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Impact oscillators demonstrate interesting dynamical features. In particular, new types of bifurca-
tions take place as such systems evolve from a nonimpacting to an impacting state (or vice versa), as a
system parameter varies smoothly. These bifurcations are called grazing bifurcations. In this paper we

analyze the different types of grazing bifurcations that can occur in a simple sinusoidally forced oscilla-
tor system in the presence of friction and a hard wall with which the impacts take place. The general
picture we obtain exempli5es universal features that are predicted to occur in a wide variety of impact
oscillator systems.

PACS number(s): 05.45.+b

I. Vv i'RODUCLION

We say that a system is an impact oscillator if it has an
oscillating object that impacts frequently with some other
object [1,2]. Impact oscillators occur in many technolog-
ical situations. For example, mechanical devices are
often engineered with loose fitting joints to accommodate
thermal expansion, and the dynamical behavior of such
systems often leads to impacts in the joint. In addition,
many machines inevitably suffer from effects of vibroim-
pacts. A common feature shared by models of these sys-
tems is the smoothness of the systems between the im-
pacts. Shaw and Holmes studied a piecewise linear,
sinusoidally forced impact oscillator for various values of
the forcing frequency [3—6]. Whiston originally showed
the importance of grazing impacts (i.e., zero velocity im-
pacts) of the global dynamics [7,8]. Recently, Nordmark
expanded (to first order) solutions in the neighborhood of
a grazing orbit for a simple physical system (described
below) and obtained a two dimensional map representing
the dynamics of an orbit in the neighborhood of the graz-
ing state [9]. Nordmark also studied the dynamics of this
map, obtaining several important results [9,10); we will

give details later. Nusse, Ott, and Yorke [11] obtained
results for the dynamics of the one dimensional limit of a
two dimensional map equivalent to the map derived by
Nordmark. Budd, Dux, and Lamba considered
sinusoidally forced impact oscillators, studying such
features as chattering, intermittency, the effect of fre-
quency and clearance variations, and the scaling of
Lyapunov exponents at nonsmooth bifurations [12].

In this paper, we use the simple physical system shown
in Fig. 1 as a prototype impact oscillator. This is the sys-
tem considered in [9,10]. A mass m is attached to a
linear spring with spring constant k that is fixed to the
wall on the right hand side. There is a sinusoidal external
force Fesintot acting on the mass. The friction force is
proportional to the velocity of the mass with coefficient
p, . Here g represents the position of the mass m, and g is
the time derivative of g, which is the velocity of the mass
m. A hard wall stands at the position g, . When the am-
plitude of oscillation is suSciently small, there are no im-
pacts between the mass tn and the wall at g„and the dy-
namics of the system is the same as that of a forced
damped harmonic oscillator without the wall at g, . As
the amplitude of oscillation is increased, the mass ttt be-
gins to have impacts with the wall, first with very low ve-
locity. The bordering state between the impacting and
nonimpacting is called a grazing impact, i.e., when the
mass contacts with the wall at g, with zero velocity. In-
teresting new bifurcations are observed at grazing, and
they are called grazing btfttrcations [9,10]. (Grazing bi-
furcations are important physical exatnples of a general
type of bifurcation called "border-collision bifurcations"
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FIG. 1. Our model physical system.
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xn+ r =xn+Jn+p
~n+ &

= 'Yxn
for x„~0,

considered in [11,13) and discussed in Sec. VI). The pur-
pose of this paper is to present an analysis of grazing bi-
furcations for the system in Fig. 1. It is anticipated that
these results are universal in that they apply to many sys-
tems in which impacts occur.

The two dimensional map derived for the system in
Fig. 1 by Nordmark in [9] is equivalent to the following
map, which will henceforth be referred to as the Nord-
mark map:

through zero. Depending on y and a, there are two possi-
ble forms such a cascade can take: (a) a cascade where
chaos appears in bands between successive windows of
periodic behavior, and (b) a cascade with hysteresis. Sub-
case (a} is illustrated by the example shown in Fig. 2(a),
while subcase (b) is illustrated by the example shown in
Fig. 2(b). (See the figure caption for Figs. 2 for a descrip-
tion of how the bifurcation diagrams are made. ) The line
in the diagrams occurring for p (0 represents the x loca-
tion of an attracting period-1 orbit for the map. Since
this period-1 orbit is located in x &0, it is determined

«n+ i
= +xn+yn+p

y„+,= —yHx„ for x„)0. (2)
0.15p-

(y, a) =(0.05,0.65)

0.05
Here x„and y„are transformed coordinates in the
position-velocity space (g, g) evaluated at times t„,where
cot„=2nm, and ~ is the frequency of the external forcing
(see Fig. 1). The quantity 2 is the restitution coeScient
of the impacts. The relation of y and a to the intrinsic
properties of the oscillator such as the quantities
k, m, o,cp in Fig. 1 is given in Sec. II. The parameter p is
related to Fo Equati. ons (1}govern the system if there is
no impact between time t„and t„+&. Otherwise, if an im-

pact takes place between t„andt„+
„

then Eqs. (2) govern
the system. Note that the Nordmark map is continuous
at x„=0,but that its Jacobian matrix of partial deriva-
tives is singular at x„=O [in particular,
Bx„+&/Bx„=—I/(2+x„) for x„&0].This singularity
at x„=Ois responsible for the new bifurcations studied in
this paper. The map is normalized so that for fixed y and
a, the long-time behavior is such that the orbit does not
impact with the wall at g, for p &0, is in the grazing state
for p=O, and may impact with the wall at g, for p&0.
Thus if we vary p through zero with fixed y and a, the
Nordmark map describes the dynamics of an orbit in the
neighborhood of the grazing state if ~p~ &&1. Since the
map is obtained by expansion of solutions in the neigh-
borhood of the grazing state, its dynamics is related to
the physical system only for ~pi &&1. However, since we
are interested in the bifurcations at p =0 (i.e., the grazing
bifurcations), the map is expected to capture the univer-
sal properties of impact oscillators near grazing. That is,
other, physically different systems, when suitably normal-
ized and expanded about the grazing state, should also
yield Eqs. (1) and (2).

In what follows we shall be concerned with the bifurca-
tion phenomena for the Nordmark map that occur as the
bifurcation parameter p is increased through P=O (graz-
ing incidence} with y and a held fixed. Depending on the
values of y and a (0&y & 1, a & 1+y for physically ad-
missible systems), we observe three basic bifurcation
scenarios listed as cases 1—3 below. One of our goals will
be to give an analysis to delineate the (y, a) parameter
space into regions in which the bifurcations in each case
take place.

Case 1: Bifurcation from a stable period lorbit in p & 0-
to a reversed infinite period adding cascade as p increases
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FIG. 2. (a) Bifurcation diagram for {y,a)=(0.05,0.65) and
r'=l. (b) Bifurcation diagram for (y, a)=(0.01,0.25) and

2= 1. We use the following steps to produce a bifurcation dia-

gram. (i) Set p to the leftmost value p;„in the figure. [In (a),
we start with p=p;„=—0.05.] (ii) Set initial point (xo,yo) to
an arbitrary point. {iii) Iterate the map 10000 times without

plotting anything, to eliminate transient behavior. (iv) Iterate
the map another 300 times and plot the resulting 300 values of
x. This is the x position of the points on the attractor. (v) In-

crement p by a small amount (in this figure, p~p+ ' ), and

set the new initial point (xo,yo) to the last point produced in the
last step, and return to step (iii). Continue until p reaches the
rightmost value p, „

in the Sgure [in (a), p,„=0.10]. (vi) If
p,„isreached, go to step (v), except now decrease p by a small

amount every time (here p~p —~I) until p;„is reached

again. Step {vi) enables us to plot the x positions of coexisting
attractors. The same steps are used to produce Figs. 3—5. The
numbers of iterations in steps (iii) and (iv), and the amount of in-

crement in steps (v) and {vi) are varied for each figure.
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solely by Eqs. (1}. In terms of the system in Fig. 1, this
period-1 attractor of the map corresponds to a forced
periodic orbit where the mass never impacts the walL
Referring to Fig. 2(a) we see that for subcase (a), as p is
decreased from positive values, we encounter windows of
stable periodic behavior, and each such window is fol-
lowed by a band of chaos and then a window of stable
periodic behavior whose period is one higher than the
period in the previous window. As p decreases, there is
an infinite cascade of such windows of ever decreasing
width in p and ever increasing period, accumulating on
p=0+. To make this phenomenology clearer we plot
again in Fig. 3(a) the bifurcation diagram for the same
values of (y, a }as in Fig. 2(a), but now using the variables
x/p vs lnp. We clearly see in this figure that there are six
successive period addings with period 3 occurring on the
right of the figure and period 9 occurring on the left. Nu-
merically, we find no evidence of any stable periodic or-
bits other than those in the reversed period adding cas-
cade. Currently we believe that the p intervals between a
period m window and a period m +1 window are occu™
pied entirely by a chaotic attractor. Now refer to Fig.
2(b), which illustrates subcase (b). We see that the p in-
tervals of stable period m and period m +1 orbits over-
lap, and chaotic attractors are not present in the cascade.

Again, this occurs as a reversed infinite period adding
cascade. Figure 3(b} is a bifurcation diagram using the
variables x/p vs lnp for the same (y, a}as for Fig. 2(b).
We see three successive period addings in this figure, with
period 2 occurring at the right of the figure and period 5
occurring at the left. We have derived a scaling rule for
the widths of the periodic windows in terms of y and a,
applicable to both subcases (a}and (b). The stable period-
ic orbits in our period adding cascades are numerically
observed to be of a very special type. In particular, if the
period of the orbit is m, then the orbit spends one iterate
in x &0 and the other ttt —1 iterates in x &0. We call
such a periodic orbit maxima/ In. terms of the system in
Fig. 1, a maximal periodic orbit of the map corresponds
to a forced periodic orbit where the mass impacts with
the wall exactly once per period.

Case 2: Bifurcation from a stable period Iorbi-t in p & 0
to o chaotic attractor as p increases through zero. An ex-

ample of a bifurcation diagram for this case is shown in
Fig. 4(a}. We see that as soon as p is increased through
zero (corresponding to the occurrence of impacts in Fig.
1), chaos appears. Numerically, we find for Fig. 4(a) that
there is no evidence of any window of stable periodic
behavior throughout the entire range between p=0 and
the value of p at which the stable period-2 orbit first ap-
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FIG. 3. (a) Bifurl:ation diagram for (y, a)=(0.05,0.65) and
r = 1 for small positive p values. We plot x /p vs lnp to take a
close look at the dynamics for small positive values of p. (b) Bi-
furcation diagram for (y, a)={0.01,0.25) and 2= 1, x /p vs Inp.

FIG. 4. (a) Bifurcation diagram for (y,a)=(0.15,1.0) and
H=1. The highest stable periodic orbit in p&0 has period
Mp=2. (b) Bifurcation diagram for (y,a)=(0.15,0.95) and
2=1. The highest stable periodic orbit in p&0 has period
Mp =3.
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pears. In general, case 2 is defined as follows: as p in-
creases from zero there is an interval ofp values occupied
entirely by a chaotic attractor, and this interval ter-
minates at the appearance of a periodic orbit of some
period Mo. In Fig. 4(a), Ma =2, but other values of the
period Mo occur depending on the values of y and a.
Figure 4(b) shows a case where MD=3. Indeed, we ob-
served numerically that Mo~~ as the boundary in

(y, a) space between case 1 and case 2 is approached
from the case 2 side.

Case 3: Collision of an unstable period Mm-aximal or-
bit (which is a regular saddle, and is created, together with
a stable period Mm-aximal orbit, in tt saddle node-bifurca
tion in p&0) and the period lorb-it at p=O W.hen plot-
ting a bifurcation diagram, the regular saddle, of course,
does not show up. One observes that the attractor is a
stable period-1 orbit for p &0 and it is a stable period-M
maximal orbit (which is created in the saddle-node bifur-
cation) for p & 0. Loosely speaking, we will say that there
is a (discontinuous) "bifurcation" from a stable period-1
orbit to a stable period-M maximal orbit as p increases
through zero. To explain the basic phenomenology of
this case, imagine that the orbit is initialized on the
period-1 attractor for some negative value of p, and p is
then increased very slowly with time. While p remains
negative, the orbit tracks the location of the period-1 or-
bit since the period-1 orbit is attracting for p (0. How-
ever, when p increases through zero, the period-1 orbit
becomes unstable and the orbit goes to some other attrac-
tor away from the period-1 orbit. We find that this other
attractor is always a stable period-M maximal orbit,
which is created in a saddle-node bifurcation in p&0.
The unstable period-. M maximal orbit created in the same
saddle-node bifurcation collides with the period-1 orbit at
p=O. Furthermore, we Snd that at p=O, depending on
the parameters (y, a), there exists either only one stable
maximal periodic orbit or two stable maximal periodic
orbits. When two stable maximal periodic orbits coexist,
their periods diSer by 1. In the cases where two stable
maximal orbits coexist, it is always the maximal orbit of
lower period that the orbit goes to from the period-1 or-
bit as p increases slowly from negative to positive values.
We call this the "observed" maximal orbit and we say
that the period-1 orbit "bifurcates" to this observed max-
imal periodic orbit as p increases through zero. Figure
5(a) shows a bifurcation diagram for (y, a) in the region
where only a single period-3 stable maximal orbit exists
at p =0 (this is typical of what happens for other periods).
We see that the period-3 stable maximal orbit is born in a
saddle-node bifurcation at some negative p value,
p=pz &0. (The location of the period-3 saddle is indicat-
ed by the dashed lines in the Sgure. ) For p~&p&0, the
stable period-1 orbit coexists with the pair of stable and
unstable maximal period-3 orbits created at p=p&. As
p~0 —,the unstable period-3 maximal orbit collapses
onto the period-1 orbit. The stable period-3 maximal or-
bit continues to exist in p&0 and the period-1 orbit be-
comes a Sip saddle in p )0. In addition, we want to point
out that the period-3 maximal saddle and the period-1 or-
bit are involved in the local bifurcation that occurs at
p=0, while the stable period-3 maximal orbit is not (since

it is bounded away from the origin). On the other hand,
for p) 0, the solutions will converge to the stable period-
3 maximal orbit that is created at pz. Therefore, we call
the bifurcation a "bifurcation" from a period-1 attractor
to a period-3 attractor. Figure 5(b) shows a bifurcation
diagram for (y, a) in the region where period-3 and
period-4 stable maximal orbits coexist at p=0. Now two
stable maximal orbits are created in p & 0, the period 3 in
a saddle-node bifurcation at p =

pz &0, and the period 4 in
a saddle-node bifurcation at p=p4&0, ~here p4&p&.
Both stable maximal orbits continue to exist as p becomes
positive, but, as already discussed, only the period 3 will
be obserued to bifurcate from the period-one orbit as p in-
creases through zero. Later on in Sec. V A, it will be ex-
plained why this bifurcation to the lower period orbit is
observed.

It should be noted that in all three cases above, the
stable period-1 orbit that exists in p&0 becomes a jiip
saddle in p & 0. That is, suppose g and a are eigenvalues
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FIG. 5. (a) Bifurcation diagram for {y,a) =(0.50,0.20) and
r'= 1. A stable period-3 maximal orbit and an unstable period-
3 maximal orbit are simultaneously created in a saddle-mode bi-

furcation at p =p& & 0 The dashed curves indicate the locations
of the unstable period-3 orbit. The stable period-1 orbit and the
stable period-3 orbit are on the solid curves. One can see that
the unstable period-3 orbit collapses onto the stable period-1 or-
bit at p =0. {b) Bifurcation diagram for (y, a) =(0.80,0.55) and
2=1. A pair of stable and unstable period-3 maximal orbits
are created in a saddle-node bifurcation at p=p& &0, and a pair
of stable and unstable period-4 maximal orbits are created in a
saddle-node bifurcation at p=p4 &0. The unstable periodic or-
bits are not shown.
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of the Jacobian matrix at the period-one orbit; then both
(g~ &land (~( &1 for p&0 and q& —1&~&1for p) 0.

The region of (y, a) space corresponding to systems
with non-negative friction [p&0 in Fig. 1 and v&0 in
Eq. (3)] is shown in Fig. 6, where the parameter values
corresponding to the various cases in Figs. 2-5 are la-
beled as points. (The region shown shaded is unphysical
and corresponds to negative friction. ) As shown subse-
quently, the requirement of positive friction leads to the
restrictions 0 & y & 1 and a & 1+y. This region is divided
into two parts by the parabolic curve K given by
y=a /4. The part above curve E (i.e., regions I and II)
corresponds to overdamping (i.e., the linear harmonic os-
cillator that results from Fig. 1 with the wall removed is
overdamped). This leads to real eigenvalues for the Jaco-
bian matrix of the linear map in Eqs. (1). The part below
curve E (i.e., region III) corresponds to underdamped
systems [or systems that have complex conjugate eigen-
values for the Jacobian matrix of the linear map in Eqs.
(1)]. Systems with (y, a) in region I have grazing bifurca-
tions from a period-1 attractor to a reversed infinite
period adding cascade (case 1). Systems with (y, a) in re-
gion II experience grazing bifurcations from a period-1
attractor to a chaotic attractor (case 2). Regions I and II
are separated by the straight line segment a=( —2)y+ —',
extending downward and leftward from its tangency
point with the curve K at (y, a)=(—',, ~4) (see Fig. 6). Case

1, subcase (a) [Figs. 2(a) and 3(a)] occurs in the part of re-
gion I above the dashed line; case 1, subcase (b) [Figs. 2(b)
and 3(b)] occurs in the part of region I below the dashed
line. The dashed line segment separating subcases (a) and
(b) is given by a=4y+ —,', and extends downward and
leftward from its point of tangency with the curve E at
(y, a}=(—,'„—,'). Underdamped systems (region III) have
local grazing bifurcation from a period-1 attractor to a
period-M attractor (case 3},as in Figs. 5. Recall that the
actual bifurcation is a collision of an unstable period-M
maximal orbit and the period-1 orbit when p traverses
zero. Figure 7(a) shows regions of the (y, a) space where
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stable period-M maximal orbits exist at p =0 for
M=3,4, 5,6 with r =l. As already noted, when two
such orbits coexist, only the one of lower period will be
observed to bifurcate from the period-1 orbit with slowly
increasing p. Figure 7(b) [obtained by assigning the over-
lap regions of the (y,a) space in Fig. 7(a) to the lower
period] shows regions for which the obserued bifurcating
orbit has period M. Regions corresponding to higher M
appear in a similar way and accumulate on the curve K as
M-+ co. It will become clear in Secs. IV and V that the
delineation of the regions in Fig. 6 is valid for all
0&2&1, while the results presented in Figs. 7 is ob-
tained with 2=1.

Nordmark [9,10] has previously discussed scaling for
case 1 and obtained case 2. The existence of the two sub-
cases within case 1, like our treatment of the existence

1.0

I(a) w
0.0 0.2 0.4 0.6 0.8 1.0

I(b)—
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6. Regions of the (y, a) parameter space (unshaded)
corresponding to physical systems with positive friction.

FIG. 7. (a) Regions in the (y, a) parameter space correspond-
ing to systems in which a stable period-M maximal orbit exists
at p=O for 2=1. Here M=3,4, 5, 6. (b) Regions in the (y, a)
parameter space obtained by incorporating the overlap regions
in (a) into the regions of the lower period. For systems with

(y, a) in region M, the stable period-1 orbit is observed to bifur-
cate to the stable period-M maximal orbit as p increases
through zero. The boundary between the regions M and M + 1

is given by MO=m. .
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and stability of maximal orbits for cases 1 and 2 (see Sec.
IV), is new. All the results reported for case 3, and the
delineation of the (y, a) parameter space corresponding
to each case, are also new.

In Sec. II, explicit relations between y, a, and the
physical parameters of the model (Fig. 1) are obtained.
Section III derives expressions for maximal periodic or-
bits. Sections IV and V contain an analysis of the Nord-
mark map for ~p~ &&1. This includes the existence and
stability conditions of maximal periodic orbits for all
(y, a) located in the physically allowed regions in Fig. 6.
The analysis results in the division of (y, a) space into re-
gions corresponding to the difFerent types of grazing bi-
furcations in the system as explained above, as well as a
scaling law for widths of the windows with high periods.
Special attention is devoted to the limiting behavior as
one approaches the boundaries in Fig. 6. This will, for
example, show how an infinite period adding cascade re-
sults as one approaches the boundary to region I from
one of the other regions. In Sec. VI, we discuss the re-
sults of this paper on grazing bifurcations in view of some
general results on border-collision bifurcations obtained
by Nusse and Yorke in [13]. Conclusions are presented
in Sec. VII.

II. RELATION BETWEEN PHYSICAL
QUANTITIES AND PARAMETERS

OF THE NORDMARK MAP

In this section we study the relation between the pa-
rameters y and a and the physical parameters of Fig. 1,
namely the mass m, the spring constant k, the frequency
of the external forcing co, and the friction coeScient p.
With these expressions we will be able to understand the
physical meaning of results obtained from our analysis of
the Nordmark map, which is in terms of y and a.

For the physical system in Fig. 1, the equation of
motion without impacts with the wall at g, is

From now on, we assume that v —40 %0. Then we also
have the time derivative of j (i.e., velocity of the mass)
from Eq. (4):

g=P+C&s&e ' +Czs2e '

Hence for t =n, the state vector in the (g, g) space is

g(n)

g(n}

1 1 P
s& s2 C e ' P~ n +

and for t =n +1,we have

g(n +1)
g(n +1}

s&(n+1)
C,e'

1 1 P
s2(n+1) p1 2 C2e

g(n}=B +(1—B)

where

B=
S2

s e'1 s e'2 Sl $2
1 2

The matrix 8 has the same set of eigenvalues as the Jaco-
bian matrix

A=
a 1

—y 0 (6)

of the linear map in Eqs. (1}. We denote the eigenvalues
of matrices A and B by A, , and A, 2 with

~
A, , ~

&
~

A, z~. From
(5) we have

d d+v +0 g=F sOi 2'.t, (3)
S) $2A)=e, Ap=e

From (6}we have
where we have introduced the quantities v=2m@/mto,
0 =4m k/mao, and F0=4m Fo/mao, and normalized
time t so that the external forcing has frequency 2~ and
2~t =cot. The mapping from t =n to t =n +1 for integer
n is a Poincare return map on the plane (g, g} with con-
stant phase, and thus has the same set of eigenvalues as
the Jacobian matrix of the linear map in Eqs. (1}. Let P
be a particular solution of the difFerential equation (3).
Then the general solution of (3) is given by

a+V a —4y
2

a —V'a' —4yA2=
2

(9)

Combining these relations, we obtain explicit expressions
of the parameters y and a in terms of the physical pa-
rameters

g(t)=P(t)+C, e '+C, e ' if v' —40 A0,

and

g(t)=P(t)+C, e ' +C~te ' if v —40 =0,
where C&, C2 are real numbers and

(4)
s&+s2 —v

s, s, „~2 V v —4Q
+=A, , +A.2=e '+e '=2e " cosh

2

(10}

—v+V v —40
$) =

2

—v —V v —40
s 2 2

For positive friction v&0, we have from (10) and (11}
that

0(y &1, 0(a(1+y . (12)

This also yields ~iL& ~
& 1 by (8) and (9) and corresponds to



50 GRAZING BIFURCATIONS IN IMPACT OSCILLATORS 4433

the unshaded region of the (y, a} space in Fig. 6. Points
on the curve E in Fig. 6 satisfy the relation a —4y=0
[or, equivalently, v —4Q =0 by Eqs. (7)-(11)]and corre-
spond to systems with critical damping. Points above the
curve E correspond to overdamped systems (i.e., systems
with real eigenvalues I, ) and A,z) and points below the
curve K correspond to underdamped systems (i.e., sys-
tems with complex conjugate eigenvalues A, ) and A,2).

Also notice that y is related to the friction coeScient
by Eq. (10}. In the limit of large friction coefficient,
v~ 00, we have y~0, and the two dimensional map in
Eqs. (1) and (2) reduces to the one dimensional map stud-
ied in [11],

'ax„+p for x„&0,
—Qx„+p for x„&0.

and

as eigenvectors corresponding to the eigenvalues A, ) and

iL2, respectively. Write

1 1
(15)

Then

Case 1 [along with subcases (a) and (b)] and case 2 were
found [11]to occur for this one dimensional map for the
a value ranges evident by examining the a axis (i.e.,
y =0} in Fig. 6 [i.e., case 1(a) occurs for —,

' &a & —'„case
1(b) occurs for 0 & a & —,'; and case 2 occurs for —,

' & a & 1].
In the opposite limit of zero dissipation (i.e., v=O and
2=1), the map given by Eqs. (1) and (2) becomes area
preserving. This case has been studied in [12].

and

0
A=S

A,
S0

Hence, for every integer I ~ 0 we can write

(16)

III. MAXIMAL PERIODIC ORBITS

We study the grazing bifurcations at p=O for Eqs. (1)
and (2) in the physically admissible region of the (y, a)
parameter space as characterized in (12). For all these
values of (y, a), the system has a stable period-1 orbit for
small negative p values, which becomes a ffip saddle for
small positive p values.

Our numerical experiments indicate that only one type
of stable periodic orbit is involved in the bifurcations at
p=0. We call such orbits the maximal periodic orbits.
Here a maximal periodic orbit is a periodic orbit for
which exactly one point per period is in the region x )0.
Our strategy is to find the range of p values in which a
period-m maximal orbit exists and the range of p values
in which the same orbit is stable.

Let (x„,y„}represent a point on a trajectory of the
Nordmark map. We use the notation

'y(l) 0

(} y(I)
J

1+A,)+ +A, I

I+A, + +A, '

Since by Eqs. (2),

—~x) +y) +p

y1 X)

Eq. (14) can now be written as

4'k+) =S
'gk —)

1 0 —1

&k —) S
2

—~x, +y, +p

yr x)

r+ A+. + A'=SO("S ',
where

(17}

3'n

pP= 0, A=
J

(13) +S@(k—2)S—1
P

Then Eqs. (1) can be written as

P„+)=AP„+p

gk —1
1

0

0 —1

~k —1
2

—V'X)+V(

yT X)

For a maximal orbit of period m with trajectory points
f„P2,. . . ,P, we assume x, &0 so that x2,x3 ~ ~ ~ xpg

are negative and P +) =P). Thus

fk+, = A 'Q3+(I+ A+ A + . + A" )p, (14)

where k =2, 3, . . . , m. The eigenvalues of A are given in
Eqs. (8) and (9). Select, for example, the vectors

'4'k+) =
'gk —(

1 —1

&k —) S
2

+@(k—1)S—1

+S@(k—1)S—1

—~x, +y,
yT x)

(18)
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Now let

'~(1)

~k S (I k (2)
—1

,
&k

then pk =So k, and we have

~(1)+~(2)+k k
g ~(1) g ~(2)Hk 10k

Using these notations, we rewrite Eq. (18) as follows:

(19)

(1)~k+1
(2)

Ok+1

'gk —1
1 0 —1

~k —1
2

/—0''"+Cr"' (A—, 0'"+A, 0''"}
+e(k-"S-'

yg(~(1)+~(2) ) P ~ (20)

This is the mapping from
'~(1) '

CT1

~(2)
CT1

to
(1)

&k+1
(2)+k+1

for k = 1,2, . . . , m, where

(1)+k+1
(2)

&k+1

is related to points on the period-m maximal orbit via Eq. (19}.

IV. ANALYSIS IN THE CASE
OF REAL EIGENVALUES OF EQS. (I)

In this section we assume that (y, a) lie in the region where the eigenvalues A, , and A,2 are real (i.e., in the unshaded
region above curve K in Fig. 6).

By dividing both sides of (20) by A, ,
(" "and using the notation b'"'=6/I, ,

(" ", with 6 standing for any variable,
Eq. (20}takes the form

-(1)(k)
+k+1

(2)(k)k+1
l

0
'k —1 S

2

-(1)(k)+-(2)(k) (g )k
—1(g -())(k)+g -(2)(k))

P(g )k
—

1( —(1)(k)+ -(2)(k))0'1 0'1
+%(k l)s 1-(k)

P (21)

From Eqs. (8) and (9), we have 0 & A, 2 & A, ) & 1 for points that are not on the curve K. Thus (A2/k, )
)" and (A, , )" both ap-

proach zero as k goes to inSnity. Also in the expression of %"" "[cf. Eq. (17)],

1 —X,
'

"=1+1,+A, + . +A," '= ~ k~~
1 —

A, , 1 —A. ,
-

'

where i = 1,2. Hence for large k Eq. (21) reduces to

-(1)(k)
~k+1

(2)(k)k+1

1 0
o os'

-(1)(k)+-(2)(k)

S )p '+O(max[A, "„(A2/1,, ) I },
1 —A.2

(22)

or, neglecting small terms for k &&1,

Ar 1-(1)(k) ~ j-(1)(k)+-(2)(k)~k+1 g g & +1 +1
1 2

(A, ,
—A, )(1—

A, , ) g2(k (23)

—k2-(2)(k) 2 P
(k —

A, )(1—}(, ) g(

By Eq. (19), Eqs. (23) and (24) give

(k) 1 (k) PAr 1
+k)

+k+) g g Vx) +
1 —a+y

(24)

(25)
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For the period-m maximal orbit we have X +1 X'1

then Eq. (25) can be solved, yielding (for p & 0)

( )
A1 +1+4Rm —1

2
(26)

+m)

Notice that R and p always have the same signs; see
also (12).

Equation (25} also indicates that for large m, the
period-m maximal orbit is stable if

dr{™+))
&1.

k) —k2 2~+( )
(27)

Substituting Eq. (26} for +XI ' into (27}, we find that
the stability condition (27) is equivalent to the inequality

(1—
A, ()(l —A, )A,

' (28)

Meanwhile, multiplying both sides of Eq. (25) by
g2(k —1) ytelds

~ +1 -(1)(rn) -(2)(m)
m- ~2~m+1 ~1~m+(

1

Using the results from Eqs. (19), (23), (24), and (26) to
evaluate the right hand side of the previous equation in
terms of A,„A,2, and p, we find that the existence condi-
tion above reduces to

(1—A, )) (1—A,2)ex 1 2 g2(m —1)

(A, (
—

A,2)
(29}

The expressions (28) and (29) are key results for our
subsequent discussions. We see that a period-m maximal
orbit exists for p &p'", and is stable for p& p". I.et I
denote the interval [p",p'*]. The stable period-m win-

dow appears only if the interval I exists, i.e., if p'" &p" .
From the expressions of p" and p'" in (28} and (29), we
see that the interval I shifts to the left (but never
reaches zero) for larger values of m. Thus windows of
high period may appear as p~O+. This is in agreement
with the phenomena seen in Figs. 2—4.

There are two distinct situations: case I in which I
exists for all large m, and case 2 in which for every in-
teger m &Mo (for some threshold Mo) the interval I
does not exist. The first case implies bifurcations from
the period-1 attractor in p &0 to a reversed infinite period

1 P
Xk+) — ~ k( X(+

1 2

which indicates that x2 &x3 « . x . Hence a
period-m maximal orbit can exist only if x &0, or
equivalently, by Eqs. (2), y +1=—yHx & 0. By
Eq.(19), for large m, the existence condition for a period-
m maximal orbit is

adding cascade in p &0, and the second case implies bi-
furcations from the period-1 attractor in p & 0 to a chaot-
ic attractor in p & 0. We discuss these two cases separate-
ly as follows.

a= —y+——3 2
2 3

(30)

extending leftward and downward from its point of
tangency with the curve K, (y, a) = (—'„—', ).

Furthermore, from (28) and (29), we can deduce a scal-
ing law for the window widths as p —+0+. In particular,

I +(m+1
(31)

where ~I
~

=p'* —p" (assuming p'" &p" for all large m)
is the width of the period-m window. This scaling agrees
accurately with our numerical results, and it applies (for
large m) to all systems with (y, (z) in region I in Fig. 6.
This scaling law was also obtained in [9).

As indicated in Figs. 2 and 3, there are two difFerent

types of reversed cascades of period adding windows.
For the first type, the system is chaotic between succes-
sive periodic windows in the bifurcation diagram, as in
Figs. 2(a) and 3(a). Numerical experiments show no evi-
dence of stable periodic orbits for the p values between
the successive maximal periodic windows. For the
second type, successive periodic windows overlap, and
the system presumably does not have chaotic attractors,
as in Figs. 2(b} and 3(b). The first type corresponds to the
case in which the neighboring intervals I and I +1 have
no intersection, as schematically shown in Fig. 8(a). The
system is presumably chaotic for p'"+, &p&p". The
second type corresponds to the case in which the neigh-
boring intervals I and I +1 overlap for large m, as
schematically illustrated in Fig. 8(b}. The period m and
m +1 orbits coexist for p" &p &p'"+1, and we caB this
hysteresis. The border between these two types of cas-
cades is p" =p'"+1, which by (28) and (29) reduces to
A, (

=
—,'. By Eq. (8}we find that this border is given by the

segment of the line

a =4y+ —,', (32)

extending leftward and downward from its point of
tangency with the curve K, (y, a)=( —,'„—,'}. This is the

dashed line in region I in Fig. 6. Systems with (y, a) fal-

ling in the part of region I above the dashed line have
p'"+1&p" for large m, and the grazing bifurcation at
p=O is from a stable period-1 orbit to a reversed infinite

A. Case 1: bifurcation from a period-1 attractor
to a reversed infinite period adding cascade

The interval I exists for all large m if p'" &p" for all
large m. Then for any period m, there is an interval I
for which the period-m window appears if p EI . Hence
there is a reversed infinite cascade of period adding win-
dows as p~O+. Using the expressions of p" and p'" in
(28} and (29}, we find that pm &p" for all m sufficiently
large if A,((—', . By Eq. (8} this gives the upper border of
region I as shown in Fig. 6, i.e., the straight line segment,
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(a) II as shown in Fig. 6, i.e., the border between regions I
and II.

0 st
~m+t

I I

ex st
('m. t ~m

p
ex
m

V. ANALYSIS FOR CASK 3

The matrix A has complex conjugate eigenvalues if
(y, a) falls below the curve K in Fig. 6. Let

A, )
= re ' = r (cos8+ i sin8),

A, 2
= re ' = r ( cos8 i si—n8),

where

r =Vy, (33)

0 st
l'm. t

ex
l'm+t

~ex

FIG. 8. (a) Schematic illustration of the situation in which in-
tervals I +l and I have no intersection. The system is
presumably chaotic for p'"+l &p &p". (b) Schematic illustra-
tion of the situation in which intervals I +& and I overlap.
Period m+1 and period m orbits coexist for p' &p&p'"+l.
This is called hysteresis.

period adding cascade, with chaos between successive
windows. Systems with (y, a) falling in the part of region
I below the dashed line have p" (p'*+ t for large m, and
the experience grazing bifurcations from a stable period-1
orbit to a reversed inSnite period adding cascade with
hysteresis instead of chaos between successive windows.

S. Case 2: bifurcation from a period-1 attractor
to a chaotic attractor

Assume there exists a smallest integer Mo such that I
does not exist for N2 &Mp ~ In this case, the reversed
period adding phenomenon in the bifurcation diagram
stops after period Mo when the parameter p is decreased.
The period of the last window in the bifurcation diagram
(which is period M()) is the largest value of rn satisfying

p~ &p~. The dynamics is presumably chaotic for all pos-
itive p values to the left of that window. Our numerical
experiments show no evidence of periodic windows for p
values between zero and that window. Thus the bifurca-
tion at p=0 is from a stable period-1 orbit to chaos as in
Figs. 4. This type of grazing bifurcation from a period-1
attractor to a chaotic attractor occur for systems satisfy-
ing p'" (p" for large m, which, by (28) and (29), reduces
to A. ) )—', . By Eq. (8) this gives the lower border of region

Note that 8=0 on the curve E (given by y =a /4).
In the region below the curve K in Fig. 6, we observe

grazing bifurcations from a stable period-1 orbit to a
stable period-M maximal orbit as p increases through
zero (as described in case 3 in Sec. I). Recall that the ac-
tual bifurcation is a collision of an unstable period-M
maximal orbit and the period-1 orbit. For (y, a) values
below but very close to the curve K, the grazing bifurca-
tions involve orbits with high periods. In particular,
M~ oo as 8—+0 (i.e., as the curve E is approached from
below). When 8 is not small (i.e., when M is not large),
we concentrate only on the local bifurcation that occurs
at x =y =0 as P~O —;while for small 8 (i.e., near the
curve I(:) we are able to do more. As p increases from
zero, the grazing bifurcation to the period-M maximal or-
bit is either followed by chaos or by a reversed period
adding cascade starting with a period M —1 window.
For large M, we thus also investigate the occurrence and
scaling properties of stable maximal periodic orbits in

p &0. This allows us to obtain an understanding of how
phenomena below the curve K match on to those above
the curve E (in particular, how the bifurcation from a
stable period-1 orbit to a stable period-M maximal orbit
of case 3 goes over to the bifurcation to the reversed
infinite period adding cascade of case 1 and the interval
of chaos extending from p =0 of case 2 as the curve K is
crossed from below. )

A. When 8 is not necessarily small

Our goal in this section is to find the regions under the
curve K in Fig. 6 corresponding to difFerent values of the
integer M. In this case of complex conjugate eigenvalues,
we divide both sides of Eq. (20) by r '" " instead of by". This time we use the notation 4' '=ALII' '

where b, stands for any variable. Thus Eq. (20) now takes
the form

~(i Nk)
k+1

-(2)(k)~k+i

8 i{k—1)8 0
e

—i (k —1)8

Q-(1)(k)+~(2)(k) „k—1(g —(1)(k)+g -(2)(k))
~k —i~ —&Ak)

k —( P(-( 1 )(k) + -(2)(k)
)

++ S P0) 0')
(34)
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sin(k —1)8
{

sine

g y(k —1) g y(k —1)

A1 A2

'(/y S1n(k —1 )8 ~k+1 ~ 8 1

sin(k —1)8
sin8

Qk) (35)

+ sin(k —2)8
{ (k+1)np)g(k)

sine

y(k —1) y(k —1)
1 2 Qk)

A,
—

1 2
(36)

where again k =1,2, . . . , m. For the period-m maximal
orbit we set X') ' =X' +, and g',™=)r' +, in Eqs. (35) and
(36); then we have

c x( )+Qx( '+c p™=0x 1 1 pP

where

sine s1n(m —1}8 ~~~+ s1

sinm 8 sinm 8 sinrn 8

sin (rn —1)8 + sin(m —2)8
sine sinm 8 sin8

,I,(k —1),I,(k —1)
Cm (m +1)/2

p Y
1 2

sine+ y sin(m —1)8 )( A'I )(2|t'z

sinm 8 1 2

(37)

(38)

(39)

Regarding (37) as a quadratic equation for QX() ', its
two solutions are

Qg(m)
4cmcm Am)

2Cm

4cmcm Am)
Q+(m) Z p

12 2Cm
Z

(41)

Notice that the right hand sides of the solutions [Eqs. (40)
and (41}]are required to be real and positive.

For the part of'{y,a) parameter space in Fig. 6, nu-
merical computations show that the product C„C is

Since the integer I need not be large, we cannot make
the approximation r ' —+0. Thus the terms of order
r ' may not be dropped, and the quantity

"=1+)(,, +)(,2(+ +)(,,
" ' (where i =1,2) in the

expression %'" " [cf. Eq. (17)] may not be approximated
by 1/(1 —)(,;). Then, substituting Eq. (34) into Eq. (19),
we find that for a period-m maximal orbit with orbit
points (x„y,), (x2,y2), . . . , (x,y ) where x, &0 and

x2,x3, . . . , x &0, we have

(k) sink 8 / (k) sinke (k —))/g) (k)

sine ' sin 8

nonpositive. With this in mind, we discuss the two kinds
of period-m maximal orbits depending on the sign of the
quantity C„asfollows:

4Cm( m 4m) pX p
(42)

The orbit corresponding to XI) ' only exists for p&0
[since the right hand side of Eq. (40} is negative for p & 0]
and is numerically observed to always be unstable. In
particular, it collapses onto the origin as p~O —.On the
other hand, the orbit corresponding to 712

' continues to
exist up to some positive p value and is observed to
remain stable. Figure 5(a) is an example of this scenario.
We denote the period of the pair of maximal orbits creat-
ed in p &0 by M, and the negative p value satisfying Eq.
(42) for m =M by ps'.

Case(ii): C, &0

In this case the orbits corresponding to X1, ' can exist

only if p & 0 (so that QX'1) ' is real and positive) and are
observed to be stable only for positive p values bounded
away from zero. The solution X'1z ' does not exist in this
case. Later, in Sec. VB, we consider the periodic orbits
in p &0 that correspond to +XI) ' in the limit that the
curve E is approached from below.

From cases (i) and (ii) we see that a pair of stable and
unstable period-M maximal orbits are created in p &0 in
systems with (y, a) satisfying C, &0 and Xk+') &0 for
1&k &M —1 in Eq. (35) for p=O. To delineate the re-
gions of (y, a) space satisfying these conditions for fixed
M with r =1, we take a grid in the region below the
curve K in Fig. 6 and numerically determine from Eqs.
(35)-(41) the regions yielding C„&0and Xk+') &0 for
1&k &M —1 with p=O and 2=1. Since all points in
the region corresponding to M are required to yield
C„&0,and since Eq. (38) indicates that CM~+ oo for
sin/If 8~0+ while C„~—0() for sinM8~0 —,the
upper boundary of the region in the (y, a) parameter
space corresponding to M is given by

(43)

for all 0&v & 1. Results for M =3,4, 5,6 are shown in
Fig. 7(a). (The conditions are never satisfied for M = 1,2.)
We find that the regions corresponding to M and M + 1

overlap. For example, in Fig. 7(a) we see that between
the regions where only M=3 occurs and only M=4
occurs, there is a region where both M=3 and M=4
occur. For systems with (y, a) located in the overlap of
the regions corresponding to M and M+1, a pair of
period-M maximal orbits are created in a saddle-node bi-
furcation at p=pM &0 and a pair of period M+ j. maxi-
mal orbits are created in a saddle-node bifurcation at

Case (i): C &0

In this case, both solutions X'1, ' and X',z' can exist.

The expressions for QX'1' and QX)z' in {40}and (41)
indicate that a pair of period-m orbits, corresponding to
X'1' and X'(T', respectively, are created in a saddle-node

bifurcation at some negative p value satisfying
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p=pst+& &0, where ps'+& &pst. Figure 5(b} is an exam-
ple of this for M =3.

Substituting the expression of 8 in terms of y and a
given in (33) into Eq. (43), we have

That is, there exists an invertible matrix P such that

e' 0 cos8 —sin8
P P0 e ' sin 8 cos8

CXy=
4[1—sin (m/M)]

(44) Hence at p=0,

Thus as M~ ~, the regions of successively larger M ac-
cumulate on the curve K (given by y =a /4).

For any Sxed pair (y, a) in region III [so (y, a) is
below the curve K], we make the following three claims.

Claim 1. At most two pairs of maximal orbits, with
periods difFering by 1, can be created at negative p values.
That is, at most two regions, corresponding to M and
M + 1, respectively, can have overlap.

Claim 2. When the parameters (y, a) are in the region
where only one maximal stable periodic orbit is created in

p &0, that orbit is the one that will be observed to bifur-
cate from the stable period-1 orbit as p increases slowly
through zero.

To explain what we mean by "observed" in Claim 2,
assume that p is initially negative and that the orbit is ini-
tially on the period-1 orbit. Now imagine that p is al-
lowed to drift slowly upward with time. For p &0 the or-
bit will track the location of the period-1 orbit because
the period-1 orbit is stable. However, when p becomes
positive, the period-1 orbit becomes unstable, and the or-
bit will go to some other attractor. Claim 2 is that the
other attractor to which the orbit goes is always the
stable maximal periodic orbit.

Claim 3. When the parameters (y, a) are in an overlap
region such that maximal stable orbits of period M and
M+1 are both created in p &0, the lower period stable
maximal orbit (i.e., period M) is the one that will be ob
served to "bifurcate" from the stable period-1 orbit as p
increases slowly through zero.

Thus, Claims 2 and 3 are that the regions of the (y, a)
parameter space corresponding to observed bifurcations
to a stable period-M maximal orbit are as shown in Fig.
7(b), where Fig. 7(b) is obtained from Fig. 7(a) by incor-
porating overlap regions into the regions of lower period.

Derivation supporting Claim 1. Let P„P~,. . . , P be

points on a period-M maximal orbit, assuming x& &0 so
that xz x3 . xM 0 and O'I+ i =bi Then or
k =2, 3, . . . , M we have t(}k+&= Agk+p by Eqs. (1),
where A is deSned in Eq. (6). For p=0, fk+, = Agk.
We have seen that the matrix A can be written as

cos8 —sin 8
k+i= Agk —rSP si g cosg

'S

Multiplying both sides by P 'S ', we have

cos8 —sin 8
(P S I k+1)=r sing osg (P 'S 'Pk ) .

Thus the points P&,P2, . . . , /st can be linearly
transformed to points P'„Pz,. . . , Pjt (where
p'k=P 'S 'pk, k =1,2, . . . , M} that are on a circular
arc with an angle 8 between two successive points (except
the one between P'& and Pz), as schematically drawn for
M =5 in Fig. 9. For a maximal periodic orbit the points

f3 /st are in the left half plane, while the point
P'& =/st+, is the only point in the right half plane. Write

p, for the angle between the half line through 0 and pz
and the positive y axis; and write pz for the angle between
the half line through 0 and /st and the negative y axis
(see Fig. 9 for M =5). Now, let 0&p, &8 and 0 &pz & 8
be given. This implies the following. If P, +P2 8, then
in addition to the stable maximal period-M orbit the
Nordmark map may have a stable maximal periodic orbit
of period M —1 but no other stable maximal periodic or-
bit. Furthermore, if p&+p2 8, then in addition to the
stable maximal period-M orbit the Nordmark map may
have a stable maximal periodic orbit of period M + 1 but
no other stable maximal periodic orbit. Therefore, the
Nordmark map has at most two maximal periodic orbits,
with periods difFering by 1 and coexisting at p =0. Hence

re' 0
A=8 0 ~ S '=S;g S

where S and S ' are as in Eqs. (15}and (16). The matrix

i8 0

is similar to the rotation matrix

cos8 —sin 8
sin 8 cos8

FIG. 9. Schematic positions of (transformed) points or a
period-5 maximal orbit.
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at most two pairs of maximal orbits can be created at
negative p values.

Support for Claiins 2 attd 3. From now on, Uo denotes
a suitable region 5hat includes the origin in its interior.
We observed numerically that after its birth at p~ &0,
the stable period-M maximal orbit and its basin of attrac-
tion (%st) are embedded in a region Uo. This region Uo
was originally occupied by the basin %, of the period-1
orbit. In particular, for pst &p &0, %st and 8& share the
region Uo that was occupied entirely by S& before the
birth of %~. (Here, if two maximal orbits coexist, M
denotes the lower of the two periods. } As p increases to-
ward zero, the area occupied by SM increases and the
area occupied by S& diminishes. Roughly speaking, as
p~O —the region that was originally occupied by 8, is

gradually taken over by SM. In particular, 8& shrinks to
a Snite number of curves emanating from the origin as
p~O —.Meanwhile, the region Uo occupied by %st and

S, combined, as well as the basins of attraction of other
stable periodic orbits, are not signiScantly altered. A re-
gion U that includes Uo may also have points that belong
to basins of stable nonmaximal periodic orbits. As an ex-
ample illustrating Claim 3, the point (y, a)=(0.9,0.5)
with r =1 falls in the overlap of regions M=3 and
M =4 in Fig. 7(a). A pair of period-3 maximal orbits are
created in a saddle-node bifurcation at p=p3 and a pair
of period-4 maximal orbits are created in a saddle-node
bifurcation at p=p4, where p4 &p3 & 0. A stable period-7
orbit (which is not a maximal orbit) also exists. Figures
10 plot basins of different attractors for the system with

(y, a)=(0.9,0.5) and 2=1: the grey regions are occu-
pied by S4 and the black regions are occupied by S7. In
Fig. 10(a), p= —0.02&p3, the period-3 maximal orbits
are not yet born, and the white region is occupied by 8&.
The point marked with a + sign in Fig. 10(a) is the posi-
tion of the stable period-1 orbit. In Figs. 10{b)and 10(c)
[where Fig. 10(c) is an enlargement of the small box in
Fig. 10(b)], p =0, the period-1 orbit has just lost its stabil-
ity, and the white region is occupied by S3. The three
points marked with + signs in Figs. 10(b) and 10(c) are
the positions of the stable period-3 maximal orbit. No-
tice that in Figs. 10(b) and 10(c), the origin (i.e., the posi-
tion of the period-1 orbit at p=O) is embedded in 83 and
is bounded away from S7 and S4. Therefore, if p in-
creases slightly, trajectories that start near the origin will
converge to the stable period-3 maximal orbit. This ex-
plains why one observes a bifurcation from a fixed point
attractor to a period-3 attractor when p traverses zero.
This pattern of distribution of S„%st,and g~+, (M =3
in Figs. 10) is typical of systems with (y, a) in the regions
where both period M and period M+1 maximal orbits
are born at negative p values. Therefore only the stable
period-M maximal- orbit is observed to bifurcate from the
period-one orbit as p increases through zero for systems
with (y, a} located in the overlap of regions M and
M+1.

Figures 11(a}—11{c}are similar plots of basins of attrac-
tion as Figs. 10(a)-10(c). (Both Figs. 10 and 11 are pro-
duced with the DYNAMIcs software [14].) In Figs.
11(a)—11(c), 2=1 and p=O with (y, a)=(0.9,0.6) in

(~) 4
(y, u) =(0.9,0.5), p =—0.02

x

(b)
(y, a) =(0.9,0.5), p =0

4r
t

RIK k & |

y]QI ti;

, I,. ,jNII+', , 'J ',
,4i„~8

x

(c)
(y, u) =(0.9,0.5), p=0

x

FIG. 10. Basins of attraction for the Nordmark map with
(y,a)=(0.9,0.5), H=l, and (a) p= —0.02, (b) p=O, (c) p=O.
Figure 10(c) is an enlargement of the small box in Fig. 10(b).
The grey regions in (a)—(c) are occupied by the basin of the
stable period-4 maximal orbit; the black regions in (a)-(c) are
occupied by the basin of the stable period-7 nonmaximal orbit.
The white regions in (a) is the basin of the stable period-1 orbit.
The white regions in (b) and (c) are the basin of the stable
period-3 maximal orbit.
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Fig. 11(a), (y, a)=(0.9,0.7) in Fig. 11(b), and
(y, a)=(0.9,0.8) in Fig. 11(c). The points (y, a) in Figs.
11(a)—ll(c) all fall in the overlap of regions M =3 and
M =4 in Fig. 7(a), so both stable period-3 and period-4
maximal orbits exist at p=O. Comparing Fig. 10(b), Fig.
11{a},Fig. 11{1),and Fig. 11(c), we see that at p=O the
territories occupied by S& and S7 combined are reduced
and the area of S3 decreases to zero as (y, a) moves up-
wards approaching the upper boundary of the overlap of
the regions M=3 and M=4 in Fig. 7(a). Thus we see
how M =4 supplants M =3 as the stable maximal orbit
observed to bifurcate from the period-1 orbit as p in-
creases through zero. Also notice that %7 no longer ex-
ists in Figs. 11(b) and 11(c). [Increasing a to 1.0 we find
that the point (y, a}=(0.9, 1.0) is in the M =4 region of
Fig. 7(a) (i.e., it falls above the overlap of the M =3 and
M =4 regions). Then only a pair of period% maximal or-
bits are created in p&0, and almost every point in the
phase space belongs to 94 at p =0.]

Therefore we conclude that in the complex eigenvalue
case, the maximal orbit that is observed to bifurcate from
the period-1 orbit as p increases through zero has period
M if (y,a) falls between the curves M8=n and
(M —1)8=m [cf. Eq. (43)], which includes the region
where periods M and M + 1 coexist, as shown in Figs. 7.

B. Limit of small 8

(7,a)=(0.9,0.6), p=O
c)) 4 pry~"n

X

(y, a)=(0.9,0.7), p=O
{b) 4- ==

From the analysis in Sec. V A, we see that the maximal
orbit observed to bifurcate from the period-1 orbit at p=0
has period

M =Int —+1,7T
(45)

X

where Int means integer part of. Thus M~ Oc as 8~0
[where 8 is defined in (33)]. Therefore, in the limit of
small 8, terms of order r ' approach zero and the
quantity gI "=1+A, +A, + +A, ' (where
i =1,2) can now be approximated by 1/(1 —

A, , ). Then
Eqs. (35) and (36) in lowest order reduce to

{c}4 (
(7,a)=(0.9,0.8), p=O

-{k)

1 —a+y

sink 8 ~ (k) p
sin8 '

1 —a+y

~ sin(k —1)8„/
(46)

(47}

where k =1,2, . . . , rn The expre. ssions of C„andC in

Eqs. (38) and (39) in lowest order reduce to

sin 8 —sin8
sinm 8 ' ~ (1—a+y)sinrn 8

(48)

—sinm 8+ sinm 8+1+4Q /sin m 8
2 sin8

+{m)
—sinm 8—sinm 8+1+4Q /sin m 8

2 sin8

where

(49)

(50)

Hence the sign of C„is determined by the sign of sinm 8.
The solutions in Eqs. (40) and (41) in lowest order reduce
to

X

FIG. 11. Basins of attraction for the Nordmark map with
r = 1, p =0, and (a) (y, u) = (0.9,0.6). The grey region is occu-
pied by the basin of the stable period-4 maximal orbit, the black
region by the basin of the stable period-7 nonmaximal orbit, and
the white region by the basin of the stable period-3 maximal or-
bit. (b) (y, a) =(0.9,0.7). The gray region is occupied by the
basin of the stable period-4 maximal orbit, and the white region
by the basin of the stable period-3 maximal orbit. The stable
period-7 nonmaximal orbit no longer exists at this parameter
value. (c) (y,a)=(0.9,0.8). For clarity, now the white region is
the basin of the table period-4 maximal orbit, and the black re-
gion is the basin of the stable period-3 maximal orbit. The
stable period-7 orbit does not exist for this parameter value.
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sinz8 p
(1—~+y) r2(nl —1)

—sinm 8++sin m 8+4Q
2 sin8

(53}

[Notice that Q and p always have the same signs; see
also (12).]

Using the approximated expressions above, we reexam-
ine the two kinds of period-m maximal orbits depending
on the sign of C„(asin Sec. V A).

g(M)
—siidf 8—+sin Mg+4Qsi

2 sin8

sinM—8++sin Mg+4Qsi
X(z 2 sin8

(51)

(52)

According to Eq. (44), regions of successively higher M in
Figs. 7 approach the curve K (i.e., the parabola

y =a /4). The approximated equation (46}indicates that
for large M only the period'-M maximal orbit can exist at
p=O, so that Xsg+, &0 and Xk+', &0 for 1&k &M —1.
(The phenomenon of the coexistence of two stable maxi-
mal orbits of periods M and M +1 at p =0 is lost due to
the approximations made for large M.)

Moreover, with the approximated expressions (46),
(51), and (52), we can easily show that for large M the
maximal period-M orbit corresponding to QX'&, ' is al-

ways unstable and the maximal period-M orbit corre-
sponding to QX'&z ' is always stable (which is observed
numerically in Sec. V A). In particular, since sin2lf 8 &0,

(M)
d&si+ i —sin2lf 8
dg&sr~ s() 2

~ 8+g(M)
—sin2lf 8 &1,—sin2lf 8—QsinzM8+4Qsi

for all negative p values (since Xp,
' exists only for p &0)

satisfying sin Mg+4QM &0, and

Case(i): C, &0

By Eq. (48), in this case sinmg&0 and m =M, where

M is defined in Eq. (45). Then we have from Eqs. (49) and

(50) that

+(m)
—sinm8 —+sin mg+4Q

2 sin8
(54)

which can be reduced to the inequality

sin mg
p&p' =—,'(1—a+y) z y '&0,

sin 8
(55)

where p is the stability threshold in the complex case.
On the other hand, a maximal orbit with period m can

exist if x2,x3, . . . , x &0. Equation (46) indicates that
x =max[xk. 2&k &m I for large m. Hence a maximal
orbit with period m can exist if x &0, which means that

y +,= —yx &0 by Eqs. (1). Using Eqs. (47) and (53),
this reduces to

1 —a+y sinz(m —1)8
r sin 8

1 —a+y sin(m —1)8sinm8

Vy sin 8

As discussed in Sec. V A, only the solution QX~P, ' is ad-

missible (i.e., real and positive}, and the corresponding
periodic orbit only exists for positive p values. With the
simplified expressions in this section, we are able to ex-

plicitly derive the stability and existence conditions for
period-m maximal orbits corresponding to QX'„' for
large m (without creating outrageously messy expres-
sions). Thus we are able to obtain results on the oc-
currence and scaling properties of the stable maximal or-
bits with high periods in p & 0.

A maximal orbit with period m &M is stable if, by Eqs.
(46) and (53),

(m)

0&
~m+1 S1I1528

dg~~~ s(m) 2
~ 8++(m)

—sinm 8
& —1,—sinm 8++sin rn 8+4Q~

0&
(M)

d~M+ i —sin2lf 8
dX'M' .™2 8~&~~~

—sin21f 8 &1—sin2lf 8++sin Mg+4Q~

(56)

where p
" is the existence threshold in the complex case.

Thus a stable period-m maximal orbit exists in the p in-

terval J = [p ',p "]if p
* &p '. Using the expressions of

p
' and p

" in (55) and (56},the condition p
* & p

' yields

for all p values satisfying sin Mg+4Q~ & 0.
Notice, however, that for 8~0, i.e., when (y, a) ap-

proaches the curve K from below in Fig. 6, we have
C„~Oand C~~O. Then Eq. (37} implies that the
period-M maximal orbits shrink to the origin, and thus
do not exist.

Case (ii): C &0

By Eq. (48), in this case sinmg&0; hence m &M,
where M is defined by Eq. (45). Then we have from Eqs.
(49) and (50}that

2 2
4 sin(m —1)8 4 singcos8—
9 sinm 8 9 tanm 8

(57)

Notice that for 8~0, (57) is satisfied for all large m if
y &4/9. Thus for y & —'„asp increases from zero, the

grazing bifurcation from the stable period-1 orbit to the
stable period-M maximal orbit is followed by a reversed
period adding cascade starting with a period M —1 win-
dow. The stable periodic orbits in this cascade are the
maximal periodic orbits corresponding to X',

&

'. Hence,
for 8=0, the maximal orbits corresponding to X» ' form
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a reversed infinite period adding cascade in p) 0. This
corresponds to points on the curve E in Fig. 6 with y ( 4,

which is the right hand side border of region I. More-
over, the neighboring intervals J and J +& do not over-

lap if p "+,&p ', which is similar to the schematic illus-

tration in Fig. 8(a), while the intervals J and J +, over-

lap if p "+,&p ', which is similar to the schematic illus-
tration in Fig. 8(b}. By the expressions of p

' and p" in

(55) and (56},the condition p "+
&

& p
' yields

2 2
1 sinm 8 1 8 sin8cos8—

16 sin(m +1}8 16 tan(m +1)8

(58)

For 8~0, (58} is satisfied for all large m if y & —,', . Then
there is an integer N (dependent on y) such that all win-
dows of periods m )1V overlap with each other. This
corresponds to points on the curve E in Fig. 6 with

y & —,'„which is the right hand side border of region I(b).
Similarly, in the limit of 8~0, (57) and the opposite of
(58) combined correspond to the right hand side border
of region I(a), where the system is chaotic between suc-
cessive windows with high periods; while the opposite of
(57) corresponds to the right hand side border of region
II, where the system is chaotic in an interval in p) 0 ex-
tending from zero (recall that the period-M maximal or-
bits collapse to the origin as 8~0).

The expressions (55} and (56) also give a scaling (for
large rn} of the window widths ~J ~

=p "—
p

' in the bi-

furcation diagram if (57) is satisfied. To simplify the ex-

pression, we identify the quantity sin(m —1)8 with
sinm 8 in (56), and then we have

~J.+x~ sin(m +1)8 + sin8
y = cos8+

sinm 8 tanm 8

(59)

VI. DISCUSSION QF THE GRAZING BIFURCATION
IN VIEW OF ORBIT INDEX

In the bifurcation theory for maps, attention has been
focused on difFerentiable maps when one or more eigen-
values of a fixed point (or periodic point) cross the unit
circle. When this occurs, the nature of the fixed point
changes. For example, a fixed point attractor becomes a
saddle (possibly a fiip saddle) or a repeller. The Nord-
mark map, however, is piecewise smooth and is not
difFerentiable at x =0. In particular, the Jacobian matrix
of the Nordmark map changes discontinuously at x =0
and becomes singular as x ~0+ [Bx„+,/Bx„
= 1/(2~x„}].This singularity is responsible for the new

Since tanm 8 decreases towards zero as m 8 increases to-
wards ~, the ratio

~ J~+, ~/~ J~ ~
grows as m increases.

This scaling for large m agrees well with numerical ex-
periments. The scaling in Eq. (59) reduces to the scaling
in Eq. (31) in Sec. IV as 8~0.

Thus we see how the phenomena below the curve K ap-
proach those above E as 8~0.

bifurcation phenomena studied in this paper. According
to [13],the fixed point of the Nordmark map, which is an
attractor located in x (0 for p & 0 and a Qip saddle locat-
ed in x & 0 for p & 0, is a border crossing fixed point; and
the grazing bifurcations that take place at p=0 are exam-
ples of border co-llision bifurcations .In the rest of this
section, we present the precise definitions of the terms
used above, introduce the border co-llision bifurcation
theorem obtained by Nusse and Yorke in [13], and dis-
cuss the grazing bifurcations analyzed in this paper in the
context of the more general results on border-collision bi-
furcations.

A map is smooth if it has a continuous derivative.
Here we examine maps that are piecewise smooth, and
restrict our attention to those that are smooth in two re-
gions of the plane with the border between these regions
being a smooth curve. Let I be a smooth curve that
divides the plane into two regions denoted by R

&
and R 2.

We say that a map F from the phase space R to itself is
piecetaise smooth if (i) F is continuous and (ii) F is smooth
in both the regions R& and R2. Let F(,p)=E„bea
one-parameter family of piecewise smooth maps from the
phase space R to itself, which depends smoothly on the
parameter. p, where p varies in a certain interval on the
real line. Let E„denote a fixed point of F„defined on
—e &p & e for some e& 0. The position of E„depends
continuously on p, . We say E„is a border crossing ftxed
point if it crosses the border I between the two regions
R, and R2 as p is varied. Assume that the crossing
occurs at p=O. A periodic orbit P is a border crossing
orbit if it includes a point that is a border crossing fixed
point under some iterate of the map. If, furthermore,
there exists a neighborhood U of the orbit P such that P
is the only periodic orbit in U at @=0,then P is an isolat
ed border crossing orbit.

For a general approach we need the concept of the "or-
bit index" of a periodic orbit [15]. The orbit index is a
number associated with a periodic orbit, and this number
is useful in understanding the allowable patterns of bifur-
cations the orbit undergoes. We say an orbit of period p
is typical if its Jacobian matrix (i.e., the Jacobian matrix
of the pth iterate of the map at a point on the orbit} exists
and neither +1 or —1 is an eigenvalue (of the Jacobian
matrix). For typical orbits, the orbit index is —1, 0, or
+1. The orbit index is a bifurcation invariant with
respect to, as in our cases, the periodic orbits that col-
lapse onto the fixed point E„asp~O. That is, the sum
of the orbit indices of the periodic orbits that collapse
onto the fixed point E„asp~O —is equal to the corre-
sponding sum as @~0+. Suppose a typical periodic or-
bit P of a map F has (minimum) period p. The orbit in-
dex of P depends on the eigenvalues of the Jacobian ma-
trix A of the map FJ' at one of the points on P. Let m be
the number of real eigenvalues of A smaller than —1,
and let n be the number of real eigenvalues of A greater
than + 1. The orbit index Ip of P is defined by

Ip =0 if m is odd,

I~ = —1 if m is even and n is odd,

I~=+1 if both m and n are even .
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If the orbit index = —1, then the orbit is a regular saddle.
If the orbit index =0, then the orbit is a jiip saddle. The
typical orbits with orbit index +1 are repellers and at-
tractors and orbits with nonreal eigenvalues. The
definition of the drbit index is technical when a point of
the orbit lies on the boundary I since the Jacobian ma-
trix of the map does not exist for points on the boundary.
It is unnecessary to define the orbit index on I since we
consider orbits for pAO.

For a moment, assume that E„is in the interior of the
region R, (or the region R&), and denote il and a for the
eigenvalues of the Jacobian matrix DF„(E„}.If neither
of the two eigenvalues g and ~ is on the unit circle, then
the fixed point E„is a fiip saddle (and has index 0) if
il & —1&a.&1;E„is a regular saddle (and has index —1)
if —1 & ri & 1 & s-, E is a repeller (and has index +1) if
both ~il ~

& 1 and ~~ I& 1; and E„is an attractor (and has
index +1}if both ~ri~ & 1 and ~a ~

& l. (Note that E„has
orbit index + 1 if the eigenvalues are not reaL) Hence, a
typical fixed point is a Qip saddle, a regular saddle, a re-
peller, or an attractor.

Now we introduce the border collision -bifurcation
theorem. Let the regions R

&
and R2, the map F„,and the

fixed point (or periodic point) E„beas above. Suppose
there exists a number e & 0 such that (i) E0 is on the bor-
der of the two regions R, and R2, (ii} for —e&p, &0 the
fixed point E„is in the region R &, and its index is I&, and
(iii) for 0&p &e the fixed point E„is in the region R2,
and its index is I2. If I, and I2 are difFerent, then (as to
be stated next} some bifurcation must occur at ED so that
the sum of the orbit indices is invariant as p crosses zero.
The following "border-collision bifurcation theorem" is
obtained in [13]:

Border col!ision b-ifurcation theorem. For each two di-
mensional piecewise smooth map depending smoothly on
a parameter p, if the index of an isolated border crossing
orbit changes as p crosses zero, then at p=O a bifurca-
tion occurs at this point, a bifurcation involving at least
one additional periodic orbit.

This result says that additional fixed points or periodic
points must bifurcate from ED at p=O if the index of E„
changes as p crosses zero. Since this bifurcation occurs
while the fixed point (or periodic point) collides with the
border of the regions R, and R2, we call it a border
collision bifurcation In other w. ords, a border-collision
bifurcation is a bifurcation at a fixed point (or periodic
point) on the border of the two regions, when the orbit
index of the fixed point (or periodic point) before the col-
lision with the border is different from the orbit index of
the fixed point (or periodic point) after the collision.

Therefore, if the orbit index of a fixed point (or period-
ic orbit} is different before and after it crosses the border
I, the following two things can possibly occur.

(i) There are additional periodic orbits which collapse
onto E0 as p —+0+ and jor p~O —,whose individual in-
dices are such as to make the total orbit index conserved.

(ii} One or more chaotic sets collapse onto E0 as

p~O+ and/or p~O —.(Since the orbit index for a
chaotic set is not defined, conservation of the index is no
longer an issue. }

The border separating the two regions in which the
Nordmark map is smooth is the line x =0. The fixed
point in the Nordmark map crosses the border x =0 at
p=O; thus it is a border crossing fixed point. For p(0,
the fixed point is in the region x & 0 and is stable (thus it
has orbit index Ii =+ 1); for p & 0, the fixed point is in
the region x & 0 and is a fiip saddle (thus it has orbit in-
dex I2=0). We find numerically that it is an isolated
saddle at p=O. Since I,+I&, by the border collis-ion bi

furcation theorem, there must be other orbits (periodic or
chaotic) that collapse onto the fixed point at p=0 and are
involved in the bifurcation there.

For systems with (y, a ) in the region I (Case 1) in Fig.
6, a reversed infinite period adding cascade collapses onto
the fixed point [located at (0,0)] as p~O+. Conservation
of the orbit index before and after the bifurcation at p =0
is not violated in this case, because the orbit index of the
stable periodic orbits in the infinite cascade is + 1 and the
orbit index of the chaotic sets in the infinite cascade is
not defined. For systems with (y, a) in the region II
(Case 2) in Fig. 6, a chaotic set collapses onto the fixed
point as p~O+, whose orbit index is not defined. As for
systems with (y, a) in the region III (Case 3), which is
below the curve K in Fig. 6, an unstable period-M maxi-
mal orbit (which is a regular saddle and thus has orbit in-
dex —1) collapses onto the fixed point as p~O —.The
value of M is determined by Eq. (45). Therefore the sum
of the orbit indices is invariant (and equals zero) as the
fixed point crosses the border x =0. Hence the grazing
bifurcations studied in this paper are border-collision bi-
furcations involving different types of orbits that collapse
onto the fixed point as p~O+ or p~O —.

VIII. CONCLUSION

We have observed three major types of grazing bifurca-
tions: (i}bifurcations from a stable period-1 orbit to a re-
versed infinite period adding cascade; (ii} bifurcation from
a stable period-1 orbit to attracting chaos occupying a
full interval of the bifurcation parameter; and (iii) col-
lision of an unstable maximal periodic orbit and a
period-1 orbit, which is observed to be a local bifurcation
from a stable period-1 orbit to a stable maximal periodic
orbit. These bifurcations are "unconventional" in that
they do not occur in smooth systems. Since the Nord-
mark map represents the dynamics of typical systems
that have low-velocity impacts and that are smooth be-
tween the impacts, the bifurcations studied in this paper
are expected to be universal for such systems.
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