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We examine the e8'ect of additive noise and drift, in the dynamics of a chaotic driving signal, on

the synchronization of chaotic response systems. Simple scaling laws associated with the synchro-
nization deviation level under these types of contamination are presented. Time series used as the
driving signals are experimentally measured from an electronic circuit and a mechanical system (a
vibrating wire). The response systems are models that were obtained by fitting an ordinary difFer-

ential equation to time series data. The possible relevance of this work to nondestructive testing,
system identi6cation, and communications is discussed. Finally, we present some results regarding
the relationship between the synchronization deviation level and the coupling strength.

PACS number(s): 05.45.+b

I. INTRODUCTION

Synchronization between two chaotic systems has re-
ceived considerable attention since it was discussed by
Fujisaka and Yamada (FY) and demonstrated by Pec-
ora and Carroll [1,2]. Many of the papers that have ap-
peared involve theoretical analysis using simple known
models [3—6]. In most of these papers synchronization of
chaos has been associated with identical, chaotic in time,
behavior brought about by the coupling of two or more
identical systems. Necessary and sufBcient conditions for
this sort of synchronization have been discussed and the
relationships between various Lyapunov exponents have

been investigated [7—10]. Several authors have investi-

gated the relationship between synchronization and con-
trol [11,12]. Synchronization has also been demonstrated
in a variety of experimental settings [12—15]. Today it
is known that there are many different methods for cou-

pling systems together which can result in synchronous
chaotic behavior [16,17]. In an earlier paper we presented
results where two different synchronization schemes were

employed to check the accuracy of models built from time
series data [18].

The discussion in this paper will center around the
type of synchronization discussed by most of the authors
cited above, namely, two identical chaotic systems that
are coupled in a drive-response manner and which ex-
hibit motions that are chaotic and identical in time. Un-

less otherwise specified me mill use the term synchroniza-
tion to mean this form of identical synchronous motion
of identical systems. Although identical synchronous mo-

tion of identical systems is important, it is, nonetheless, a
special case. The general case of synchronization between
nonidentical systems has been theoretically investigated

by Afraimovich, Verichev, and Rabinovich [3] as well as

Rulkov et al. [19]. It has also been experimentally ob-

served by Rulkov and co-workers [13,19]. The general
case of synchronization is beyond the scope of this paper
and will not be discussed.

For synchronization (i.e., identical synchronous motion
of identical systems) any difference between the driving
and response systems will break the symmetry between
the two systems. Therefore, the behavior of the two sys-
tems will no longer be identical. This paper will examine
two general questions regarding the appearance of de-

viations &om identical synchronous motion. The first
question is, (i) How will additive noise in the driving
signal effect synchronization between the two systems?
The second question we examine is more subtle and cen-
ters on the fact that no two devices are ever exactly the
same. This implies that the dynamics of the driving sys-
tem will diH'er from the dynamics of the response sys-
tem (of course, for many situations this difference will be
very small). The second question is, (ii) How will diIFer-

ences between the dynamics of the driving and response
systems effect synchronization between the two systems?
Similar questions have been addressed by Pyragas [12],
who stabilized unstable periodic orbits by using a par-
ticular form of periodic driving, and by Breeden [20] and
Vassiliadis [21],who performed numerical experiments on
discrete time systems.

The research we will present attempts to synchronize
numerical models to experimentally measured time se-

ries data. We will assume that the experimental system
is the driving system and that its dynamics is known only
through time series measurements. The model is the re-

sponse system and is assumed to have been constructed
from time series measurements taken from the drive sys-
tem.

The following example serves to illustrate the questions
we will address in this paper. Let the unknown dynamics
of the driving system in the "working phase space" be
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represented by

dx—= G(x)
dt

and let the dynamics of the model in the same phase
space be represented by

dx—= F(x).
dt

(2)

10

The working phase space is the one where we are mod-
eling the global dynamics of the system that generated
the time series. Usually the working phase space is ob-
tained by reconstructing the attractor for the dynamics
&om the time series. We rely on various forms of the em-
bedding theorem [22,23] to infer the existence of Eq. (1)
in the working phase space.

Figure 1 is a pictorial example of an attempt to syn-
chronize a model Eq. (2) to a time series from Eq. (1). To
generate this picture an experimentally measured time
series from an electronic circuit (see Sec. III) was used
to construct a model of the dynamics of the circuit. The
procedure used to construct the model has been previ-
ously discussed [18,24].

Next we recorded x, a second trajectory &om the cir-
cuit. Equation (2) and x were used to generate two new
trajectories y and w. The trajectory w results when the
first point in x is used as an initial condition and Eq. (2)
is integrated forward in time without driving. The tra-
jectory y results when Eq. (2) is driven by x (using the
driving method discussed in Sec. II).

The lower curve in Fig. 1 is the square of the Euclidean
distance between the trajectory of the driving time series
and the trajectory of the driven model !z!2 = !x —y!~.
The top curve is the square of the Euclidean distance
between the trajectory of the driving time series and the
trajectory of the nondriven model !z! =!x—w!z. The
fact that the distances shown in the lower curve are small
compared to those in the upper curve indicates that the
deviations &om identical synchronous motion are small

and the trajectory of the driven model does not deviate
much from the driving trajectory. If 0 (!z! (( 1, then
we will say that the drive and response systems are al-
most synchronized. Heuristically speaking, the level of
the lower curve indicates the quality of synchronization
between the drive and response systems.

In the complete absence of noise and modeling errors
(i.e., F = C) we expect !z! = 0 (i.e., the drive and
response systems are synchronized). As the systems ap-
proach synchronization the level of the lower curve in
Fig. 1 approaches —oo. For physical devices and model
equations this will never happen since noise is always
present in the driving signal and there are always model-

ing errors. Hence a physical device and a model can only
be almost synchronized. Similarly, two physical devices
can only be almost synchronized since no two devices
are ever identica/. As the size of the noise in the driv-

ing signal and/or the size of the modeling errors increase
we expect the level of the lower curve in Fig. 1 to rise.
Understanding the behavior of this rise as a function of
noise and modeling errors will answer questions (i) and
(ii).

In this paper we have examined two diH'erent types of
additive noise in the driving signal. The first type of noise
is white Gaussian noise. The second type of noise (called
in-band noise) is constructed to have the same power
spectrum as the clean driving signal. In-band noise is
used because it represents a type of noise that is very
hard to remove using standard filters based on Fourier
transforms.

We close this section with an outline of the remainder
of this paper. In Sec. II we derive theoretical predictions
for the efFects of noise and modeling errors on synchro-
nization. In addition, we discuss how, in the no noise
limit, the level of the lower curve in Fig. 1 can be used
as a measure of modeling errors. Section III presents
the results of numerical experiments we have conducted
using models obtained from the analysis of experimen-
tally measured data. The data come &om an electronic
circuit and a mechanical system (a vibrating wire). Fi-
nally, in Sec. IV we summarize our results and present
some conclusions. We close Sec. IV, and motivate our
research, by presenting various applications where our
study of synchronization may be useful. These appli-
cations involve nondestructive testing, communications,
and system identification.

This paper also contains three appendixes. In the ap-
pendixes we present a partial analysis of the eKect of the
coupling strength on synchronization.
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FIG. 1. The distances between the orbits x, y, and w.
The dashed line is z = !x —y!, while the solid line is
z = !x —w! . Near synchronization between x and y is
clearly demonstrated. The driving variable is x3+cru3, e = 20,
and the data are &om cx = 17.4. The time step is in units of
Et = 0.02

EI. THEORETICAL CONSIDERATIONS

In this section we present part of the theoretical analy-
sis behind our study of the deviations &oxn synchroniza-
tion (which we call the synchronization deviation level
or simply the deviation level) in the presence of noise
in the driving signal and/or drift in the dynamics of the
driving signal. After introducing notation the basic equa-
tions needed to examine the deviations are derived. This
section closes with a definition of the synchronization de-
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viation level and expressions for the constant terms that
appear in this definition.

The method we will use to synchronize our models to
the driving system is a modification of the one proposed
by FY [1] and has been studied in a previous paper [18].
A synchronization scheme that is similar to ours has been
implemented by Newell et aL [14] on pairs of diode res-
onator circuits, by Rulkov and Volkovskii [25] on elec-
tronic circuits with one way drive-response style coupling,
as well as many of the other papers cited in the Intro-
duction.

We are assuming that the time series used for the driv-
ing system consists of d-dimensional vectors that exist in
the working phase space. How one obtains these vectors,
either by direct measurement or by some form of phase
space reconstruction, has been discussed elsewhere [23].
The time evolution of these vectors traces out an attrac-
tor (we consider chaotic attractors) which represents the
temporal dynamics of the driving system.

In order to establish notation assume that, in the work-
ing phase space, Eq. (1) represents the true dynamics of
the device that is producing the driving signal. In prac-
tice, the exact from of the vector field G is usually un-

known. In what follows (x + o'u) is used to indicate the
driving time series. The vector x represents the clean
time series from G, while ou represents additive noise
in the experimentally recorded time series. 0 indicates
the size of the noise, while the time series u is of unit
size. The noise term is often associated with errors in
measurements of the driving signal. For example, these
errors could be the result of a faulty measuring device or
background noise that is being measured along with the
signal by a good measuring device.

The model, denoted by Eq. (2), is constructed from
a time series which is not the same as the driving time
series (although they may have the same source). The
details of how we construct ordinary difFerential equation
(ODE) models from a time series have been presented in
Refs. [18,24]. Reference [18] also demonstrates that by
coupling F to a noisy time series from G via

will not produce synchronous or almost synchronous mo-
tion. An example of this for a case using periodic driving
is discussed in the paper by Pyragas [12]. An exam-
ple of this behavior for chaotic driving can be found in
Ref. [18]. In our numerical experiments the coupling oc-
curs only in the last component of F, although we could
have used other components or combinations of other
components [16,18].

As a definition we say that the model of the device F
is synchronized to the time series x if x = y and F = G
for all time greater than some transient to. Clearly, when
F g G and/or in the presence of noise synchronization is
not possible. I.et z = y —x denote the deviations between

y and the clean driving signal x. If the deviations are
small 0 ( ~z~2 (( 1, then the linearized time evolution of
z is given by

dz—= [DF(x) —E] z+ oE u+ bG(x),
dt

where AG = F —G denotes the di8'erence between the
model and the true dynamics of the driving system.

It is important to remember that AG has two potential
sources, which are assumed to be unrelated to measure-
ment errors in the time series. The first source of LG is
associated with errors in our attempt to model the un-

known vector field G. For any real situation F is never
exactly equal to G, so it is reasonable to expect that this
source of error will always be present. The second source
comes about if the dynamics of the driving signal is dif-
ferent from the dynamics that produced the time series
used to make the model.

To analytically isolate these two sources assume that
the time series used to generate the model comes from
the vector field G', while the time series used to drive
the model comes from the vector field G. We also assume
that G and G' are related by some small change in p,
the parameters of the driving system [i.e., G G' +
(BG'/Op) bp]. Under these conditions the analysis that
leads to Eq. (4) results in

dy—= F(y) —E [y —(»+ o.u)],
dt

AG(x) AG'(x) +
~

AG'(x)
~

hp,
(0
&&p

(5)

it is possible to almost synchronize the dynamics of F to
x (i.e., the distance between y and x is small).

The matrix E represents the coupling between y and
the experimentally recorded time series. For the cases
we will study E has only one nonzero element. That
element lies on the diagonal and is Epp ——e when the

P component of (x + ou) is used as the driving signal.
Within some range of values for ~ the kind of dissipative
coupling shown in Eq. (3) can result in almost identical
chaotic oscillations. As we will show, any lack of complete
synchronization between x and y in Eq. (3) is caused by
modeling errors and noise.

Obviously, if ~ is below some critical threshold ~, then
synchronization will not occur. The r m oo limit is con-
sidered in detail in Appendix A. Note that synchronized
motion, or almost synchronized motion, may only be pos-
sible within some finite range of values for e. For these
situations using a value of e that is too small or too large

where AC' = F —G'. The first term is associated with
modeling errors, while the second term is associated with
drift in the dynamics of the driving system.

Equations (4) and (5) are the principle evolution equa-
tions for coupled systems in the vicinity of synchronized
chaotic motion. They describe the evolution of z, the vec-
tor associated with the deviations between F, our model
of the dynamics, and x, the clean time series from the
driving device. By knowing the behavior of z we will be
able to answer the two questions asked in the Introduc-
tion.

In order to formally integrate Eq. (4) consider the case
of no noise in the driving time series o. = 0 and perfect
modeling of the dynamics of the driving signal b, G(x) =
0. Under these conditions Eq. (4) becomes

dz—= [DF(x) —E) z,
dt
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which represents the homogeneous portion of Eq. (4).
This equation is a linear ODE with time dependent co-
efficients whose formal solution is

t
z(t) = exp [DF(r) —E] dr . z(tp)

tp

= U(t, t, ) . z(t, ), (6)

where DF(r) = DF(x(r)) and the second equation de-
fines U(t, tp). The matrix U(t, tp) is the evolution opera-
tor that evolves the initial condition z(tp) forward in time
Rom to to t in the presence of coupling and the absence
of noise and modeling errors. This operator satisfies the
initial condition U(tp tp) = 1 where 1 is the identity.
Since we have assumed that the time evolution is stable
(the system synchronizes), we know that U(t, tp) shrinks

~z(tp)~ to zero exponentially fast as t m oo. The rate
of decrease is controlled in a nontrivial fashion by the
coupling e [1,17].

In order to obtain the general solution to Eq. (4) we
must add a speci6c solution to the homogeneous solution
given by Eq. (6). To obtain a specific solution to Eq. (4)
in the presence of noise and modeling errors change vari-
ables from z to w via z(t) = U(t, tp) w(t). Inserting this
into Eq. (4) gives

z(t) =U(t, t, ) z(t, )
t
U(t, r) [AG(r) + o E u(r)] dr.

tp
(7)

dt
= U (t, t()) [b,G(t) + oE u(t)].

By formally integrating this equation and making use
of z(t) = U(t, tp) w(t) we finally arrive at the desired
expression

t

((z(')~ = lim ~z(r) ~(2dr
tp

(8)

Equation (8) is one of the principle definitions of this
section. The synchronization deviation level indicates
the quality of synchronization between the driving and
the response systems. The smaller the deviation level,
the closer we are to complete synchronization.

To formally calculate the time average in Eq. (8) we
use Eq. (7) to write ~z~2 as

Equation (7) is a formal solution to Eq. (4) and is one
of the principle results of this section. The equation rep-
resents the time evolution of the diHerence between the
trajectory given by Eq. (3) and the trajectory of the true
system Eq. (1) when the systems are almost synchro-
nized. Because of the stability of synchronized motion
the first term in Eq. (7) can be ignored since it will van-
ish exponentially fast as t increases. The operator U(t, r)
in the second term in Eq. (7) evolves fiuctuations in b,G
and ou forward in time. As the Quctuations evolve their
magnitude decays due to the properties of the evolution
operator U(t, r). The integral over r indicates that z(t)
is equal to the Buctuations occurring at time t as well as
the sum of the decayed Buctuations that have occurred
at previous times.

The bottom curve in Fig. 1 indicates that, while the
detailed time behavior of logip (~z ~ ) is quite complicated,
the average behavior is essentially constant. This aver-
age can be used to indicate the synchronization deviation
level between the clean driving signal and the model. To
be specific, we de6ne the synchronization deviation level
(the deviation level) by the time average

t t t t
~z(t) ~

= U(t, r) EG(r)dr . U(t, r) b, G(r)dr + 2(re ri(r) U(t, r) . Vdr U(t, r) b,G(r)dr
tp tp tp tp

t t
+ (o' )eri(r) U(t, r) Vdr ri(r) U(t, r) Vdr

tp tp
W

where V is the d-diinensional vector V = (0, . . . , 0, 1, 0, . . . , 0). The 1 appears as the P component of V if we are
using the P component of (x + o'u) as the driving variable. We have also written the P component of u as )7.

The remainder of this section is devoted to an analysis of the three dot products in Eq. (9). Assuming the noise is
ergodic allows us to replace time averages by phase space averages, which we denote by angular brackets (). We also
argue that the noise is completely independent of the AG vector and the evolution operator U(t, tp).

The analysis begins with an examination of the second term in Eq. (9), which is a dot product between two different
vectors. Given the assumptions just mentioned, the time average of the second term in Eq. (9) becomes

t t

(Ir)r —2rr( rt(r)U(t, r) Vdr ~ U(t, r) . ItU(r)dr )tp tp

t t
= 2er (rt(r)) (U(t, r) ~ V) dr U(tr) ~ ItG(r)dr ). ,

tp tp



BROWN, RULKOV, AND TUFILLARO 50

The noise we have utilized in Sec. III has zero mean. For
zero mean noise (g(r)) = 0 and the time average of the
second term in Eq. (9) vanishes.

We now turn our attention to the last term in Eq. (9).
Because this term is the dot product of a vector with
itself it is positive semidefinite. It will be useful to begin
our analysis by rewriting this term as

t t

I, (t, t()) = (oe)' rt(r) g(r')
tp tp

x [U(t, r). V] [U(t, r') V] dr'dr.

The domain of integration for the double integral is a
square. The fact that the integrand is symmetric with
respect to r and r' can be used to rewrite I3 as the sum
of two integrals, one along the diagonal of the square
r = r' and one over the triangle defined by r ) r'. Fur-
thermore, if we change variables &om r' to s = r —r'
and equate time averages with ensemble averages, then
the time average of Is(t, tp) becomes

assume that the noise is stationary (an assumption that
is valid for the type of noise we have investigated). This
implies that the ensemble average removes the explicit r
dependence from the noise autocorrelation, thereby re-

ducing it to only a function of s, (rI(r)ri(r —s)) = k(s).
Notice that the integral over s in Eq. (10) only acts

on U(t, r —s) and k(s). This allows us to simplify the
notation by rewriting this integral as

k(s) U(t, r —s) Vds

= k(0) U(t, r) U(r, r —s) Vds
' k(s)

Opk0

= k(0)U(t, r) B(x(r)),

where the second equality serves to define the vector
B(x(r)). Using Eq. (11) we can rewrite Eq. (10) as

t
+2((re)' (rI(r) rt(r —s))

tp 0+

x ([U(t, r) V] [U(t, r —s) V]) ds dr, (10)

t

(I ) =( )' ( '( ))([U(t ).V]. [U(t ) V])d
tp

=o I3,

([U(t, r) V] [U(t, r) B(r)])dr

where the assumed independence of the noise and the
dynamics has been used. The plus sign superscript in the
last integral indicates that the lower limit of this integral
is understood to be arbitrarily close to zero, but not equal
to zero. This implied limit presents no difBculty as long
as the integrand does not diverge along the diagonal.

The ensemble averages are autocorrelation functions.
The one associated with the noise (rI(r)ri(r —s)) often
appears in the analysis of Brownian motion [26]. We will

where the last equation serves to define B. The form
of the integral (Is)& shown in Eq. (12) is exact. 8 is a
nontrivial function of ~ and the type of noise, but is not
a function of a or the modeling errors AG. Therefore,

(Is)& is a quadratic function of the size of the noise.
We now turn our attention to the first term in Eq. (9).

The analysis of this integral will parallel the one used
for Is(t, to); hence we will only brieHy discuss the various
mathematical manipulations. Begin by rewriting the first
integral in Eq. (9) as

t t

I (t, t ) = [U(t, r) AG(r)] [U(t, r') AG(r')] dr'dr.
tp tp

Taking advantage of symmetry and changing variables from r' to s = r —r' produces

I,{t,t, ) = [U(t, r) . b, G(r)] [U(t, r) 2 G(r)] dr + 2
tp

[U(t, r) b,G(r)] [U(t, r —s) AG(r —s)] ds dr

As before, note that the integral over s can be suppressed
by defining a new vector H(x(r)) via

U(t, r —s) b, G(r —s)ds

= U(t, r) U(r, r —s) b, G(r —s)ds
0+

= U(t, r) H(x(r)). (14)

Figure 2 schematically illustrates a piece of the tra-
jectory x. The true vector field G is indicated by the
arrows that are tangent to this trajectory. Because the

]

dynamics of the model Eq. (2) is close to the true dy-
namics, F must point in a direction that is very close to
the direction of G. Thus AG = F —G is essentially per-
pendicular to either F or C. In addition we conjecture
that the projection of AG onto a (d —1)-dimensional hy-

perplane perpendicular to the fIow takes on all possible
orientations as one follows the How along the attractor.
Thus, although AG always takes on the same direction. at
a particular location on the attractor, this direction will

be difI'erent for different locations on the attractor. This
ergodic assumption permits us to equate time averages
with phase space averages and obtain
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8 t
'4 —A +

g (IU(t, r) . [&G'(r) + H'(r)] [ ) dr
t9p

(17)

where A' is defined by

FIG. 2. A schematic of a piece of the trajectory, x. The
true vector field C the model vector field F, and the difference
AC are shown.

t
(I ) = ()U((, r) AG(r) ~') dr

tp
t

([U(t, r) AG(r)] [U(t, r) H(r)])dr
tp

The form of the integral (Ii)& shown in Eq. (15) is exact.
A is a nontrivial function of modeling errors, but is not
a function of noise.

A more complete analysis of the integrals in Eqs. (12)
and (15) can be found in Appendixes B and C. For our
present purpose the forms of Eqs. (12) and (15) are suf-
ficient. The analysis of Eq. (9) has shown that the devi-
ation level, as defined by Eq. (8), can be approximated
by the following function of o and AG:

([a[2) = A + (oB) (16)

H(x(r)) = U(r, r —s) . b,G'(r —s) ds
p+

0+ U(r, r —a) b,G'(r —a) ds hp
BP p+

= H (x(r)) + H (x(r)) ~ hp,

where the second equation serves to define H' and
BH'/Bp in an obv'ious manner. Inserting this expression
for H, as well as Eq. (5), into Eq. (15) results in

where B2 and A2 are given by Eqs. (12) and (15), respec-
tively. The first question we asked in Sec. I concerned the
effect of additive noise on the synchronization deviation
level. Equations (12), (15), and (16) provide a theoretical
answer to that question.

The second question asked in Sec. I concerned model-
ing errors and the efFects of drift in the dynamics of the
driving signal. Both of these effects will infiuence A, but
neither will infiuence B. The final portion of this section
derives an explicit expression for how these efFects infIu-
ence A. We begin by inserting Eq. (5) into Eq. (14). The
result is

t
A"= Ut, r -AG'r dr

tp
t

([U(t, r) AG'(r)] . [U(t, r) H'(r)]) dr
tp

Equation (17) says that, for fixed noise size and type,
the deviation level, as given by Eq. (16), will rise linearly
with changes in the parameters of the driving dynam-
ics. By obtaining numerical values for the two terms in
Eq. (17) we will be able to predict the rise in the de-
viation level when the dynamics of the driving signal is
drifting. The ability to make this prediction is the cen-
ter of the nondestructive testing application we discuss
in the Conclusion.

Equations (12), (15), (16), and (17) (and the mate-
rial contained in the Appendixes) represent the principle
theoretical results of this paper. In the next section we
perform simple numerical experiments in an attempt to
test the behavior predicted by these equations.

III. NUMERICAL EXPERIMENTS

In this section of our paper we present the results of
the numerical experiments we have performed. In Sec. II
we addressed changes in the synchronization deviation
level as a function of both noise level u and AG. Our
numerical experiments examine each of these issues sep-
arately. In addition, all of the data sets used for our nu-
merical experiments were recorded &om physical experi-
ments. Some of our numerical experiments are performed
on data sets taken from an electronic circuit, while oth-
ers are performed on data sets taken &om a mechanical
system (a vibrating wire). In all of our numerical ex-
periments we used the third component of the embedded
time series as the driving term. Thus E33 —e g 0 in
Eq. (3)

A block diagram for the electronic circuit whose be-
havior we investigate is shown in Fig. 3. It consists of
a nonlinear amplifier N, which transforms input volt-
age x(t) into output voltage nf(x) The parame. ter cr

characterizes the gain of N around x = 0. The nonlin-
ear amplifier has linear feedback which contains a series
connection to a low-pass filter (RC') and IC resonance.
More detailed discussions of this circuit can be found in
Refs. [13,18,25,27].

A scalar time series s(nEt) = s(n) (where Et is the
sampling interval) is experimentally measured for difFer-
ent values of o.. For modeling purposes the sampling
interval is assigned the numerical value At = 0.02. The
o. values we initially investigated are n = 17.4, which we
call DXl, and o. = 18.9, which we call DX2. We report
the means (a) = 3.83 or 0.55 and standard deviations
o, = 2.53 or 4.53 for DX1 or DX2, respectively. The
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N
a f{x}

R

x(t)

FIG. 3. The block diagram of the circuit we have used. For
our numerical tests we vary the parameter a.

frequency of about 9 Hz in this particular experiment.
The data set consists of 128000 scalar 16-bit measure-

ments of the vertical transverse wire displacement. The
signal has been cleaned using a technique developed by
Schreiber and co-workers [33,34] (after cleaning noise lev-
els ( 1 %) and has a rms response amplitude drift Qf

1 % over the entire digitized record (about 200 s).
The signal is overdigitized; about 150 points were ob-
tained per chaotic cycle. Typically only a fraction of this
data set is analyzed.

Because the values of the records in the wire data set
are typically 104 we rescale these data to have zero
mean and standard deviation o, = 4.0. The time delay
method is used to embed the rescaled data. The aver-

time delay method

is used to reconstruct the working phase space of the dy-
namics. It was previously determined that the optimal
time delay and embedding dimension are T = 10 and
d = 3, respectively [18]. The attractors obtained by em-
bedding 5000 data vectors &om DXl and DX2 are shown
in Figs. 4(a) and 4(b), respectively.

When a = 17.4 the dynamics lives on one of two dis-
joint attractors. One of these attractors is shown in
Fig. 4(a). The other attractor is related to this one by
an inversion symmetry and is not shown. A time series
would measure one or the other of these attractors, but
not both. As n increases these two attractors eventu-
ally merge at cr = cr, in what has been called a crisis, or
a symmetry increasing bifurcation [28,29]. The attrac-
tor associated with the DX2 time series arises after the
merge (18.9 ) cr, ).

A second experimental scalar time series is obtained
&om an apparatus used to study nonlinear vibrations
in a wire. Briefiy, the apparatus consists of a mount
holding a tensioned wire through which an alternating
current is passed. The frequency of the current is near
the fundamental of the &ee oscillation frequency of the
wire. This current excites forced vibrations when the
wire is placed in a permanent magnetic Geld. As the
current's amplitude and frequency are varied the system
can undergo a torus-doubling route to chaos [30]. Optical
detectors are used to measure the transverse amplitude
displacement of the wire. The transverse displacements
of the wire form the time series that is analyzed.

The apparatus used here is a signiGcantly improved
version of that reported in [31].Rare earth ceramic mag-
nets are used to provide the permanent magnetic Geld
and custom digitizing and controlling circuits were built
around a digital signal processor [32]. Typical experimen-
tal parameters for this wire are length (0.07 m), mass per
unit length (3.39x 10 4 kg/m), density (2.1 x 10 kg/m ),
Young's modulus (197778 x 10s N/m2), and magnetic
field strength (0.2 T).

The chaotic time series analyzed here is obtained at
a forcing fII.'equency of 1.384 kHz. The chaotic response
of the wire occurs in the slowly varying modulations of
the envelope of the oscillations and has a characteristic

10
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10

10

FIG. 4. The attractors corresponding to data sets obtained
from the electronic circuit. The data vectors are formed by
using a time delay embedding of the scalar signals. (a) DX1.
(b) DX2.
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age mutual information and false near neighbor methods
indicated that the optimal time delay and embedding di-
mension are T = 39 and d = 3, respectively [23,35,36].
For modeling purposes the sampling interval is assigned
the numerical value At = 0.05. The attractor obtained
by embedding 10000 data vectors &om the vibrating wire
is shown in Fig. 5.

Having reconstructed the attractors in a working phase
space we constructed model vector 6elds for the dynamics
on these attractors. The models were global ODEs in the
form of Eq. (2) and were constructed from the time series
shown in Figs. 4 and 5.

In our 6rst set of numerical experiments we examined
the behavior of [((z) )&]

~z as a function of 0. For each
numerical experiment on DX1 we used the same time
series x as our clean driving signal. The same is true for
DX2 and the vibrating wire. (Care was taken to ensure
that the series used as our clean driving signals were not
the ones used to construct the model vector fields. ) To
obtain a noisy driving signal we numerically generated a
noise signal u (u is constructed to have unit size) and
added it to x to form x+ ou.

We employed two diHerent methods to generate the
noise. The 6rst method generated a Gaussian noise sig-
nal via a random number generator. The time series
of points in the noise signal are chosen to have mean
zero and standard deviation one. The second type of
noise signal was generated by Fourier transforming DX1
and then randomizing the phases of the Fourier coeS-
cients. After inverting the randomized Fourier transform
the time series was rescaled to have mean zero and stan-
dard deviation one. Thus our second procedure produces
a noise signal that has the same power spectrum and
autocorrelation function as the experimentally recorded
time series DX1. We call this in-band noise and argue
that this type of noise would be very difBcult to detect,
against the background of the chaotic driving signal, us-
ing standard Fourier methods. Our use of in-band noise
is similar in spirit to the use of "surrogate data" to test

(a)

. ii), e

M M ~ I
l++4

i&I
QI ~ sy.

iy(ls

10

10 -10

for determinism in time series data [37,38]. We use the
same procedures to generate in-band noise signals &om
DX2 and the vibrating wire.

As a pictorial example of these two types of noise Fig. 6
shows the attractors constructed &om noisy DX2 signals.
In Fig. 6(a) a time series from DX2 has been contami-
nated with Gaussian noise of size 0' = 1. In Fig. 6(b) the
same time series has been contaminated with in-band
noise of size cr = 1. We remark that in-band noise gives
the illusion of being dynamic (it looks like a clean signal
embedded in too low an embedding dimension) [39,40].

Our numerical tests of the efFects of noise on synchro-
nization involved the following steps. First, we selected
a value for e, the coupling between the driving and the
response system, somewhat above the threshold level for
synchronization [18]. During this first set of numerical
experiments the noise level will rise. Therefore, we do not
want e too close to the critical value e . We then synchro-
nized the model to the noisy driving signal (x + au) via

00
+ o~
II

+ o
II

10
10

10 -10
10 -10

FIG. 5. The attractors corresponding to the data set ob-
tained &om the vibrating wire. The data vectors are formed
by using a time delay embedding of the scalar signal.

FIG. 6. The attractors corresponding to the DX2 data set
with additive noise of xnagnitude o = 1. (a) Gaussian noise.
(b) In-band noise.
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Eq. (3) and recorded iz] = ]y —xi (the lower curve in
Fig .1). We always used the model for DX1 when w was
a DX1 time series, the model for DX2 when x was a DX2
time series, and the model for the vibrating wire when
X. was a vibrating wire time series. Likewise, when using
in-band noise we used in-baud noise from the appropriate
system.

For DX1 and DX2 we recorded 5000 time steps after
discarding the first 500 as a transient. For the vibrating
wire we recorded 10000 time steps after discarding the
first 5000 time steps as a transient. From the recorded
values of iz] a time average (]z] )& was calculated. This
process was repeated for a variety of 0 values covering
three decades of magnitude and both types of noise. Fi-
nally, we increased e to a value well above the threshold
for synchronization and repeated all tests on all types of
noise.

As indicated above, if e ( e, then the coupling will

not be strong enough to synchronize F to the time series.
We have found, from numerical testing on raw data (data
without added noise), that the synchronization threshold
for DX1, as well as DX2, is ~, 2. For our numerical
experiments with additive noise e = 5 was the small value
and e = 20 was the large value. For the vibrating wire
the threshold is e 0.5 and we tested at e = 0.75 and
6 = 3.

In Sec. II we argued that the following scaling law holds
for the deviation level:

where B2 and A2 are the simple integrals indicated in

Eqs. (12) and (15), respectively. As it stands this equa-
tion is not completely informative. Before concluding
that the model is, or is not, synchronized to the time se-

ries one should normalize (]z] ) by the level of the top
curve shown in Fig. 1. (By definition, the deviation level

of the top curve is associated with trajectories that are
not synchronized. Hence it represents the most logical
choice for normalization. ) If the time average of the top
curve is D, then the quantity that determines the nor-

malized synchronization deviation level is [(iz] ) ] i2/D.
The results of our numerical experiments are shown

in Figs. 7—9, where we have plotted the normalized syn-
chronization deviation levels [(]zi ) ]

i /D as functions
of o. As predicted, the normalized deviation levels rise
as o increases. In order to compare Eq. (16) to the re-
sults shown in Figs. 7—9 we need to determine numerical
values for A/D and B/D. We have used the numerical
values of [(ized )T] i and o along with a least squares al-

gorithm to fit Eq. (16) and thereby obtain values of A/D
and B/D The. results of this procedure yield the curves
shown in the figures. It is clear from the figures that the
scaling law derived in Sec. II is an excellent match to the
data obtained from the numerical experiments.

We noticed some unusual behavior, which we call
bursting, when the noise level o was large. An example
of a burst for in-band noise, o = 1, ~ = 5, and the DX1
model is shown in Fig. 10. The figure indicates that for a
small number of steps the noise has caused F to lose syn-
chronization with x. (Similar bursts have been reported
by Mossayebi et aL [11].) This loss of synchronization
occurs inf'requently and only for large noise levels. In
fact we only found bursting for DX1 when in-band noise
was used. The noise levels and coupling strengths were
o. ) 0.45 when ~ = 5 and o. = 1.0 when e = 20. These
values of 0. correspond to noise levels of approximately
20% and 40%, respectively [percent noise is identified as
100 (0/0, )]. Furthermore, for the indicated values of o.

and e we only found one burst for the run of 5000 time
steps. For weak coupling the burst was just under 200
time steps in length, while for large coupling the burst
was just under 50 time steps in length.

For DX2 we did not observe bursting. For the vibrating
wire we noticed bursting for large values of the noise level.
These bursts occurred for all cases when 0 = 1, which
corresponds to noise levels of 25%. They also occurred
when the coupling was weak (e = 0.75) and cr & 0.45.
Since the bursts were rare and relatively short we have

not included there values of iz~2 when performing the
time averages indicated by Eq. (8).

The appearance of bursts in our experiments may
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FIG. 8. The normalized synchronization
deviation levels for the DX2 model as a func-
tion of added noise.
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FIG. 10. An example of a bust that oc-
curred when synchronizing DX1 to its model.
The driving signal has been contaminated
with in-band noise of size cr = 1 and coupling
strength e = 5.
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be connected with on-oÃ-oÃ intermittency provoked b the
presence of noise. On-ofI' t

e y e
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~42&~and is associated with the stab'1
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~ 0
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particularly convincing). The latter a er disc
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havior in the context of s nchr

' ' ' a
bursts would be obse

synchronization and implies that
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e and well beyond the threshold of stab'1o o s a i ity. However,
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bursts we see could be the result f h
~ ~
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a noise induced nonhysteretic bifurcation.

The lnal set of numerical e
1

' a experiments we performed
involved determining the behavior

our numerical
m e circuit corre-or e six time series Rom th

sponding to o. = 17.10, 17.23 17.36 17
ese time series were measured with a d'fI'

ent value of B &see Fi . 3&~th
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~an the previous time series.

ince the parameters of the circuit h h

~ ~ ~ ~

or D 2. However, the structure of the o e attractors is qual-

itatively similar to tt t' ly
' ' r to the attractors associated with DX1

[see Fig. 4(a)].
A model E .q. (2) was constructed from the data as-

sociated with o. = 17.75. Th de mode was then sub-
jecte to driv'
17.75 . . .

driving &om time series a t d
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o c anges in the dynamics of the d

'
o e riving signal. In order

o veri y this assumption the noise levels in the drivin
e e ieve t at this is the case

for two reasons. First ths. irs, e modeling procedure allows one

W
to make a rough uess at tg g t~e noise level in the signal [18].

e find that when modeling signals from our circuit the
noise levels are 10 . Seconecon", Figs. 7 and 8 indicate

at for noise levels below 10 th
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e evel of synchro-
nization is independent of a. Th
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o a. ese two facts lead us

1 h &eve' o synchronization in Fig. 11 is
being dominated by the A term in Eq. (16). There ore,

e eve o sync onization in our numeri-
cal experiments should be associated with chan es in

If the am p&itude of the noise is small then E s.
(17) show that
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for suitably defined S(e) [see Eq. (17)]. This equation in-
dicates that the deviation level sho ld
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IV. SUMMARY AND CONCLUSION

In this paper are investigated the behavior of chaotic
synchronization in the presence of two common problems.
The first problem is associated with additive noise in the
data. This problem occurs whenever real experimental
data are used as the driving signal. The second problem
is associated with differences between the dynamics of the
driving system and the dynamics of the response system.
The second problem is also quite common, but comes in
many disguises, some of which we will discuss later.

The numerical experiments involved constructing mod-
els of the dynamics of the driving system &om experi-
mentally measured time series. These models were then
driven by noisy time series &om the systems they were
designed to model. The data used for the numerical ex-
periments came &om two different experimental systems.
The first system is a nonlinear circuit and the second is
a vibrating wire. In both cases the raw data was in the
form of scalar time series.

In an attempt to provide quantitative results we de-
fined a measure of the deviation &om synchronization
between the clean driving signal and the driven model.
If the clean driving signal is denoted by x and the dy-
namics of the driven model is denoted by y, then the
synchronization deviation level is given by the time aver-

age (]z~ )&,where z = y —x [see Eq. (8) in Sec. II].
To study the effect of additive noise in the driving

signal on the synchronization deviation level we added
Gaussian or in-band noise with standard deviation 0
to the experimental signal to produce a driving signal
(x+ nu). Models were then driven by these signals for
various values of 0 and the synchronization deviation lev-
els measured. Theoretical analysis in Sec. II indicates

that (~z] )&
—— A + (OB),where B and A are

given by Eqs. (12) and (15). The analysis indicates that
A is a function of errors in our modeling of the driving
dynamics, while B is a function of the autocorrelation
statistics of the noise. Both A and B are independent of
o, the magnitude of the noise. The results of our numeri-
cal experiments are shown in Figs. 7—9 and confirmed this
scaling law. They also indicated that synchronization is
very robust to noise in the driving signal. The figures
show that synchronization persists even with noise levels
as high as 40%%uo.

To study the effects of drift in the dynamics of the driv-
ing signal we used a time series &om the circuit to build
a model of the dynamics of the circuit. We then obtained
time series measurements &om the circuit after making
small changes in a, a parameter that inHuences the non-
linearity of the circuit. The model was then subjected
to driving from time series associated with the various
values of o.. For each case the synchronization deviation
level was recorded. Theoretical analysis in Secs. II and

III indicates that (~z~2) ] will rise linearly with En
The results of our numerical experiments are shown in
Fig. 11 and confirm this scaling law.

The quantities B and A are functions of the coupling
strength e. In the Appendixes we analyze the functional
dependence of B and A on &. We derive a simple expres-

sion for B [see Eq. (B5)] for b-function-correlated noise
(for example, Gaussian noise). Finally, by knowing A
we can obtain an order of magnitude approximation for

(]KG] ),the average error in our model of the vec-
tor field (see Appendix B).

We close this section with a discussion of the relevance
of these results to a variety of possible applications. To
date, the primary suggested application for synchroniza-
tion involves communications [27,44—49]. All of the pro-
posed communication methods that use a chaotic car-
rier to mask the signal of interest require synchronization
(identical synchronous motion) between the transmitter
generating the chaotic carrier and the receiver. Clearly,
any noise in the transmission channel will introduce de-
viations &om synchronization between the transmitter
and the receiver. These deviations are not part of the
signal of interest and affect the quality of the recovered
signal. Furthermore, if the transmission channel distorts
the signal (possibly because of some limit in its trans-
mission capabilities), then the dynamics of the received
signal will differ &om the dynamics of the transmitted
signal. This change in the dynamics of the transmitted
signal will affect our ability to synchronize the receiver
to the transmission. Therefore, one must understand the
effect of noise and changes in the driving dynamics on
synchronization if synchronization is to be used as a com-
munications method.

Another possible application of synchronization is sys-
tem identification for chaotic sources. Suppose that the
only thing we know about a particular system is a previ-
ously measured clean time series x. At some later time
a second time series x' is received and we wish to deter-
mine whether or not x and x' were produced by the same
system. To answer this question one might construct a
model of the dynamics that produced x and attempt to
synchronize this model to x'. From the standpoint of
synchronization we say that if the model synchronizes
to x', then x and x' have the same source and we have
identified the signal. Clearly, the noise level in x will
affect our ability to synchronize the model to x'. Fur-
thermore, since we only have a time series with which
to construct the model, it is certain that the dynamics
of the model will not be exactly the same as the dynam-
ics that produced x. This modeling error will affect our
ability to synchronize the model to x'. Therefore, one
must understand the effect of noise and modeling error
on synchronization if synchronization is to be used as a
system identification method.

The final application of synchronization we discuss is
nondestructive testing. Consider some new device which
is to be placed into the field as part of its normal oper-
ational life. Prior to placement the device is driven by
a calibrated external driving source and a time series is
recorded. Once this preliminary test is completed the
device is placed into the field, a model of the dynamics
is constructed from part of the time series, and the syn-
chronization deviation level between the model and the
rest of the time series is recorded. After some time we
wish to determine whether or not the device is in need of
maintenance. To accomplish this we drive the device by a
calibrated external driving source and record a new time
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series. Next we attempt to synchronize this new time
series to the previously constructed model. Since the
device has experienced some wear its dynamics will have
changed and the synchronization deviation level will have
risen. By monitoring this rise one can determine whether
or not the device is in need of maintenance. Therefore,
one must understand the effect of drift in the dynamics of
the driving system on synchronization if synchronization
is to be used as a nondestructive testing method.
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APPENDIX A: THE e m oo LIMIT

In this short appendix we brieBy reexamine the anal-
ysis presented in Sec. II in the limit of e m oo. We are
primarily interested in whether or not B and A exist and
are well defined in this limit. Our analysis begins with
Eq. (4), which we rewrite at this time

dz—= [DF(x) —E] .z+ OE u+ AG(x).
dt

Assume, without loss of generality, that the nonzero
component of E is Epp ——e. Then the dth equation can
be rewritten as

1 dzg 1 BFg(x) 1
z —[zg —0 rj] + —[Fg(x) —Gg(x)] .

e dt e Ox E

Letting e m oo this equation reduces to zg = og [18]. In
this limit the linearized equation of motion for z becomes
the (d —1)-dimensional equation of motion

d '

dt
= DF'(x) . z' + 0 u' + b, G'(x), (Al)

BFp(x)
'tip —'g

where z' and LG' are vectors composed of the first d —1
components of z and AC, respectively. The matrix DF'
is a (d —1) x (d —1) matrix obtained by eliminating
the dth row and column from DF and u' is the (d —1)-
dimensional vector

errors the Lyapunov exponents of Eq. (Al) arise Rom
DF' and are usually called the conditional Lyapunov ex-
ponents [2]. The solution to Eq. (Al) can be obtained by
applying the same techniques used to solve Eq. (4). The
result is

t

z'(t) = U'(t, to).z'(t )+ U'(t, r) [AG'(r) + ou'(T)] dr,
to

where U'(t, te) is defined as the operator that evolves
z'(to) into z'(t) in the absence of noise and modeling
errors. It can be formally written as

t

U'(t, tp) = exp DF'(r)dr .
to

W

We end this appendix by pointing out that the syn-
chronization deviation level defined by Eq. (8) can be re-
defined for the (d —1)-dimensional vector z' in a straight-
forward manner. An equation similar to Eq. (9) can be
obtained by forming ~z'(t)]2 and terms similar to B and
A can be defined. We will not derive explicit expressions
for B and A because we have accomplished our purpose
by demonstrating that they exist and are well defined in
the e m oo limit.

APPENDIX B:DETAILED ANALY'SIS
OF BAND A

In Sec. II we derived a theoretical prediction for the
behavior of the synchronization deviation level Eq. (16)
as a function of the noise level o.. This dependence was
then verified in Sec. III. The analysis involved two terms,
which we called B and A and are defined by Eqs. (12) and

(15), respectively. In this appendix we present a partial
analysis of the dependence of B and A on the coupling
strength e. The results in this appendix are somewhat
speculative. We have presented them for two reasons:
(i) the dependence of B and A on e has a direct impact
on the central issue of this paper (the behavior of the
synchronization deviation level) and (ii) our analysis is

the first attempt (that we are aware of) to analytically
study the eÃect of ~ on the synchronization deviation
level for the type of coupling we have used.

We begin the analysis with B, which is defined by
Eq. (12), which we rewrite in the form

B = Be[1+2Bgy],

where Bo and R~ are defined by

t

B,'=e'k(O) (V [U (t, r) U(t, r)] V)dr (B1)
to

Notice that all reference to e has been eliminated from
Eq. (Al) and each term is well defined, although the noise
term is somewhat unusual since u' depends on x as well
as time. The dynamics of Eq. (Al) evolves in a (d —1)-
dimensional phase space. This type of equation is what
one would expect to derive fl. om the Pecora-Carroll form
of synchronization. In the absence of noise and modeling

R~ =, (V. [U~(t, r) . U(t, r) B(r)) dr,B2

(B2)

where the superscript T indicates the transpose. An im-



SYNCHRONIZATION OP CHAOTIC SYSTEMS: THE EFFECTS. . .

portant special case is h-function-correlated noise where

k(s) = k(0) b(s). (For example, Gaussian noise and uni-
form noise are 8 function-correlated. ) When the noise
is h-function-correlated it is obvious Rom Eq. (11) that
B = 0, which leads to B = Bo. The behavior of B,
and hence B2, for other situations is a much more com-
plicated matter. It depends on k(s), the autocorrelation
function of the assumed stationary noise. In light of the
importance of h-function-correlated noise we will address
B02 in detail.

The matrix U+(t, r) U(t, r) is symmetric; hence its
eigenvectors are orthonormal. For convenience de6ne v
by ~ = t —r and let the eigenvectors and eigenvalues
of this matrix be denoted, respectively, by e&&&(r, 7 ) and
exp [2vA)s(r, ~)] for P = 1, . . . , d. We recognize Ap(r, 7)
as the Pth local Lyapunov exponent [23,50]. The lo-
cal Lyapunov exponents control the local expansions and
contractions for the trajectory that begins at «(r) and
ends at «(t). Expand V in terms of the eigenvectors of
U+(t, r) U(t, r) to get

d

v = ) tJf~l(r, T) ef~l(r, T).
p=z

Inserting this expansion and the eigenvalues of
U+(t, r) U(t, r) into Eq. (Bl) and using the orthogo-

nality of the eigenvectors results in

t—to - 2

Be ——e 2(0) ) viPi(r r) exp(2r22(r, r)]) dr
p i 0

(B3)

Equation (B3) is exact. Taking the ensemble average
indicated in Eq. (B3) will result in the loss of information
about the individual locations «(r). Thus the ensemble
average shown in Eq. (B3) can only be a function of 7

In order to perform the indicated ensemble average we
need to know the joint probability distribution of the
local Lyapunov exponents Ap(r, 7) and the orientations
of the eigenvectors ef) l(r, r). This probability distribu-

tion is unknown and we know of no papers that have at-
tempted to study this joint probability distribution. In
order to proceed with our calculation we will make three
assumptions or approximations regarding this probability
distribution. Before explicitly stating these ass»mptions
or approximations it is useful to discuss the probability
distribution of the local Lyapunov exponents.

For each value of 7. there are d probability distributions
of the local Lyapunov exponents, one for each Ap(r, 7).
Denote these probability distributions by p)s(A), where
the dependence on v is understood. Figure 12 shows nor-
malized histograms of p)9 (A) for P = 1, 2, and 3. The his-
tograms are obtained by calculating the local Lyapunov
exponents for the model associated with data set DX1
(see Sec. III). The evolution time is 7 = b,t = 0.02, we
use 10000 different initial conditions, and the histograms
are normalized so that J pp(A)dA = 1.

We examine pp(A) for P = 1, 2, and 3 and 7

At, 26t, . . . , 1006t. As 7 increases, the location of the
center of mass of pz(A) decreases and eventually be-
comes negative. This is to be expected since negative
global Lyapunov exponents for the driven equation of
motion Eq. (3) are required for the stability of synchro-
nization [1,2,7—10]. What is not obvious, and is clear
&om Fig. 12, is that for small values of ~ it is possible
for all of the local value of Ai(r, v) to be positive. This
leads to the interesting conclusion that for this type of
coupling all locations on the attractor have at least one
expanding direction. Thus nearby trajectories are always
diverging in this eigendirection and it is only the rotation
of the eigendirections, as the trajectory moves along the
attractor, that ultimately causes synchronization. Be-
havior that is similar to the type we have just discussed
is observed for all of the test cases discussed in Sec. III.
For this reason we believe that our results are generic
to low-dimensional dynamical systems that are driven in
the manner of Eq. (3).

The histograms of p)s(A) for values of 7 g At usually
look similar to the ones shown in Fig. 12, namely, sharply
peaked. However, exceptions, where the histograms are
bimodal or relatively Hat, do occur. These observations
imply that for small values of r the p)s(A)'s are typically

2.0

o.s i

FIG. 12. The densities of the local Lya-
punov exponents for the DX1 model with
e = 5 and ~ = At = 0.02. There are three
densities. The one on the right is associated
with Ai, the one in the middle is associated
with Aq, and the one on the left is associated
with Aq.
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not Gaussian or any other simple probability distribu-
tion.

Having partially examined the probability distribu-
tions of the local Lyapunov exponents we are ready to
make some approximations regarding the joint probabil-
ity distribution of the Ap(r, r)'s and the e&i l (r, r)'s.

(i) The first assiimption to be addressed involves
whether or not the joint probability distribution will fac-
tor. Pmm the de6nition of global Lyapunov exponents
it follows that in the large r limit, the orientations of
the eigenvectors are independent of the values of the lo-
cal Lyapunov exponents. Hence, in this limit the joint
probability distribution factors. In the small w limit the
orientations of the eigenvectors are not independent of
the local Lyapunov exponents. However, it is possible
that independence is a good approximation.

Numerical experiments have indicated that the bulk
of the Ap's occur within a narrow range of values corre-
sponding to the peaks of pp(A). Thus, if we choose local
Lyapunov exponents at random from their natural distri-
bution on the attractor, then most of the chosen values
will lie within this range, which is associated with a large
portion of the attractor.

Furthermore, for small values of r the exp[2&Ay(r, r)]
term will not vary much across the distributions of the
local Lyapunov exponents. Hence each vl( l(r, 7) in the
ensemble average will be multiplied by almost the same
number [51].

For these reasons we adopt the approximation of in-

dependence between the orientations of the eigenvectors
el&l (r, 7) and the values of the local Lyapunov exponents
Ap(r, r) After fac.toring the joint probability distribution
the ensemble average in Eq. (83) becomes

-2
v(P~(r, r) exp[2rAp(r, r)])

t —tp

Bo e k(0) —) (exp [2rAp(r, r)]) dr.
p ~ 0

Earlier we argued against the existence of a simple ana-
lytical expression for pp(A). In this absence we choose to
rewrite the ensemble average in this equation as

(exp[2rAp(r, r)]) = j pp(A)exp[2rAp(r, r)]dA

= exp [2v.Ap(r)], (84)

When applied to our systems the results of Green and
Kim indicate that typically the orientations of the eigen-
vectors will take on many values since the plane that lo-
cally spans the attractor has many different orientations.
Thus we assume that the probability distributions of the
orientations of the el) l(r, r)'s will be quite broad and
not drastically difFerent for difFerent values of P. This as-
sumption implies that ([v~( l(r, r)] ) ([v~~l(r, r)] ) even
when P g p.

(iii) The final assumption we will address also involves
the probability distributions of the orientations of the
eigenvectors. In principle, as w changes these distribu-
tions will change and the ensemble averages ([v~( l (r, 7)]2)
will change. However, unless the ~ dependence of the
probability distributions is, in some sense, strong, the
ensemble averages will not change much. We know of
no papers that have claimed to investigate the 7 de-
pendence of the probability distributions of the orien-
tations of the e~i l (r, r)'s. We will assume that the func-
tional dependence is weak and that the ensemble averages
([v~~l(r, r)] ) are essentially independent of 7.

These three assumptions or approximations, when
taken together, allow us to rewrite Eq. (83) as

-2
vs~i(r, r) (exp [2rAp(r, 7)]) .

where the last equality serves to define Ap(r). With this
de6nition B0 is approximated by

(ii) The second assumption we will address involves
the probability distributions for the orientations of the
eigenvectors for a 6xed value of ~. There are d probability
distributions, one for each value of P. A paper by Green
and Kim is the only one we know of that has examined
these orientations (it does so in the context of the Lorenz
equations and the infinite r limit) [52].

To summarize the results of Green and Kim consider
a particular point on the Lorenz attractor and imagine
a plane that approximately spans the attractor at that
point. Green and Kim found that the eigenvectors as-
sociated with the positive and zero Lyapunov exponents
are in the plane, while the eigenvector associated with
the negative Lyapunov exponent is perpendicular to the
plane. The orientation of the eigenvectors within the
plane are controlled by the local changes in the velocity
of the trajectory. At some locations on the attractor the
positive direction is essentially orthogonal to the trajec-
tory, while at other locations on the attractor it is essen-
tially parallel to the trajectory. %e assume that these
results hold for the systems we have studied.

1"-
B() e k(0) —) exp[2rAp(r)]dr,

p i 0

where the upper limit of integration has been replaced by
oo. In Appendix C we present a detailed analysis of the
integral in Eq. (85), demonstrate that it does not diverge
for the numerical examples investigated in Sec. III, and
justify replacing the upper limit of integration by oo.

A crude analysis that uses minor variations of assump-
tions or approximations I, 2, and 3 can be performed on
R~. The result is

Rp (V B) = V. [(2(r, r) . V]dr) . (86)
"- k(s)

k0

We now turn our attention to A, given by Eq. (15),
which we rewrite in the form

A = A()[l + 2R~],

where A0 and R~ are de6ned by
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t
Ao —— (b,G(r) U (t, r) . U(t, r) . EG(r)) dr (B7)

Cp

and

1R„=, (AG(r) U~(t, r) . U(t, r) . H(r)) dr.

The analysis we now perform on A.o will parallel the one
we performed on Bo. Begin by expanding LG in terms
of the eigenvectors of U+(t, r) U(t, r)

b,G = ) hagi»(r r) el~)(r r)
P=1

Inserting this expression into Eq. (B7) results in

0—Cp - 2

Ai = ) Ag~~~(r, 7) exp[27Ap(r, r)]) dr
p ~ 0

The integral shown above is exact. Before making as-
s»mptions or approximations similar to the ones listed
above recall that the v'l] )(r, r)'s are completely deter-
mined by the eigenvectors el~&(r, r). In contrast the
b,gl@(r, r)'s are associated with errors in modeling of
the dynamics. Errors in the model of the dynamics
are clearly independent of U+(t, r) U(t, r) and thus
must be independent of its eigenvalues and eigenvec-
tors. Therefore, the joint probability distribution of the
Egi~) (r, T)'s and the Ap(r, r)'s must factor. After factor-
ing the joint probability distribution, utilizing assump-
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FIG. 13. A graph of B vs e for Gaus-

sian and in-band noise for models associated
with DX1 and the vibrating wire. The cir-
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sian and in-band noise, respectively. (a) The
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&o2 = (I&GI') „—) exp[2~Ap(~)]a~.
p ~ 0

(89)

The same type of crude analysis that resulted in Eq. (86)
produces the following expression for R~.

(bG H)

1
EG]r ) ]U]r, r) . EG(~)]dr) .

0

(810)

This concludes our brief analysis of 8 and A . Equa-

tions or approximations similar to 2 and 3, and inserting
Eq. (84), we are left with

tions (84)—(86), (89), and (810) represent the major
theoretical expressions. Notice that all of these equations
are functions of r and, depending on how much the action
of U(t, r) tends to rotate and shrink vectors, it is possible
that R~ and R~ will not be positive. Finally, we remark
that the integrals on the right-hand side of Eq. (89) are
knowable in terms of the distributions of the local Lya-
punov exponents of the model. Therefore, if [1+2R~] is

of order one [which seems likely from Eq. (810)], then by
replacing Ao in Eq. (89) by an experimentally measured
value of A we can make an order of magnitude approxi-
mation for the modeling errors (]KG~ ). It is important
to note that this approximation can be made even though
we do not know the true vector field for the dynamics.

In Fig. 13 we show B vs ~ for in-band and Gaussian
noise and the models associated with DX2 and the vi-

brating wire. To obtain B (as well as A) for a partic-
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FIG. 14. A graph of A vs e. We have calcu-
lated A using raw data (the diamonds), data
with Gaussian noise (the circles), and data
with in-band noise (the squares). The Sgure
indicates that A is independent of the noise
type. (a) The DX2 model. (b) The vibrating
wire model.
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ular value of e we produced curves such as those shown
in Figs. 7—9 and Btting these curves to Eq. (16) [53].
The 6gures indicate that when Gaussian noise is used
B is a much weaker function of e than when in-band
noise is used. Since B = Bo for Gaussian noise and
B = Bo[l + 2R~] /2 for in-band noise, it follows that
Bo is a relatively weak function of e when compared to
[1+2R~] / . Indeed, since Fig. 13 indicates that Bo
is essentially constant under changes in e, we conclude
that the functional dependence of [1 + 2R~]~/2 on e is
essentially the same as the functional dependence of B
on e. Quantitative details about the dependence of R~
on e are an intimate function of the type of noise that is
found in the driving signal and will change &om one type
of noise to the next. Nonetheless, we expect R~ to have
a relatively strong dependence on e when the autocorre-
lation function of the noise is not well approximated by a
b function. Finally, we notice that B appears to become
independent of e when e gets large, a result predicted by
the analysis in Appendix A.

In Fig. 14 we show A vs e for the models associated
with DX2 and the vibrating wire. We have determined
A for three distinct cases. The first and second cases,
indicated by circles and squares, used Gaussian and in-
band noise, respectively. The third case, indicated by di-
amonds, used the raw data as the driving term in Eq. (3)
and the approximation A = (~s~ ) . (For our exper-
iments the noise levels are small, so this is a valid ap-
proximation. ) Recall that, although the noise types for
raw data are unknown, they are probably not Gaussian
or in band. As one can see, A is not a function of the
noise type, a result predicted by Eq. (15). By taking the
ratio of Eqs. (B5) and (B9) and recalling that Bo is es-
sentially constant under changes in e, we conclude that
the functional dependence of Ao on e is Ao ——K/e, where
lC = (~EG~ ) /k(0) is a constant. A similar analysis
indicates that the functional dependence of R~ on ~ is
given by eA/B = K[1 + 2R&]~/2 when Gaussian noise
is present. In Fig. 15 we have plotted eA/B (Gaussian
noise) for the models associated with DX2 and the vi-
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10 FIG. 15. A graph of the ratio eA/B for
Gaussian noise. This quantity is proportional
to [1+2R~] / . (a) The DX2 model. (b) The
vibrating wire model.
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brating wire. We also notice that A appears to become
independent of ~ when e gets large, a result predicted by
the analysis in Appendix A.

APPENDIX C: THE DEPENDENCE
OF Ap(r) ON r

In this appendix we will examine the following approx-
imation in detail:

C —Cp OO

(exp[2rAp(r, r)]) dr exp[2&Ay(r)]dr, (Cl)
0 0

where Ap(r, r) is the local Lyapunov exponent associated
with evolution from x(r) to x(t). We will confirm that
the integral on the right-hand side is finite. The analy-
sis will also confirm that the approximations associated
with Eqs. (Bl) and (B7) are accurate. If 27A(r) falls
oK suKciently fast for large ~, then the upper limit of
integration t —t0 can be replaced by oo and we will have
verified that Eq. (Cl) is a good approximation.

The remainder of this appendix is an analysis of the
behavior of Ap(r). It is tempting to begin an exami-
nation of Ap(r) by modeling the distributions pp(A) by
Gaussians. It is known that in the large v. limit the dis-
tributions pp(A) are well approximated by Gaussians [50]
and

(exp[27 Ats(r, r)]) = exp 2r (Ap(r, r)) + 2r a.
&

Ap(r) = Ap + (C2)

(Despite this behavior it is important to remember that

where (Ap(r, r)) is the mean value of Ap(r, r) and cr& (r)
is the variance of Ap(r, r) about the mean value [54].

In addition, it is known that in the 7. ~ oo limit the
mean values and variances of the local I yapunov expo-
nents converge as power laws (Ats(r, r)) Ap + Cp jr
[where Ap is the global Lyapunov exponent of Eq. (3)
and o'& Dp/r"~ [23,50]]. Thus, in this limit we can
write

0

I m.-~
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FIG. 16. The values of As(r) as a «nc-

tion of the evolution time r The Ap(r). 's

approach the global Lyapunov exponents as
power laws for large ~. The circles, squares,
and triangles correspond to A&, A2, and A3,
respectively. (a) The DX1 model for weak
coupling (e = 5). (b) The vibrating wire
model for strong coupling (e = 3).
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Ap is not a Lyapunov exponent. )
However, in order to evaluate Eq. (Cl) we also need

to know the behavior of Ap(v) for small 7. In the small
~ limit Eq. (C2) cannot hold since I/r would diverge.
Furthermore, as stated in Appendix B, for small values
of 7 the distributions pp(A) are not Gaussians.

In Fig. 16 we have plotted some examples of Aq(v),
A2(7 ), and As (w) as a function of 7 . A total of 10 000 ini-
tial conditions on the attractors were used for the ensem-
ble averages. Figure 16(a) corresponds to results from
the DX1 model with weak coupling (e = 5). When the
coupling is increased the curves occur at lower values of
A(r), but retain their basic shape. Figure 16(b) cor-
responds to results from the vibrating wire model with
strong coupling (e = 3). Similar results were also ob-
tained for the DX2 model. A purely phenomenological
model for the dependence of Ap(v) on r in the limit of
small r is Ap(v) = Ap exp( I'pr"—s) By u. sing a func-
tion that is zero for small ~ and one for large v we have

constructed the following phenomenological function for

An(&)

Ap(~) = Ap exp[—I'pw"s]

+[1—exp( —Opr)] Ap + +, . (C3)
Cp Dp

The values of the global Lyapunov exponents Ap are
obtained by the usual methods for known equations of
motion [50]. The parameters Ap, I'p, pp, Op, Cp, Dp,
and vp are obtained by using an annealing procedure to
fit the data shown in Fig. 16 [53]. Other phenomenolog-
ical functions could be devised and we attach no signif-
icance to the functional form or the numerical values of
the parameter other than that they produce a good fit
to the data. The curves shown in Fig. 16(a) arise from
graphing Eq. (C3) using the optimal parameter values.
The dashed line indicates A(r) = 0 and is provided for
the purposes of comparison.
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In Fig. 17 we have plotted exp[2&Ap(r)] where the val-
ues of Ap(r) are obtained from the data shown in Fig. 16.
The curves shown in these figures are obtained by graph-
ing exp[2rAp(r)] using Eq. (C3). Figure 17(a) indicates
that the integrands in Eq. (Cl) fall off quickly to zero,
which implies that the integrals do not diverge. When
strong coupling is used for this model (the DXl model)
the curves drop oH' even faster with increasing values of

7. In Fig. 17(b) we show the corresponding results for
the vibrating wire model. In this figure exp[2&Ai(w)]
takes longer than v = 4 to decrease to a value near zero;
however, an inspection of Eq. (C3) indicates that it will
eventually approach zero. The fact that none of the in-
tegrals in Eq. (Cl) diverges can be analytically verified
by inserting Eq. (C3) into Eq. (Cl) and considering the
large v limit of the integrand.
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