 2+60, and A = 0.01215. The resulting next
impact map, (Pi„Pg+i),Pi, = Hi, /2', is shown in Fig. 5.
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FIG. 5. Next phase map for
the bouncing ball system. In-
set shows expanded view of the
region near the maximum.
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The many leaves of this return map once again indicates
that the symbolic dynamics of this system should exhibit
departures from that predicted by a one-dimensional uni-
modal theory. The inset of the Fig. 5 shows an expanded
view of the region surrounding the maximum of the map.
Three distinct leaves are visible in this region and this

suggests that, to a first approximation, the symbohc dy-
namics of the system should be describable by a a three
step pruning front.

To extract the (approximate) periodic orbits by the
method of close recurrence I first convert the next im-
pact map from the sequence of values (P~, Pa+&) directly
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FIG. 6. Periodic orbits extracted from a chaotic time series. The exponent sum identi6es the orbit up to braid type. The
linking number of the l(0, 10) orbits is also indicated.
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into a symbol sequence of 0's and 1's. In this particular
instance, I found that an adequate symbolic description
(at least up to period 11 orbits, or approximately one
part in 2ii) is obtained by choosing the maximum value
of the next impact map at the three leaves shown in Fig.
5. Orbits passing to the left of the maximum in the vicin-
ity of a given layer are labeled zero, and those to the right
are labeled one. Next I search this symbolic encoding for
each and every periodic symbol string. Every time a pe-
riodic symbol string is found I calculate its (normalized)
recurrence and then save the instance of the orbit with
the best recurrence. The advantage of this procedure of
orbit extraction is that it is exhaustive. I search for ev-
ery possible orbit up to a given period. In these studies
I searched for all orbits between periods 1 and 11. Some
of the extracted periodic orbits are shown in Fig. 6.

The resulting spectrum of periodic orbits up to pe-
riod 11 is shown in Table I. Simple topological invariants

(linking numbers and relative rotation rates) of the ex-

tracted orbits are calculated and compared with those of
a horseshoe with a global torsion of —1. There are no

discrepancies. This indicates that —at least to this level

of resolution —the template is correctly identified and the
symbolic partition is adequate. The orbits present in (the
full shift) complete hyperbolic system, and not present in

the tables in the Appendix are said to be pruned. Our

goal is to predict as well as possible the pruned spectrum
&om the chaotic time series.

The symbolic label (up to braid type) can also be de-

termined by considering simple and easily computable
braid invariants. For instance, as pointed out by Hall

TABLE I. Spectrum of low-period orbits extracted from a
chaotic time series of the bouncing ball system (all orbits with
e ( 0.01 are shown). Extracted orbits and their (best) nor-
malized recurrence are recorded. Note that in this particular
example all saddle-node partners are detected in pairs.

P cp e(gi. , PI +p) &(pi, pl +s )
~

0.001315 syp 1011101010 0.000 686
si 10 0.000185 syp 1011101011 0.001 030
84 1011 0.000265 sxo 1011111010 0.000 771
85 10110 0.000254 sip 1011111011 0.001 599
85 10111 0 000546 8I p 1011111110 0 001 274
86 101110 0000347 syp 1011111111 0000 510
s6 101111 0 000119 szo 1011010111 0 001 372
s7 1011110 0.000262 sip 1011011110 0.004 542
s7 1011111 0.000585 s yp 1011011111 0.003 181
s8 10111010 0.000069 sy y 10111111110 0.002 397
s8 10111110 0.000396 sy y 101111111110.002 669
88 10111111 0.001261 sy y 10111111010 0.005 078
ss 10110110 0.000033 sI I 10111111011 0.001 549
88 10110111 0.000097 8Iy 10111101010 0.000 130
sg 101111110 0 000473 spy 10111101011 0.000 372
sg 101111111 0 002288 spy 10111101110 0.000 510
sg 101111010 0.000147 syI 10111101111 0.001 238
sg 101111011 0.001211 8 I i 10110101110 0.002 779
8g 101101110 0 000199 siI 10110101111 0.002 854
sg 101101111 0.000086 sr z 10110111110 0.002 673

siI 10110111111 0 001 730

TABLE II. Exponent sums for horseshoe braids up to pe-
riod 8: standard horseshoe [e,(b)] and horseshoe with a neg-
ative full twist [e,(b i)]. Orbits with the same exponent sum
are braid conjugates. See Ref. [27] for the explicit conjuga-
tions.

Cp

0,1
10
10'
1011
100
1011'
1001'
1000
10111'
100101
10011'
10001$
10000

e, (b)
0
1

2

3
8
6
4
13
9
9
7
5

e, (b g)
0
-1
-4
-7
-9
-12
-14
-16
-17
-21
-21
-23
-25

Cp

101111'
101101'
100101]
100111'
100110'
100010
100011'
100001'
100000'
1011111'
10111010
1011011'
1001011'
1001111y
1001010'
1001110'
1001101'
1000101'
1000111y
10001001
1000110'
1000010'
1000011'
1000001
1000000

e, (b)
18
16
14
14
12
10
10
8
6
25
23
21
19
19
17
17
17
15
15
13
13
11
11
9
7

-24
-26
-28
-28
-30
-32
-32
-34
-36
-31
-33
-35
-37
-37
-39
-39
-39
-41
-41
-43
-43
-45
-45
-47
-49

[27], the exponent sum (simply the sum of braid cross-

ings in the example) is a complete invariant for horseshoe
braids up to period 8 (see Table II). Also, as inspection
of the table in the Appendix reveals, the exponent sum

manages to distinguish most of the the pseudo-Anosov
horseshoe braids of periods 9, 10, and 11 as well. Thus,
I see that an easily determined quantity measured from
a time series leads to the conclusion that the How con-

tains a chaotic invariant set—without the calculation of
more detailed quantities such as &actal dimensions or

Lyapunov exponents.
The goal of a braid analysis is to find a small subset

of orbits, called a "basis set" [7], which forces the the
observed periodic orbit spectrum. One sensible way to
proceed in identifying such a collection of orbits is to
calculate the spectrum of orbits forced by a few high

entropy orbits to see if they can capture most or all of
the observed spectrum. If some orbits are left out then
they are systematically added to the basis set until all
the orbits in the observed spectrum are captured.

Using the tables in the Appendix, I find that the high-
est entropy orbit in this particular data set is ss (h2 ——

0.397) which happens to be a quasi-one-dimensional or-
bit. Thus, using the results of Hall [6,27], I calculate
the forced spectrum of this orbit by one-dimensional uni-
modal kneading theory [32]. I find that up to period 11

2 ' z 3 / 4 i 1 2 1 1 3 2the 89 bra1ds force s11 i 11)~ 87) 11~ 89~ 11~ 10~ 88

s10, 86, 810, 88, s4, 82, 81. There are still many orbits
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V. PRUNING FRONTS FROM PERIODIC
ORBITS

I now attempt to predict the (low period) forced orbits
by using the extracted periodic orbits to systematically
construct an approximation to the pruning front [5]. The
braid analysis of the preceding section only specifies the
existence of orbits up to braid type. Thus, for instance,
it might only predict the existence of one individual peri-
odic orbit in a given saddle-node pair. The pruning front
procedure is more specific, it actually forces individual
periodic orbits as denoted by their complete symbolic la-
bel. Not unexpectedly, therefore, the basis set of periodic
orbits needed to construct an approximate pruning front
may be larger than that found in a braid analysis.

As a first step in obtaining an approximate pruning
front I plot the trajectory of a single chaotic orbit in the
symbol plane [5]. The data is a symbolic symbol string
constructed in the preceding section of the form

S =.. . 8 38 28 180.818283

where symbols to the left and right of 80 are the past
and future symbols, respectively. The coordinates of the
symbol plane for a horseshoe are calculated &om the well
ordered past (c,) and future (b;) symbols as follows:

D 2

z(s) = ) —'.
, b; = ) s, mod 2

~(s) = ).2;

i+1
c, =) s, mod 2.

j=0

If s is an infinite symbol string generated by a chaotic
orbit, then D is infinity in the above sums. However,
since I am dealing with finite data sets, I approximate the
symbol plane coordinates of a point by taking D = 16.
In this way I can use a finite symbol string from a chaotic
trajectory to generate a sequence of points on the symbol

unaccounted for in the observed spectrum. I thus exam-
ine the orbit with the next highest entropy. It is the 89
(h2 ——0.377) orbit. The sg braid is not QOD. Its forced
spectrum can be calculated either by obtaining the train
track for this braid (and the associated Markov model)
[11],or by the method of pruning fronts brie6y illustrated
in Sec. V. Using a train track calculation I find that the
sg braid forces sii (sii) sip (sip) ss sii (sii) s7 g

4 ~ 5 8 4 5 1 4 3 1 1

811 & s10 & s8 & s6 & 82 & si Comparing the spectrum forced
by the union of these two orbits with the observed spec-
trum (Table I), I find that only one orbit is unaccounted
for, the finite order braid 88, which is the maximal or-
bit in the observed data set in terms of one-dimensional
unimodal theory.

Adding this orbit to the collection I determine that a
basis set which accounts for the observed spectrum —up
to braid type —is {sss, s4g, sg2)

plane. The resulting plot for the data is shown in Fig. 7.
An expanded view of the primary pruning &ont region

(center right of full diagram) is shown in the inset of
Fig 7. The two-dimensional nature of the data set is
indicated by the steps in the diagram. If the data set
was one dimensional, then a vertical pruning front with
no steps would be seen. Such vertical pruning fronts
are found, for instance, when the bouncing ball system is
much more dissipative (a = 0.1). As a rule of thumb, the
depth of the steps increases as the dissipation decreases.
In this example, the steps are easier to see in the iterates
of the pruning front.

Now, to construct an approximate pruning front I plot
all the periodic orbits (periods one and eleven) extracted
in the preceding section on the symbol plane and exam-
ine their location in the region of the pruning front. This
is shown in Fig. 8 in the same region as that found in the
inset of Fig. 7. The periodic orbits closest to the right
and the center (i.e. , closest to the pruning front suggested
by Fig. 7) are selected as a basis set for constructing an
approximate pruning front. Labels for these innermost
periodic orbits are indicated in Fig. 8, and the last digit
in the symbolic label (for the saddle-node partners) is
determined by whether the rightmost point of the orbit
lands above (1) or below (0) a line through the center of
the symbol plane. To construct the approximate pruning
front I take the orbit in each saddle-node pair which is
larger (rightmost) by unimodal ordering. Thus in this
example I construct the pruning front from the set of pe-
riodic orbits (from bottom right to center): sss(0), ssip(0),
"„(o),'(o), '(1)

An approximate pruning front is then constructed from
a continuous sequence of horizontal and vertical line seg-
ments connecting these periodic orbits:

vp[ss] m
(0.10110110,01101101.10110110),

hi [ssy sip]
(01101101.10110110,01101101.1011011110),

»[ssi sip] ~3 5

(01101101.1011011110,0111101101.1011011110),
2[sip, sii] M

(0111101101.1011011110,0111101101.10110111110),
v2[sip~ siil ~5 8

(0111101101.10110111110,01111101101.10110111110),
hs[s'„,s', ] ~

(01111101101.10110111110,01111101101.101101110),
v3 811& 898 4

(01111101101.101101110,011101101.101101110),
h4[s4g, sg2] -+

(011101101.101101110,011101101.101111011),
v4[sg) sg]

(011101101.101111011,110111101.101111011).

By construction, this pruning front generates the same
periodic orbit spectrum —up to period 11—as that
recorded in Table 1.

Like the braid analysis, beyond period 11 this prun-

ing front should begin to generate fewer orbits than are
actually present. Both of the pruning methods illus-

trated here are systematic approximations in the sense
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TABLE III. Topological invariants for horseshoe braids up to period 11 (periods 1—9 previously
published by Hall [27]): name, code, permutation, Thurston type, rotation number, rotation in-

terval, height, depth, exponent sum, and topological entropy of the braid calculated from a train
track [11].

iP [
cp

1

1
S2

S3
1

84
S44

1
85
82

S5
1

S6
82

S

S'
1

S7
2

87
S4,

5

6

S7
8

S',
1

88
2

3
88

5
88

6

878
878

8

S'
10

S8
11

88
12

88
13

S8
14

S8
15

88
1

8g
2
9

Sg
S4

5

6

8g
8

8'9
10

Sg
11
12

Sg
13

14
Sg

15
8g

16
8g

17
Sg

18
Sg

19
Sg

1
10
10
1011
100
10111
10011
1000
101111
100101
100111
10001
100001
101111
1011011
1001011
1001111
1001101
1000101
1000111
1000011
1000001
10111010
10111111
10»0»',
10010111
10010101
10011101
10011111
10011011
10001001
1000101
10001111
10001101
1000010
1000011
10000011
10000001
10111111
10111101
101101011
10110111
100101101
10010111
100101011
100111011
100lllll1
100111101
100110101
100110111
10011001
10001001
10001011
100010101
10001110
100011111
100011011

(1)
(12)
(123)
(1324)
(1234)
(13425)
(12435)
(12345)
(143526)
(135246)
(124536)
(123546)
(123456)
(1453627)
(146253?)
(1362547)
(1254637)
(1356247)
(1246357)
(1235647)
(1234657)
(1234567)
(15472638)
(15463728)
(14725638)
(13725648)
(13647258)
(13657248)
(12564738)
(12573648)
(13572468)
(12473658)
(12365746)
(12467358)
(12357468)
(12346758)
(12345768)
(12345678)
(156473829)
(156482739)
(157382649)
(148265739)
(147368259)
(138265749)
(137482659)
(126583749)
(126574839)
(136758249)
(136748259)
(125836749)
(136824759)
(135824769)
(124836759)
(124?58369)
(124768359)
(123675849)
(123684759)

e[&yp

fo
fo
fo
red
fo
fo
pA
fo
red
red
red
pA
fo
fo

pA
pA
pA
fo

pA
pA
pA
fo
red
red
fo

pA
pA
pA
pA
pA
red
pA
pA
red
pA
pA
pA
fo
fo

pA
pA
pA
red
pA
pA
pA
pA
red
red
red
pA
pA
pA
pA
pA
pA
pA

p(P)
)

N/A
1/2
1/3
1/2
1/4
2/5
2/5
1/5
1/2
1/3
1/3
1/3
1/6
3/?
3/7
3/7
3/7
2/7
2/7
2/7
2/7
1/7
1/2
1/2
3/8
3/8
3/8
3/8
3/8
3/8
1/4
3/8
3/8
1/4
1/4
1/4
1/4
1/8
4/9
4/9
4/9
4/9
1/3
4/9
4/9
4/9
4/9
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3

p'(P)
N/A
[1/2]
[1/3]
[1/2]
[1/4]
[2/5]
[1/3, 1/2]
[1/5I
[1/2]
[1/3]
[1/3]
[1/4, 1/2]
[1/6)
[3/?]
[2/5, 1/2]
[1/3, 1/2]
[1/3, 1!2)
[2/7]
[1/4, 1/3]
[1/4, 1/3]
[1/5, 1/2]
[1/7)
[1/2]
[1/2]
[3/8]
[1/3,2/5]
[1/3, 1/2]
[1/3 1/2)
[1/3,2/5]
[1/3, 1/2
[1/4]
[1/4, 1/2]
[1/4, 1/2]
[1/4]
[1/5, 1/3]
[1/5, 1/3]
[1/6, 1/2]
[1/8]
[4/9]
[3/7, 1/2]
[2/5, 1/2]
[2/5, 1/2]
[1/3]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3]
[1/3]
[1/3)
[2/? 1/2)
[1/4, 1/2]
[1/4, 2/5)
[1/4, 1/2]
[1/4 1/2)
[1/4, 2/5]
[1/4, 1!2]

q(P)
)

1/2
1/2
1/3
1/2
1/4
2/5
1/3
1/5
1/2
1/3
1/3
1/4
1/6
3/7
2/5
1/3
1/3
2/7
1/4
1/4
1/5
1/7
1/2
1/2
3/8
1/3
1/3
1/3
1/3
1/3
1/4
1/4
1/4
l/4
1/5
1/5
1/6
1/8
4/9
3/7
2/5
2/5
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
2/7
1/4
1/4
1/4
1/4
1/4
1/4

r(P))
1/2
1/2
1/2
1/2
1/2
1/2
1/3
1/2
1/2
1/2
1/2
1/4
1/2
1/2
2/5
1/2
1/2
1/2
1/2
1/2
1/5
1/2
1/2
1/2
1/2
1/2
1/3
1/3
1/2
1/3
1/2
1/2
1/2
1/2
1/2
1/2
1/6
1/2
1/2
3/7
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
2/7
1/3
1/2
1/3
1/3
1/2
1/3

'(P)[

1

2

5
3
8
6
4
13
9
9
7
5

18
16
14
14
12
10
10
8
6
23
25
21
19
17
17
19
17
l3
15
15
13
11
11
9
7
32
30
28
28
22
26
24
24
26
22
22
22
20
18
20
18
18
20
18

h2(P)
0

0
0

0
0
0
0.544
0
0
0
0
0.633 I[

0
0
0.442
0.477
0.477
0
0.382
0.382
0.666
0
0
0
0
0.346
0.498
0.498
0.346
0.498
0
0.569
0.569
0
0.459
0.459
0.680
0
0
0.397
0.377
0.377
0
0.447
0.507
0.507
0.447
0
0
0
0.605
0.537
0.492
0.537,
0.537
0.492
0.537
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TABLE III. (Continued)

20
Sg

21
Sg

22
Sg

23
Sg

24
Sg

25
Sg

26
Sg

27
Sg

28
Sg

1
S10

2
S10

3
S10

4
S10

5
S10

6
S10

7
S10

8
S10

9
S10

10
S10

11
S10

12
S10

13
S10

14
S10

15
S10

16
S10

17
S10

18
S10

19
S10

20
S10

21
S10

22
S10

23
S10

24
S10

25
S10

26
S10

27
S10

28
S10

29
S10

30
S10

31
S10

32
S10

33
S10

34
S10

35
S10

36
S10

37
S10

38
S10

39
S10

40
S10

41
S10

42
S10

43
S10

44
S10

45
S10

46
S10

47
S10

48
S10

49
S10

50
S10

51
S10

Cg

100011001
10000100
100001011
100001111
10000110
100000101
100000111
100000011
100000001
1011101011
1011111011
1011111111
1011010111
1011011111
1011011011
1001011011
1001011111
1001011101
1001010101
1001010111
1001110010
1001110111
1001110101
1001111101
1001111111
1001111011
100110101
1001101111
1001101101
1001100101
1001100111
1000100111
1000100101
1000101101
1000101111
1000101011
1000101001
1000111001
1000111011
1000111111
1000111101
1000110101
1000110111
1000110011
1000010001
100001001
1000010111
1000010101
1000011101
1000011111
1000011011
100001100
1000001001
100000101
100000111
1000001101
1000000101
1000000111
100000001
1000000001

Xg

(135782469)
(124683579)
(123584769)
(123476859)
(123578469)
(123468579)
(123457869)
(123456879)
(123456789)
(16583927410)
(16574928310)
(16574839210)
(15839267410)
(14926758310)
(15926837410)
(14926837510)
(13926758410)
(14837692510)
(14837592610)
(13849267510)
(13769248510)
(13759268410)
(13768492510)
(13768592410)
(12675849310)
(12675938410)
(12684937510)
(12593768410)
(14783692510)
(14792583610)
(13692478510)
(13592478610)
(13692584710)
(12584793610)
(12493768510)
(12485937610)
(13586924710)
(13587924610)
(12376948510)
(12376859410)
(12478693510)
(12478593610)
(12369478510)
(12479358610)
(13579246810)
(12469358710)
(12359478610)
(12358694710)
(12358794610)
(12347869510)
(12347958610)
(12468935710)
(12357946810)
(12346958710)
(12345879610)
(12346895710)
(12345796810)
(12345689710)
(12345679810)
(12345678910)

Type

fo

pA
pA
pA
pA
pA
pA
pA
fo
red
red
red
red
red
pA
pA
pA
pA
pA
pA
red
pA
pA
pA
pA
pA
pA
pA
fo

pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
red
pA
pA
pA
pA
pA
pA
red
pA
pA
pA
pA
pA
pA
pA
fo

p(P)
2/9
2/9
1/3
1/3
2/9
2/9
2/9
2/9
1/9
1/2
1/2
1/2
2/S
2/S
2/5
2/5
2/S
2/S
2/5
2/5
2/5
2/S
2/S
2/5
2/S
2/5
2/5
2/S
3/10
3/10
3/10
3/10
3/10
3/10
2/5
2/S
3/10
3/10
2/S
2/5
3/10
3/10
3/10
3/10
1/5
3/10
3/10
3/10
3/10
3/10
3/10
1/5
1/5
3/10
3/10
1/5
1/5
1/5
1/5
1/10

p'(P)
2/9]
1/5, 1/4
1/5, 1/2
1/5, 1/2]
1/5, 1/4
1/6, 1/3
1/6, 1/3
1/7, 1/2
1/9
1/2
1/2]
1/2
2/5)
2/s]
3/8, 1/2
1/3, 1/2]
1/3, 3/7]
1/3, 1/2
1/3, 1/2
1/3, 1/2
1/3, 1/2
1/3, 1/2
1/3, 1/2
1/S, 1/2
1/3, 3/7
1/3, 1/2
1/3, 1/2
1/3, 1/2
3/10]
2/7, 1/3]
2/7, 1/3]
1/4, 1/3]
1/4, 1/3]
1/4, 1/3]
1/4, 1/2]
1/4, 1/2]
1/4, 1/2]
1/4, 1/2]
1/4, 1/2]
1/4, 1/2]
1/4, 1/3]
1/4, 1/3]
1/4, 1/3]
1/4, 1/2
1/s]
1/5, 1/2
1/5, 2/5
1/5, 1/2
1/5, 1/2

[1/5, 2/5
[1/5, 1/2]
[1/sl
[1/6, 1/4]
[1/6, 1/2]
[1/6, 1/2]
[1/6, 1/4]
[1/7, 1/3]
[1/7, 1/3]
[1/8, 1/2)
[1/10)

0(P) ]

2/9
1/5
1/5
1/S
1/5
1/6
1/6
1/7
1/9
1/2
1/2
1/2
2/S
2/5
3/8
1/3
1/S
1/3
1/S
1/3
1/3
1/S
1/3
1/3
1/S
1/3
1/3
1/S
3/10
2/7
2/7
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/5
1/5
1/5
1/5
1/5
1/5
1/5
1/5
1/6
1/6
1/6
1/6
1/7
1/7
1/8
1/10

1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/7
1/2
1/2
1/2
1/2
1/2
1/2
3/8
2/5
1/2
1/2
1/2
2/5
1/3
2/S
1/2
1/2
1/2
2/S
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/4
1/4
1/2
1/2
1/2
1/2
1/2
1/4
1/2
1/S
1/2
1/3
1/3
1/2
1/S
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/8
1/2

e, (P)
(

16
14
16
16
14
12
12
10
8
37
39
41
35
35
33
31
33
29
29
31
27
31
29
29
33
31
29
29
27
25
25
23
23
23
27
25
21
21
25
27
23
23
23
21
17
19
21
19
19
21
19
17
15
17
17
15
13
13
11
9

h, (P)
~

0
0.295
0.605
0.605
0.295
0.492
0.492
0.687
0
0
0.272
0
0
0
0.473
0.447
0.394
0.438
0.438
0.447
0.544
0.447
0.438
0.438
0.394
0.447
0.438
0.438
0
0.302
0.302
0.337
0.337
0.337
0.544
0.593
0.612
0.612
0.593
0.544
0.337
0.337
0.337
0.612
0
G.559
0.544
G.559
0.559
0.544
0.559
0
0.362
0.621
G.621
0.362
0.508
0.508
0.690
0
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TABLE III. (Continued).

lSll
2Sll
3

4Sll
5Sll
6Sll
7

8

9Sll
10Sll
11Sll
12Sll
13

14

15Sll
16Sll
17Sll
18Sll
19

20

21Sll
22

23Sll
24

25Sll
26Sll
27Sll
28Sll
29Sll
30Sll
31

32Sll
33Sll
34Sll
35Sll
36

S11
37

38

39Sll
40Sll
41

42Sll
43Sll
44Sll
45Sll
46Sll
47Sll
48Sll
49Sll
50Sll
51Sll
52Sll
53

54Sll
55

56
$11

57Sll
58Sll
59Sll

Cg

1011111111
1011111101
1011110101
1011110111
1011010111
1011010101l
1011011101
1011011111
1011011011l
10010110lll
1001011010l
1001011110l
1001011111
1001011101
1001010101l
1001010111
1001010110l
10010100101
1001110010l
1001110110
1001110111
1001110101l
1001111101
1001lllllll
1001111110
1001111G10l
1001111G11
1001111001l
1001101001
1001101Glll
1001101010l
1001101110l
1001101111
1001101101l
1001100101l
1001100111l
1001100110l
1000100110
1000100111l
1000100101l
1000100100l
1000101100
1000101101l
1000101111
1000101110l
1000101010
1000101011
1000101001l
1000111001
1000111011l
1000111Glol
1000111110l
1000111111l
1000111101l
1000111100l
1000110100l
1000110101l
100011011ll
1000110110

!
7l g

(1675849310211)
(1675841029311)
(1675931028411)
(1684102759311)
(1593102768411)
(1693841027511)
(1510276938211)
(1410276859311)
(1510269378411)
(1410269378311)
(1493785102611)
(1493786102511)
(1310276859411)
(1410276938511)
(1493851027611)
(1394102768511)
(1485937102611)
(1486102593711)
(1487102593611)
(1487936102511)
(1385102769411)
(1276941038511)
(1276851039411)
(1276859410311)
(1378695102411)
(1378694102511)
(1378510269411)
(1378610249511)
(1379510248611)
(1269410378511)
(1379485102611)
(1379486102511)
(1251037869411)
(1261037948511)
(1371025948611)
(1361024879511)
(1471025893611)
(1361025894711)
(1351024879611)
(1361025948711)
(1369471025811)
(1369581024711)
(1251037948611)
(1241037869511)
(1259487103611)
(1259486103711)
(1249510378611)
(1359610248711)
(1248710359611)
(1248610379511)
(1248795103611)
(1248796103511)
(1237869510411)
(1237861049511)
(1358971024611)
(1358961024?11)
(1237951048611)
(1236104879511)
(1258947103611)

Type

fo

pA
pA
pA
pA
pA
pA
pA
fo

pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
fo

pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA

p(P)!
5/11
5/11
5/11
5/ll
5/11
5/11
5/11
5/11
4/11
4/11
4/11
4/11
5/11
5/ll
5/11
5/11
4/11
4/11
4/11
4/11
5/11
5/11
5/11
5/11
4/11
4/ll
4/11
4/ll
4/11
4/11
4/11
4/11
4/11
4/11
4/11
4/11
3/11
3/11
4/11
4/11
3/11
3/11
4/11
4/11
4/11
4/ll
4/11
4/ll
4/11
4/11
4/11
4/11
4/11
4/11
3/11
3/11
4/11
4/11
3/11

t'(P)
[5/11]
[4/9, 1/2]
[3/7, 1/2)
3/7, 1/2]
2/5, 1/2]
[2/5 1/2]
[2/5, 1/2]
[2/5, 1/2]
4/11]
1/3, 3/8]
[1/3,2/5]
[1/3,2/5]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 1/2]
[1/3,2/5]
[1/3,2/5]
[1/3,3/8]
[1/3, 1/2]
[1/3, 1/2]
[1/3, 2/5]
[1/3, 1/2]
[1/3, 1/2]
[1/3,2/5]
[1/3, 1/2]
[2/7, 1/2]
[2/7, 1/2]
[3/»]
[1/4, 2/7]
[1/4, 1/2]
[1/4, 1/2]
[1/4, 1/3]
[1/4, 1/3]
[1/4, 1/2]
[1/43/7)
[1/4, 1/2]
[1/4, 1/2]
[1/4, 1/2]
[1/4 1/2]
[1/4 1/21
[1/4, 1/2]
[1/4, 1/2)
[1/4 1/2]
[1/4, 3/7]
[1/4, 1/2]
[1/4, 1/3]
[1/4, 1/3]
[1/4, 1/2]
[1/4, 1/2]
fl/4, 2/7]

q(P)!
5/11
4/9
3/7
3/7
2/5
2/5
2/5
2/5
4/ll
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
1/3
2/7
2/7
3/ll
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4
1/4

(P)!
1/2
4/9
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/3
1/3
1/3
1/3
1/3
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/3
1/3
1/2
1/3
1/3
1/2
1/3
1/2
1/2
1/2
1/2
1/2
1/2
1/2
1/2
2/5
1/2
1/2
1/2
2/5
1/3
1/3
2/5
1/2
1/2
1/2
2/5
1/2
1/2
1/2
1/2
1/2

'(P)!
50
48
46
46
44
42
42
44
40
38
36
36
42
40
38
40
34
32
32
34
40
38
40
42
36
36
38
34
32
36
34
34
36
34
32
32
30
28
30
30
26
26
32
34
30
30
32
28
28
32
30
30
34
32
26
26
30
30
28

h&(P)
[

0
0.374
0.331
0.331
0.344
0.412
0.412
0.344
0
0.288
0.302
0.302
0.432
0.466
0.497
0.466
0.486
0.510
0.510
0.486
0.466
0.497
0.466
0.432
0.302
0.302
0.288
0.486
0.510
0.302
0.486
0.486
0.302
0.486
0.538
0.538
0
0.254
0.486
0.486
0.348
0.348
0.513
0.517
0.486
0.486
0.513
G.629
0.629
0.513
0.486
0.486
0.517
0.513
0.348
0.348
0.486
0.486
0.254
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TABLE III (Continued).

60

61
S11

62
S11

63
S11

64
S11

65
S11

66
S11

67
S11

68
S11

69
saba

70
S11

71
S11

72
S11

73
S11

74
S11

75
S11

T6

77
S11

78
S11

TQ
S11

80
S11

81
S11

82
S11

83
S11

84
S11

85
S11

86
S11

87
S11

88
S11

89
S11

90
S11

91

92
S11

93
S11

c~
1000110010y
1000110011
1000110001
1000010001~
1000010011i
1000010010y
1000010110
1000010111y
1000010101y
1000010100~
1000011100y
1000011101y
1000011111
1000011110y
1000011010y
1000011011y
1000011001y
1000011000
1000001000y
1000001001y
1000001011y
1000001010
1000001110$
1000001111y
1000001101y
1000001100y
1000000100y
1000000101y
10000001lly
1000000110
1000000010y
1000000011y
1000000001y
1000000000

!7l g

(1258103694711)
(1247103589611)
(1358102469711)
(1357102469811)
(1246103589711)
(1247103695811)
(1236958104711)
(1235104879611)
(1235961048711)
(1246971035811)
(1246981035711)
(1234871059611)
(1234879610511)
(1235897104611)
(1235896104711)
(1234710589611)
(1235810469711)
(1357910246811)
(1246810357911)
(1235710469811)
(1234610589711)
(1234697105811)
(1234698105711)
(1234589710611)
(1234581069711)
(1235791046811)
(1234681057911)
(1234571069811)
(1234569810711)
(1234579106811)
(1234568107911)
(1234567910811)
(1234567810911)
(1234567891011)

pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
fo
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
pA
fo

p(P)
3/11
3/11
3/11
3/11
3/11
3/11
3/11
4/11
4/11
3/11
3/11
4/11
4/11
3/11
3/11
3/11
3/11
2/11
2/11
3/11
3/11
3/11
3/11
3/11
3/11
2/11
2/11
3/11
3/11
2/11
2/11
2/11
2/11
1/11

p, (P)
[1/4, 1/3]
[1/4, 1/3]
[2/9, 1/2]
[1/S, l/2]
[1/S, l/3]
[1/S, l/3]
[1/S, l/3]
[1/S, l/2]
[1/S, l/2]
[1/5, 1/2]
[1/5, 1/2]
[1/5, 1/2]
[1/S, l/2]
[I/5 1/3]
[1/5, 1/3]
[1/5, 1/3]
[1/5 1/2]
[2/11]
[1/6 1/5]
[1/6, 1/2]
[1/6, 2/sl
[1/6, 1/2]
[1/6, 1/2]
[1/6 2/5]
[1/6, 1/2]
[1/6, 1/5]
[1/7, 1/4]
[1/7, 1/2]
[1/7, 1/2]
[1/7, 1/4]
[1/8, 1/3]
[1/8, 1/3]
[1/9 1/2]
[1/11]

~(P) [ r(P) I

1/4 1/2
1/4 1/2
2/9 2/9
1/5 1/4
1/5 1/2
1/S 1/2
1/S 1/2
1/S 1/2
1/5 1/2
1/5 1/4
1/5 1/4
1/5 1/2
1/5 1/2
1/5 1/2
1/5 1/2
1/5 1/2
1/5 1/4
2/11 1/2
1/6 1/2
1/6 1/3
1/6 1/2
1/6 1/3
1/6 1/3
1/6 1/2
1/6 1/3
1/6 1/2
1/7 1/2
1/7 1/2
1/7 1/2
1/7 1/2
1/8 1/2
1/8 1/2
1/9 1/9
1/11 1/2

26 0.348
26 0.348
24 0.655
22 0.616
24 0.416
24 0.416
24 0.416
28 0.583
26 0.626
22 0.616
22 0.616
26 0.626
28 0.583
24 0.416
24 0.416
24 0.416
22 0.616
20 0
18 0.241
20 0.571
22 0.566
20 0.571
20 0.571
22 0.566
20 0.571
18 0.241
16 0.393
18 0.629
18 0.629
16 0 393
14 0.517
14 0.517
12 0.692
10 0

that, given a periodic orbit spectrum up to period P,
these methods generate an exact spectrum up to some
period Q, beyond which both methods then provide lower
bounds on the periodic orbit spectrum.

VI. CONCLUSION

I have illustrated how to determine the topological
form (the template) and how to estimate topological pa-
rameters directly &om a chaotic time series generated by
a dissipative bouncing ball system. Two distinct tech-
niques were used to predict orbit forcing —a braid anal-
ysis and the pruning &ont approach. Both techniques
provide an efFective procedure for calculating the orbit
spectrum of low-period orbits. Both procedures also pro-
vide information (a lower bound) for the spectrum of all
periodic orbits.

Each procedure for estimating the periodic spectrum
has distinct advantages and disadvantages. The braid
analysis does not require a symbolic partition, and is
thus useful in the cases (e.g. , low dissipation) where de-
termining an exact, or approximate symbolic partition,
is problematic. The braid analysis is also based on a
rigorous mathematical foundation. The braid analysis,
though, only provides information about orbit forcing up

to braid type. The chief advantage of the pruning front
approach is that it provides information about individual
periodic orbits. Its chief disadvantage is that it, so far,
rests on a weaker mathematical foundation and requires
the construction of a symbolic partition.

In retrospect, I find it remarkable that such a small
subset of periodic orbits (which are rather easy to get
from experiment) contains so much topological and dy-
namical information about a (low-dimensional) How. A
few low-period orbits are sufBcient to determine the tem-
plate describing the stretching and folding of the strange
set. The template provides an upper bound to the topo-
logical entropy and is, in a sense, a maximally (i.e., a
full shift) hyperbolic set which can be formally associ-
ated with a (possibly nonhyperbolic) strange set. In this
paper I show how periodic orbits (and their associated
hyperbolic sets) can be used to obtain an approxima-
tion to a strange set which is probably not hyperbolic.
Formally, I might say that the hyperbolic set associated
with each pseudo-Anosov braid is embedded within the
strange attractor I am trying to describe in the sense that
the (possibly nonhyperbolic) strange set must contain at
least all the orbits forced by the extracted pseudo-Anosov
braid.
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APPENDIX: INVARIANTS

Topological invariants of horseshoe braids &om periods
1—11 are shown in Table III.
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