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Modified formula of nonlocal electron transport in a laser-produced ylasma
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A nonlocal heat-transport formula for electrons is derived to include the terms associated with the
electrostatic potential and B/Bv(fo, f, ) in the Fokker-Planck (FP) equation. Then the FP equation for a
strongly inhomogeneous plasma is solved. It is found that the behavior of the electron thermal conduc-
tivity at a large temperature gradient is considerably affected by the electrostatic field, and the thermal
conductivity ~/xsH for electrons scales as 1/k in a large temperature gradient k when there exists a non-
negligible electrostatic field, where ~sH is the Spitzer-Harm heat coefBcient.

PACS number(s): 52.25.Fi, 52.50.Jm

I. HVTRODUt. l'ION

It has been found in laser fusion experiments in the re-
gion of the steeped temperature and density gradient near
the critical surface of the laser produced plasma that the
electron thermal conductivity is far less than that predict-
ed by the Spitzer-Harm value obtained from classical
theory. Since this phenomenon is found in many experi-
ments measuring properties of a laser-produced plasma,
much effort [1—7] has been made to obtain an analytical
formula which can give the best approximation of the re-
sults given by the numerical simulation. The most suc-
cessful of these works is that of Albritton et al. [2]. They
derived a formula (AWBS) for nonlocal electron trans-
port by directly solving the Fokker-Planck (FP) equation
in a simplified form. There are also some modified mod-
els of AWBS [3-7].

Despite the success of AWBS, there exist some prob-
lems that need further study. Comparing the results ob-
tained from the formula of AWBS and the numerical
simulation, Epperlein and Short [3] pointed out that the
results of AWBS deviate from that of the numerical
simulation in the large temperature gradient, and the
reason for that deviation is that the theory of AWBS is
too delocalized, while that of Spitzer-Harm is too local-
1zed.

Neglecting the electrostatic field is one possible way to
cause the excess delocalization of AWBS. When the tem-
perature gradient is steep, slow electrons inside the
steeped region cannot compensate for the departure of
fast electrons outside. In order to satisfy the condition of
quasineutrality, an electrostatic field must occur. This
electrostatic field directs electrons to the outside of the
steeped region, and increases with increasing position and
drops to zero in the corona region. The non-negligible
electrostatic field associated with the large temperature
gradient makes the simplified FP equation of the AWBS
model inadequate in the large temperature gradient.

In this paper we will discuss the contribution of the
electrostatic field on electron transport in the steeped re-

gion in a laser-produced plasma. The electrostatic field is
determined self-consistently by the quasineutrality condi-
tion. In Sec. II, we give a modified formula of electron
distribution function, from which we obtain a modified
formula for particle and energy Qux. The discussion and
conclusion are given in Sec. III.

II. MODIFIED ELECl RON DISTRIBUTION
AND ELECTRON THERMAL CONDUCllVITY

We start with the FP equation for electrons:

Bf+ Bf eE Bf+ 1 —p, Bf Bf
Bt Bx m Bv v Bp, Bt

D2 B (,)
Bf

2v~ Bp Bp,
(2)

where C is a constant for slowing down, and D& and D2
represent the coeScients for diffusion in velocity space
and angular space, respectively. Because energy is trans-
ported at predominantly high electron velocities, we use
the high-velocity asymptotic form of these coeScients
[g].

To solve the electron kinetic equation, one expands the
distribution function into spherical harmonics, i.e.,

N

f(r, v, t)= g f,(x,v, t)P, (p),
I =0

where P& is the I-order Legendre polynomial.
Numerical calculation [4] has found that although the

high-order terms (f2,f3, . . . ) are not negligible, their
in6uence on f, (which describes heat flow and current)
and fo (temperature and density) is small. Hence we take
the kinetic equation curtailed in X= 1, and have

where p= v„/v, v„ is the x component of velocity v, and
[Bf /Bt ], is the FP collision term

Bf 1 B Dt Bf
Bt v2 Bv 2 Bv
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(7) as

B'fo — 2 Bfo Bfo fMB
T Bg Be T

B eE B 2v

Bx mv Bv A,
(4) In order to transform Eq. (8) into a parabolical-type

equation, we make a transformation y =y(g), and have

where E is the electric 6eld, A,, is the stopping length of
electrons defined as A,, = T /4nne (Z+1)' lnA, and

9o=. (mv ) /2mne (Z lnA„+A„) and

Bfo By Bfo

BC By

is the scattering mean free path, while Z is the ion charge
in the plasma, T is the electron temperature, and A the
Coulomb logarithm.

In order to derive Eqs. (3) and (4) we have assumed
that all temporal variations are slow.

The number of electrons carrying the heat flux is much
smaller than that of background electrons. Therefore we
approximate the parallel difFusion term in Eq. (3) by the
local Maxwellian distribution function fo-fMa = n(m /
2n T) exp[ e/T], —where e= ,'mv +—ePis the electron
energy and P is the electrostatic potential, so that Eqs. (3)
and (4) can be rewritten as

B'fo

Bx
+B'y Bfo By B'fo

By Bg By
2

Substituting into Eq. (8), we find that when

~+X,eE—~ =O," TBg

'q. (8) becomes a parabolic-type equation:

y)3 By

B( By
2 Be

U 8
3 ax

eE 8 2 U 8
mv Bv v 2A, Bv

Inte rating Eq. (9}over g, we have

= Ci exp — dg A,,eE

B eE B 2v

Bx mv Bv
(6) where C] i. an integer. When the electric 6eld is negligi-

ble, y —+g and By/Bg —+ I, we have Ci =1.
In other works [5,6], the second terms in the left-hand

sides of Eqs. (5) and (6) are neglected. Those terms may
have an important influence on the state of nonlocal mod-
els.

Substituting Eq. (6) into Eq. (5), we have

B'fo „- 2 3 Bfo Bfo fMs
T e Bg Be T

where (=x /X, and X =A, /(mv ), and
A,, =(2X,X9v/3)'~ . e&&ep is exploited everywhere by
letting e$~0 except under diff'erentiation by g.

Since X,eE = —Beg/Bg and e »eP, we can rewrite Eq.

2

Bg
' T

=exp — dg A,,eE

y =f dg exp —f dg X,eE

From Eq. (11), we find that when modified terms due to
the electrostatic field are negligible, Eq. (8) is reduced to
the results of Albritton et al. [2]. But when the electro-
static field is non-negligible y will deviate quickly from g
along with an increase of the electrostatic field E or of the
temperature gradient.

Solving Eq. (10), we obtain the formula for the electron distribution function:

fo f4'(klf

exp
[y(k) —y(r ) l'

[ '+ 4'(k')1', —[ + 4(k)]'4 ~3 4 ~J
Bg' Bg
'2 2 ' 1/2

4 Bp[e'+eP(j)], —[e+eP(g)]4 ~3'

Bg'

fMa(k' ~')

T(g')

The fluxes of the particle and energy are de6ned as

X9O Bf,'= —16m f deX ' 'Xe
3m'

Substituting Eq. (13) into Eq. (14), and we write Bf0/Bg as
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where

I I

=f dy(g') f de'K(g, f,e, e')

2[y(k) —y(f )]+~' 1 —2

[y(C}—y(k'}]'

4 ~y 4
Bg'

2 ' ' 2 1/2 7

~4 ~y 4

BP Bg

[y 0 —y 4' 1'

i4 ~y'aC 'a
K(g, g', e, e'}=

y(~) -y(~') ]'—2[y(4)—y(r)]+~' 1 —2 - 2" ' 2- 3 "(r)
4 ~y

ag
'

ag

y'(g')

where y' and y" are the first and second difFerentials of y. When E~0, K(g,f, F.,e'}~—l. And when e &&eP, the eP
only brings in a second-order modification. Thus we replace s+eP with e in the expressions above and below, and in-

tegrate by parts in f' to cast the spatial derivative to fMs(g', e')/T(P}. Thus the particle and heat fiux 1,Q are ex-

pressed as

1 1 X90'= —16m f deX ' 'Xe'
3m'

X fdy(g') f de'

exp
[y(k) —y(k'}]'

4

ag
'

ag
'2 ' 1/2

4 ~y 4'
ar 'aC

where

Bx
K(g, g', e, e') =

I~

f sMf ~ e BT Beg 5 BT+TBn+ 8 K
T (gx'} T Bx Bx 2 Bx n Bx Bx
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'2
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2
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(~ y'(g—) ) e' y'(g'—)'
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—(~'y'(g)')+ ~'y'(g')'

(16)



Y. XU AND X. T. HE 50

1.0

0.2

a jrcqH 0.1

0.05,
I

Q. 02!

0.01 '

0.001 0.01 0.1

I 10~V/m, )
0.5

0.25,'

-0.25I

0 0.4

FIG. 1. The electron thermal conductivity ~/~sH vs k with a
temperature form T,exp[k(x/L —1)] at the point x =L, when

R, =0.001. The dots and the line correspond to the modified
formula and that given by Albritton et al.

FIG. 3. The electrostatic field E vs position x with a temper-
ature gradient k —10 at the point x=L calculated with the
modified formula. The dots and the line correspond to the for-
mula of Albritton et al. and our modified formula, respectively.

Equation (15) expresses I and Q as implicit functions
of electric field E. The electric field is determined by the
requirement of quasineutrality, n =NZ, where N is the
ion density. In this case, the electric field is determined
by the vanishing of the particle flux I'(E)=0. However,
there are two unknown parameters, electron density n(x)
and tetnperature T(x ), in Eq. (15). In principle,
n (x ), T(x ) can be determined from an implicit equation

n „1
dex xe'/2I, .T ey E

III. RESULTS AND CONCLUSION

The electrostatic field determined from the quasineu-
trality condition in a laser-produced plasma can be writ-
ten as eE = —TB[ln(xTr )]/Bx [2]; here y is a parameter
that is determined by total configuration and temperature
gradient. When nT~ is not a constant, but varies with
position, an electrostatic field occurs.

First we discuss the efFect of the electrostatic field on
nonlocal electron transport in difFerent temperature gra-
dients by assuming the form of temperature T(x) and
density n(x). Without loss generality, we assume that

the plasma temperature has a form of
T,exp[k(x/L —1)],where T, is the critical temperature,
L is a scale length of temperature gradient, and

R,nT~=C2T '. Here C2 and R, are constants that will be
given later. Thence the relation of electrostatic field to
BT/Bx is E = (R, /e )d—T/Bx, and Eq. (12) becomes

2kxR,
exp2,R,

We take L =100 pm in our calculation. Substituting the
above assumptions into Eq. (15}, using the condition
I (E)=0, we determine the profile of electron thermal
conductivity.

In the calculation we find that BE/Bx is a small
modification that can be neglected.

Figure 1 shows that an electrostatic field will modify
the formula of Albritton et al. at the large temperature
gradient. Fitting the curve, the ~/~sH profile satisfies the
relation

1+16k

where i~sH=640&2naok(kT) / E,5, /Ze &m 1nA, is the
Spitzer-Harm heat coefficient [9], and E„5, are two
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FIG. 2. The electron thermal conductivity scsH/x vs k with a
temperature form T, exp[k(x /L —1}]at the point x =L calcu-
lated with the modified formula, when R, =0.001 or 0.00001,
respectively. The dots and the line correspond to R, =0.000001
or 0.001.

FIG. 4. The heat flux Q vs position x with a temperature gra-

dient k —10 at the point x =L calculated with the modified for-
mula. The dots and the line correspond to the formula of Al-

britton et al. and our modified formula, respectively. Here
I'~ =4.29 X 10 n /m I m/s.
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modified factors given by Spitzer, while the lr/IrsH profile
obtained from the formula given by Albritton et al.
shows it to be a quadratic function of k.

It can be seen from Fig. 2 that, when the electrostatic
field is non-negligible (R, =0.0001), ~/zsH scales as 1/k
at large k, and when the electrostatic field is negligible
(R, =0.00001), z/a'sH scales as 1/k at large k.

Second, we determine the electrostatic field self-
consistently from quasineutrality I (E ) =0, and

r

n „1
deX ' 'Xe'~ fo .T Jy

E'

Then we use the value of E obtained to calculate the heat
flux. Figure 3 shows the electrostatic field versus x, and
Fig. 4 the heat flux inside the steeped region, when the in-
itial test temperature gradient is k-10. It can be seen
from Figs. 3 and 4 that although the electrostatic field ob-
tained from our formula is a little difFerent from that of

Albritton et ol. the heat flux has a non-negligible
modification.

Finally, we summarize our results. By including terms
associated with an electric field in the FP equation, we
have a modified formula of nonlocal electron transport.
The efFect of the electrostatic field on the electron
thermal conductivity in various temperature gradients is
calculated. We find that the electron thermal conductivi-
ty scales as 1/k at large k when a small electrostatic field
exists, and hence the electrostatic field will have a non-
negligible modification on the formula for nonlocal elec-
tron transport in a laser-produced plasma.
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