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Theory of strong-electromagnetic-wave propagation in an electron-positron-ion plasma
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International Centre for Theoretical Physics, Trieste, Italy
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The propagation of intense electromagnetic radiation in an admixture of unmagnetized electron-
positron-ion plasma is investigated analytically. It is shown that relativistically intense electromagnetic
radiation in the presence of heavy ions, in contrast to the case of a pure electron-positron plasma, may
be localized with the generation of a humped bipolar potential in the plasma. This potential may cause
an acceleration of particles in such a plasma.

PACS number(s): 52.60.+h, 52.35.Mw, 52.35.Sb, 97.60.Gb

Recently, the nonlinear propagation of electromagnetic
(EM) waves in electron-positron plasma has attracted the
interest of researchers [I] due to the fact that the
electron-positron plasmas are found near the polar cap of
a pulsar, in the active galactic nuclei, as well as in the
early universe. The process of electron-positron pair
creation and annihilation occurs in relativistic plasma at
high temperatures, when the temperature of the plasma
exceeds the rest mass of electrons [2]. In [3] it was shown
that the positrons can be used to probe the particle trans-
port in tokamak plasma. Electron-positron pair produc-
tion can also be possible during intense short laser pulse
propagation in plasma [4]. Because of the sufficient life-
time of the positrons, the plasma becomes an admixture
of electrons, positrons, and ions. Such a three-
component plasma can indeed be created in laboratory
plasma [5], and has been studied in diff'erent models of
pulsar magnetospheres [6]. The importance of the three-
component admixture plasma has led to much related
theoretical investigations. Of these, Rizzato [7] investi-
gated the weakly nonlinear localization of obliquely
modulated high-frequency EM waves, and found that the
amplitude of the wave turns out to be a strongly depen-
dent function of the angle between the slow modulation
and the fast spatial variation. Berezhiani, Tsintsadze,
and Shukla [8] studied the wake field generation by short,
intense EM wave packets to show that such a plasma can
drastically reduce the amplitude and wavelength of the
generated electrostatic wake field. In the present paper,
the propagation of the strong EM waves in an electron-
positron and ion cold unmagnetized plasma admixture is
considered, aiming to find analytically the localized
soliton-type solution.

To describe the admixture of plasma made up of elec-

and

Here, p and J are the charge and current densities given
by

p=gn q, J=gn q, v (4)

where a indicates the particle species a ( =e, p, i for elec-
trons, positrons, and ions, respectively); q and n, are the
charge and the density of the corresponding particle a.
We shall consider the case in which the admixture equi-
librium state is characterized by no, =no +no, , where

no is the equilibrium density of the particle a.
The relativistic equations of motion of di8'erent parti-

cles of the unmagnetized plasma admixture is written as

2 1BA—P+m cVy =q —Vq ——

where

trons, positrons, and ions, we use Maxwell equations, in
which the fields are expressed in terms of the potentials,
1.e.,

1 AE= —— —Ty, 8=VX A,
e Bt

where the Coulomb gauge V. A=O is fulfilled. Accord-
ingly, using Poisson's equation, one may obtain the fo1-

lowing equations for the potentials:

t) A 2 t)—c VA=4srcJ —c—(Vp)
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and I is the rest mass of the particle a.
The continuity equation for the particle a is

Bn~
+V (n v )=0 . .
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A= ,'(—x+iy)A(g)exp[i(kz —tot)]+c c. (8)

%e are looking for a localized one-dimensional solu-
tion of this system of equations for a circularly polarized
EM wave, where the vector potential A can be expressed
as

~a1—
Iq. I

1-'e

Due to the fact that A depends only on the variable g,
we can integrate Eq. (10) (in the same manner as in
[10,11]),to get

Vp
P

Here g=z —Vt, and x, y are the unit vectors.
Analyzing separately the longitudinal (parallel to the

direction of the wave propagation) and transverse (per-
pendicular plane) parts of the equation of motion and the
wave equations, the transverse part of the equation of
motion is immediately integrated to give

—R(1+o' )

I

1 ~a ~ay= —~ 1 — 4 —
Vp 1 — 4

I q. I

'
Iq. I

1/2

2

1/2

(15)

Pa~ = — A,~a
(9) —R(1+oz) (16)

where the constant of integration is set equal to zero,
since the particles were assumed to be immobile at
infinity where the field is zero.

Meanwhile, the longitudinal part of the equation of
motion takes the following form:

N=y Vo 1 — 4 —R(1+cr }
0a

Iq. l

—1/2

(17)

where Vo=(V/c) and R =1—Vo.
Using (8) and (15)—(17), Eqs. (12} and (13}could then

be rewritten as

with

e'I A I'
y-= 1+',",+, ,mc mc

(10)
d CT Vp 1= —0%+
dg R [(1+4) R(1—+qt)]'~2

[(1—4) —R (1+4)]'

and, accordingly, Eqs. (2), (3), and (7) may be rewritten as
=G(4,%), (18)
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where co, =(4mno, e /m, )'~. is the electron Langmuir
frequency.

I

where p. =(m, /m;) is the electron to ion mass ratio.
Since ions are much heavier than the electrons, i.e.,
p (&1, then for simplicity the ion motion will be neglect-
ed in our present purpose of study. The subscript a,
henceforth, will indicate the electrons and the positrons
only.

It is now convenient to introduce the following dimen-
sionless quantities:

where %=o, e=(no /no, ) (0(e(1) and Q=(t0/to, ),
and we assume that V=kc /co, which determines only
the most successful choice of the coordinate system in
which the equation for the envelope takes the simple
form [10].

In the case of pure electron-positron plasma (i.e., when
e= 1}Eq. (19) reduces to Eq. (23) of Ref. [12]. For our
boundary conditions, it is shown [12] that the only possi-
ble solution is 4=0. The potential vanishes because of
the same radiative pressure for electrons and positrons
due to their equal masses. Under these conditions Eq.
(18) [the only one now remaining from the system of
equations (18) and (19)] does not have a soliton solution.
In our case, due to the presence of ions the radiative pres-
sure creates a finite potential. Note that the case of
electron-ion plasma (» =0) has been considered in [11].

This system has an "integral of motion" and it is given
by

'2
1 dN 2VO 12= —QV — [(I+4) —R (1+4)]' — e[(1—4) —R (1+%')]'R dg R R

+ 4+E=H(@,%), (20)
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where the constant of integration can be calculated from
the boundary condition of the localized solution, and is
found to be

VO2

F. = (1+a) .
R

(21)

We have introduced the G(4, %), F(4,%'), and H(rp, +)
to find some analytical solution in accordance with an
early investigation [11].

Making use of the "energy integral" (20), it is possible
to eliminate the independent variable g between (18) and
(19), yielding the following equation for 4 in terms of 4
alone:

d 4 8
3

4qlH(4, '0) ——G(4, %)%
d% R d%

d%'
0

1
=4Vo~ —(1+a)—0 tq'

R

b„+ea„
R „) n+1
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while the last equation follows from the boundary condi-
tions of the localized solution. Expanding the function
G(%'), defined in (18) according to (23) and (24), Eq. (26)
becomes

+—%F(4,4)4 d4
2

+2[G(@,q')+H(@, ql)] —F(4,%)=0 . (22)

We assume that the arising electrostatic field 4 is the
function of the field amplitude %. So we introduce the
series expansions

4(%)=g c„%",

'~

I

(1—4) —R (1+ql ) =g a„%", (23)

(1+4) —R (1+%)=gb„+",

with c0=0, a0=b0=1 —R = Vo from the boundary con-
dition and, of course, the coeScients a„, b„can be ex-

pressed in terms of c„'s for n =1,2, 3, . . . . We also as-

sume the validity of the expansions
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to be checked with the final solution.
Making use of the expansions (23) and (24) in (22), a

power series in %' is obtained, and then equating the
coeScients of the polynomial to zero, one can easily
determine the coef5cients c„ in terms of the free parame-
ters Q, V0, and e. This is done in the Appendix, where
the series is found to be rapidly convergent for certain
values of the parameters.

For G(4(%),%)=G(%), Eq. (18) becomes
2

2. 5 I

1.5 t-

0.5

d 4
dn'

—4+G(%)=0, (25) -0.5

with a first integral
r 2

1 d%

dg
—4

G(% ) d'(II =const =0, (26)

FIG. 1. Electromagnetic and bipolar Selds as a function of q
with fixed values of R, Q and with diferent values of e. (a)

R =0.12, 0=10, a=0.3; (1) a=0.4; (c) a=0.5. (Solid hne indi-

cates cr, while dashed line indicates 4.)
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d%
0 =a1%' +a2% +a3% (28)

with

a|= (1+a QR }—,4(1—R)

2(1—e}a2=1+e— C1, (29}

a3 = —
I (1+e }c|+2(1 e)c2—] .2

For a, )0, Eq. (28) yields

P,P2sech (yg)

p2
—p, tanh2(y2) )

(30)

Now expressing b„and a„ through the coeScients c„
and limiting with n = 1, 2, finally we find

2

V=c (R «1). As discussed in Ref. [14], such a paten-
tial may accelerate resonant particles (electrons or posi-
trons). The maximal increase of particle energy is
6E-(mc 4,„/R). (Note that in our case 4 & 1.)

Here we express the generated potential as some func-
tion of the driving field intensity and use a series expan-
sion. Some arguments for the convergence of the series
are given in the Appendix, and the convergent solutions
are shown in Fig. 1. It shows that the driving field inten-
sity creates an intense soliton in the plasma with the gen-
eration of double hump bipolar potentials. %ith the in-
crease of the value of e, we find the tendency of a single
hump soliton to converge to a double hump one. Note
that our procedure is valid only for some regions of pa-
rameters (see Appendix). For Q =10 and R =0.12, e has
to be in the range 0.2&a&0.7.

Consideration of ion dynamics, of course, may affect
the localization phenomenon. This effect and the mul-
tidimensional case will be studied in our further investi-
gations.

y=a' /2VO,

[—a2+(~2 —4 i~3)'"] .= 1

2cx3

(31)
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Thus we conclude that the relativistically intense EM
radiation may be localized in an admixture of unmagnet-
ized electron-positron-ion plasma, which is not possible
in the pure electron-positron plasma (i.e., when @=1)
[13]. These localized fields (solitons) induce the bipolar
potentials, which are moving with the velocity

APPENDIX

Here we give the explicit expressions for the derived
polynomial of Eq. (22), the coefficients a„, b„, and c„,and
we discuss their convergence. Using the expansions (23)
and (24) in (22), we get

00 4 00 00—4Q g n(n —1)c„+" g[b—„+a„—2(1 e)c„]%"+—' g n(n —1)c„+"
n=1 R n=1 n=1

'3—(1+@)—Q 4' g nc„4"8 1 2 n —1

R R

I

00 00
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2
n=1

3

4
R

1
, y (b„«„)e"—+'+(1+~)y c„e"+'—,g c„~"+' g (b. +«„)p"

2V0 „=1 n=1 2V0 n=1 n=1

'2
X g nc„%" ' +2 —(1+e) 2Q—1 [b„+a„2(1 e)c„]%"— —

n=1

00 00

(b„+«„)4"+' g nc„%'"
2 VOR n=1

1
OQ

1
00 00 00——,(1+e)g c„y"—,g (b„«„)4"+g c„—%" g (b„+«„)4" =0.

n=1 2V0 n=1 n=1 n=1
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a, = —(2c, +R),

2 c1 2c2

61 =2C1 R

b2 =C1 +2C2

a, =2(clc2 c3) b3=2(C3+clc2

Inserting the Iirst expression of Eq. (23) into the second
and third, the coefBcients a„, b„are determined in terms
of the c„'s:

f = —16Q+R +—+(1—e) R + c8 12
2 R R

+( I+a)—3+1 1

R 1 —R

W~ study the region of the free parameters, where the
series (23) converges. From (30) and (31) we see that for
the localized solution a1, should be positive. Then for
0 & R ~ 1, it yields the following condition:

Then using (A2) in (Al) and equating the coefficients of
the power series in 4, we get 0&R &

"+"
0 (A5)

R 2 —R
C1— 4(QR + 1)— (1+e)

8(1—e) 1 —R

2 —R
4( QR + 1)— (1+e)

1 —R
' 1/2'

8(1—e)
RZ(1 —R)

cz = —c,[f, /f&],

where

f = (I+a) —4 — +8QR —4 c
1 2

R p'2 1

0

1 1 1+a+.—(1—e) —4— .c, +
R 2 2+2

(A3)

(A4a)

So with the fixed 0 and e, R is the only free parameter of
the system. One can find some range for the value of R
with the above condition (A5) which yields

3
3 max

c,%',„-R2

So for R ~0, the series (23) converges rapidly with the
chosen parameters as shown in Fig. 1. Although it is not
a formal proof this argument supports the validity of the
analytic development of our calculations. It is to be not-
ed that, for the case when L(1 —e)L «1, the problem is to
be treated in some other way as the series expansion is
not valid in this case.
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