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We study the problem of folding of the regular triangular lattice in the presence of bending rigidity K
and magnetic field 4 (conjugate to the local normal vectors to the triangles). A numerical study of the
transfer matrix of the problem shows the existence of three first-order transition lines in the (K,4) plane
separating three phases: a folded phase, a phase frozen in the completely flat configuration (with all nor-
mal vectors pointing up), and its mirror image (all normal vectors pointing down). At zero magnetic
field, a first-order folding transition is found at a positive value K, ~0.11(1) of the bending rigidity, cor-

responding to a triple point in the phase diagram.

PACS number(s): 64.60.—1i, 82.65.Dp

I. INTRODUCTION

It is tempting to try to describe geometrical objects like
one-dimensional polymers (1D) or two-dimensional (2D)
membranes in analogy with spin systems. Natural spin
variables are provided for instance by the local normal or
tangent vectors to the object, while elastic properties like
bending rigidity naturally translate into some nearest
neighbor spin coupling. However, the correspondence
between geometrical objects and spin systems can be sub-
tle, especially in two dimensions, where geometric con-
straints on, say, the normal vectors to the membrane im-
ply local constraints on the associated spin variables. We
know for instance that the normal vector field to any
two-dimensional surface embedded in three dimensions
has a vanishing curl, as a consequence of the symmetric
character of the curvature tensor. The constraints on the
normal vector are even stronger for tethered membranes,
i.e., 2D polymerized networks with fixed connectivity,
which must remain locally intrinsically flat. The vanish-
ing of the Gauss curvature implies that 3;nX3,n=0,
where 9, =9/0x' is the derivative with respect to the
coordinates on the surface. These constraints play a cru-
cial role since they induce a crumpling transition by sta-
bilizing an ordered phase in a region where the uncon-
strained spin system would be disordered. This
phenomenon was recognized in [1-5], where a continu-
ous crumpling transition is predicted.

Such a drastic change of statistical behavior is ob-
served in the present paper, where we consider a spin sys-
tem describing the thermodynamics of folding of the reg-
ular triangular lattice, a problem first considered in [6].
Considered as a geometrical object, the lattice describes a
tethered membrane skeleton, made of rigid bonds along
which folds can be performed. Here we consider only
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complete foldings that result in two-dimensional folded
configurations of the membrane. In such a process, each
bond serves as a hinge between its two neighboring trian-
gles and is in either one of the two states: folded (with
the two neighboring triangles face to face) or not (side by
side). We refer the reader to [6,7] for a more formal
definition of folding. A folding configuration (folded
state) of the system is entirely specified by the list of its
folded bonds. This definition corresponds to a “phan-
tom” membrane, where the folding process may imply
self-intersections, and where one cannot distinguish in
the folded state between different piling orders for super-
imposed triangles.

With this simplified definition, our folding problem can
be formulated as an eleven vertex model, expressing that
the immediate surroundings of a vertex in a folded state
must be in one of the eleven local configurations depicted
in Fig. 1. In spite of its local definition, folding is a high-
ly nonlocal operation. As explained in [7], we note that
whenever a bond is folded, say, on the left half of a ver-
tex, then another bond is folded on the right half; hence
folds propagate throughout the lattice.

In a previous work [7], we have computed the exact
thermodynamic entropy per triangle, which counts the
number Z; of folded configurations for a finite lattice
made of N, triangles for large N, — . This was done by
mapping the 11l-vertex model above onto the three-
coloring problem of the triangular lattice bonds, solved
exactly by Baxter [8] in its dual version, the three-
coloring of the hexagonal lattice. The result reads

sENfian —A%anfElnq ,
— (1.1)
1 2= - ruypr=12072
1 pll V3p(3p—2) 27 ) '

As mentioned above, we will instead use here the alter-
native description of the model in terms of Ising spin
variables 0 ==*1 defined on the triangles, indicating
whether they face up or down in the folded state. One
can think of the spin as the normal vector to the triangle.
Spin configurations are given together with the fold
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configurations in Fig. 1. Note that there are two spin
configurations for each folded state due to the degeneracy
under reversal of all spins; hence the partition function Z
of the spin system is twice that of the eleven vertex mod-
el: Z=2Z;. It is clear from Fig. 1 that the only allowed
vertex environments are those with exactly 0, 3, or 6 sur-
rounding up spins. In order for a spin configuration to
correspond to a folded state, the six spins o; around any
vertex v must satisfy the local constraint

= 3

i around v
since 2, =2 (number of up spins) —6 is a multiple of 3 if
and only if the number of up spins itself is a multiple of 3.
Equation (1.2) is the explicit realization on the spin vari-
ables of the geometrical constraints on the normal vec-
tors to the membrane, as announced in the Introduction.
Its origin is best understood in terms of the tangent vec-
tors to the membrane. In the flat configuration, the
tangent vectors are just the unit vectors lying on the
bonds joining any two neighboring vertices and oriented
so that, say, the horizontal vectors point to the right,
those rotated by 2m/3 to the top, and those rotated by
—27/3 to the bottom. Clearly the three tangent vectors
around a triangle have a vanishing sum. This condition
is preserved under folding. As explained in [7], the local
constraint (1.2) is the translation of this fact on the nor-
mal vectors.

Beyond the above counting of the number of allowed
constrained spin configurations, it would be desirable to
understand the effect of a bending energy for the folds,
characterizing the rigidity of the membrane. In the spin
language, this means the presence of a ferromagnetic
Ising-like interaction energy —Jo;o; between nearest
neighbors. Most properties of the folded tethered mem-
brane can in fact be investigated by studying the magnet-
ic behavior of our constrained Ising spin system. The
average magnetization M of the system is indeed an order
parameter, which is characteristic of the flatness of the
membrane (|M|>0 for a configuration that is flat in
average, and M =0 for a configuration that is folded in
average). This suggests the introduction of a magnetic
field H in the system (with energy —Ho; per triangle)
with no direct physical meaning for the membrane but in-
strumental in revealing information on its average state
of folding. In the following, we will therefore consider
the constrained Ising model with Hamiltonian

ﬂlsing=-J“2_)‘7i0’j_Hz_0i .
ij i

o;=0mod3 , (1.2)

(1.3)
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FIG. 1. The 11 local fold environments for
a vertex. Folds are represented by thick lines.
One of the two possible spin configurations on
the triangles is also indicated.

For convenience we will use the reduced coupling and
magnetic field

K=J/kyT, h=H/kyT . (1.4)

In our study of this model, we will give numerical and
theoretical evidence for the existence of a first-order tran-
sition line in the (K,h) plane, between an ordered phase
M =1 (for h >0) where the membrane is completely flat,
and a disordered phase M =0, where the membrane is
folded and has a nonvanishing entropy. The most
surprising fact is that we find no intermediary magnetiza-
tion of the system in the thermodynamic limit. For A =0,
a first-order folding transition still takes place at a critical
value K, of the reduced Ising coupling K. All these re-
sults clearly show a drastic modification of the thermo-
dynamics of the standard Ising model, emphasizing the
special role played by the constraint (1.2).

The paper is organized as follows. In Sec. II, we de-
scribe the transfer matrix that we shall use for numerical
simulations on the thermodynamics of the constrained
spin system, and show how to take advantage of some
particular properties of this matrix. The results for the
magnetization in the presence of a magnetic field are dis-
cussed in Sec. III and lead us to formulate the above-
mentioned two phase (M =0,1) hypothesis. Under this
assumption, we also derive a simple argument to calcu-
late the critical value of the magnetic field at which the
transition between these phases takes place. Section IV is
dedicated to the precise study of the first-order transition
line in the thermodynamic limit. In particular, we find
the critical value K, beyond which the M =1 phase per-
sists even at zero magnetic field. We discuss the general
phase diagram of the system in Sec. V and gather more
evidence for the first-order character of the transition.
Related topics are discussed in Sec. VI including the ex-
act solution for the square lattice as well as some predic-
tions of a possible antiferromagnetic transition within the
M =0 phase for negative K. Section VII is a brief con-
clusion.

II. TRANSFER MATRIX DESCRIPTION

We consider the folding of an infinite strip of triangu-
lar lattice of finite width L, with free boundary conditions
on the edges of the strip. Imposing periodic boundary
conditions at infinity, the partition function of the model
is expressed as '

Z'Y(K,h )= lim {Tr[ TY(K,m)NVN, 2.1
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where T'L) denotes the transfer matrix, acting as an
operator on a column of size L, whose state is specified by
the 2L spin values ¢;==*1, i=1,...,2L, on the trian-
gles.

The matrix element of T'L) between two consecutive
columns, as depicted in Fig. 2, reads

(L) (L) (L)
T KR=TE (00U (K)
(L)
XVignio) )

where 71(0,0) imposes the local folding constraint (1.2)
on the six spins surrounding each of the L —1 inner ver-
tices (marked by black dots in Fig. 2), and U'* and V'
are the usual temperature and magnetic field contribu-
tions to the transfer matrix of the Ising model, namely

(L) Lt
T\ 1.101(0:0)= ]I 80y +0s 41 t0s4,
i=1
405 toy o3+ mod3)
(L _ K 2L —1 ,
Uiey 1) KIZexp |57 2 (0:011F0iois)
L ’
+K 3 0503
i=1
(L) _ h % '
V{a,],[a](h)—-exp 5 i§1(0i+ai) ,

with 8(x ) the usual Kronecker 8 function on integers.

In the large-N limit, the partition function (2.1) is dom-
inated by the largest eigenvalue of T'X)(K,k ), which we
denote by ML) (K ,h), and the corresponding free energy
per triangle reads

—F'O(K, h )zilf 1nZ M (K, h )=?1£ AL (K, h) .

The thermodynamic free energy per triangle is then
defined as the L — oo limit,

1

—F(K,h)= lim — AL (K, h) . 2.2)

e
,0'1’ O

(o)) (0]
o3| \O3

c c

L 4 4
9
_____ S ANREAN

FIG. 2. The transfer matrix T
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Our main task is therefore the numerical extraction of
this eigenvalue, together with the corresponding eigen-
vector v'k) (K,h). We will also be interested in evaluat-
ing the subleading eigenvalue AL(K , 4 ).

The analysis can be simplified in view of the following
properties of the transfer matrix. Due to the local con-
straint on the spin variables, the matrix T'(K k) of size
22Lx 22L js sparse. The exact number N, of nonzero en-
tries of T'L) is easily comPuted by using the vertical
transfer matrix of size 2, T2/(0,0), namely,

Ny= 3 [T?0,00%) 5,0 -
(o} {o}

Diagonalizing T? exactly, we find

L —_—
N =L |27 |7 114317
L2 2 V17
— L J—
_|7=v17 | 11=3vT17
2 V1T

The first values of N; are given in Table I below. N,
grows like (5.56. . .)F << 16%, which justifies the use of a
diagonalization algorithm adapted to sparse matrices:
starting from a given vector, we compute recursively its
iterated image by 7, which we moreover normalize at
each step; the process converges to the eigenvector v,
associated to A_,,. The subleading eigenvalue A, is ob-
tained by use of the same algorithm together with a suit-
able projection procedure, guaranteeing at each step that
we substract the component along the maximum eigen-
vector. This projection procedure is made easy by the
following symmetry property of the transfer matrix.
Consider the picture of Fig. 2 and rotate it by 180°. One
gets an identity between two transfer matrix elements,
namely,

This can be recast into T'U(K,h)T=RT'"(K,h)R,
where R is an involution, with matrix elements

2L
— ’

o I 8oi—05p 41-i) -
L=

TABLE 1. The number N; of nonvanishing transfer matrix
elements and the maximum eigenvalue A, for strips of width
L=2,3,...,9.

L N, AL (0,0

2 88 5.561552 81
3 488 7.893970 81
4 2712 11.325982 61
5 15080 16.347 42307
6 83864 23.678 55022
7 466 408 34.373 51897
8 2593944 49.972 569 96
9 14426 344 72.724 836 25
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Any eigenvector v with eigenvalue A <A, is then clearly
orthogonal to Rv,,,. To project out the v, component
off a given vector w, one simply has to perform the substi-
tution

(R g [w)

w—w— v

(Rvmax|vmax) max

From the knowledge of the eigenvector v'L) (K,h), we
can get the expectation value of local observables of the
system. For instance, the magnetization M is obtained as
follows. The magnetization operator u acts diagonally on
the columns of 2L spins, with diagonal elements
Bio},(0} = 2t%10;. In the N— oo limit, its expectation
value M ={(pu ) reads

— (Rvg;l)x(K’h )|#U§,QX(K,’! ))
(Rv'E) (K,h)|vE) (K,h))

(2.3)

As a test of the precision of our algorithms, we first
compute kﬁ,{;’x(0,0) for various sizes L =2,3,...,9. The
results are summarized in Table I. This leads to an esti-
mate for the thermodynamic entropy per site
—F(0,0)=Ing, with ¢=1.208. .., in very good agree-
ment with a previous numerical estimate [6] and with the
exact result (1.1). We obtain the value of g as the limit of
the sequence g; =V ALLFD/AL) " extracted by the Aitk-
en §-2 algorithm (exponential fit).

III. MAGNETIZATION
CRITICAL MAGNETIC FIELD,
AND THE TWO PHASE HYPOTHESIS

As mentioned above, the magnetization M of the sys-
tem is an order parameter for the flatness of the lattice.
At K=0,h=0 the system is folded in average, with a
nonvanishing folding entropy —F(0,0); therefore, the
magnetization M (2.3) vanishes identically. On the other
hand, we will have M — 1 for sufficiently large 4 > 0.

Figure 3 represents the magnetization M versus the
magnetic field A =0, computed through the formula (2.3)
for strips of width L =4 and 6, for several values of K, in
the range [0,0.2]. It clearly appears, and even more so for

=
o

Magnetization M
o
(7]
T

T

03 04

e
)

L=4 L=
1

0.0
01 02 03 04 00 O
Magnetic field h

e
e

FIG. 3. Magnetization M versus magnetic field 4 for L =4
and 6. The four curves correspond respectively (from the right
to the left) to exp(K/2)=1(K=0), 1.0333. .., 1.0666...,
and 1.1. The dashéd vertical lines indicate the critical magnetic
field h!" as predicted by Eq. (3.1).
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the larger L, that the magnetization tends to remain zero
over a finite range of (small enough) magnetic fields and
then abruptly jumps to 1 when h reaches some critical
value hc(L)(K ). Moreover, this critical field hc(L’(K ) is
maximal for K =0 and decreases with increasing K. For
a given K, h!L)(K) also decreases with increasing L, even-
tually reaching its thermodynamic limit A (K) for
L—oo.

This somewhat unexpectedly rapid change in M is the
first tangible sign of the existence of a first-order magnet-
ic transition in the system. At this point, it is reasonable
to infer that in the thermodynamic limit L — «, and for
a given coupling K >0, the magnetization M is exactly
zero for 0<h <h,(K) and exactly 1 for h > h_(K), being
therefore discontinuous at A =h.(K), with h.(K) a de-
creasing function of K. Indeed, all our results in the fol-
lowing will corroborate this picture of a first-order transi-
tion between two phases with, respectively, M =0 and
M =1, without any possible intermediate value of the mag-
netization.

A first check of the above two phase hypothesis is actu-
ally provided by the possible derivation of the value of the
critical magnetic field through the following simple
theoretical argument. Suppose that for large enough but
finite strip width L, we can already describe the system in
terms of two phases M =0 and M =1. In the phase
M =0 [h <h!F(K)], the system is insensitive to the value
of the magnetic field h and its partition function is there-
fore given by Z"YK,h)=Z'P(K,0)
=exp[ —2LF'Y(K,0)]. In the flat phase M=1
[h>h!P(K)], the partition function is that of the pure
state with all spins up; hence it reads
Z'Y(K,h)~exp[(3BL—1)K +2Lh], since 3L —1 bonds
separate 2L triangles. The phase transition is then pre-
dicted to occur at the critical value of the field # where
the free energies of the two phases are identical, namely,

X
2

N

rP(K)=—FD(K,0)— 7

) (3.1)

where —F'1)(K,0)=(1/2L)InAL) (K,0) can now be cal-
culated numerically, directly from the zero magnetic field
transfer matrix. The corresponding predicted values of
the critical field are represented in Fig. 3 by dashed verti-
cal lines for the various values of K and L. The agree-
ment with the observed transition point is excellent. In
the following, we shall therefore consider h{(K) of Eq.
(3.1) as giving the exact location of the transition point.

IV. TRANSITION LINE
AND CRITICAL COUPLING K,

We are now interested in understanding the thermo-
dynamic critical line h (K) separating, in the (K,h)
phase diagram, the M =0 and M =1 phases.

In Fig. 4, we have represented the curves hcu‘)(K ) as
given by Eq. (3.1) for L=2,3,...,8 and K €[0,0.36].
These curves enjoy the following Properties. Equation
(3.1) expresses the critical field #{“(K) as the difference
between the total zero field free energy and that of a par-
ticular state (the flat M =1 state), h//)(K) is therefore
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FIG. 4. The critical magnetic field #!"(K) resulting from Eq.
(3.1), and the purported thermodynamic limit 4.(K) (dashed
line).

positive. It is also clear that h{*(K)—0 when K — c as
the system gets fully ordered for strong coupling. Final-

ly, hc(L)(K ) is a decreasing function of K, indeed,
dh'F(K) 1
CdK =—2‘f(”)(<aiaj)(K’0)—l)
ij

s L

1
— (L) _ 2

) (4.1)

where the sum extends over the 3L —1 active bonds (ij)
of a column of 2L triangles, and E (LY K,0) is the zero
field average energy per triangle of a strip of width L. As
(0,0 j> is always smaller or equal to 1, we deduce that
h!P(K ) decreases with increasing K.

When L — o, the curves h!'(K) of Fig. 4 tend to the
thermodynamic critical line 4.(K ). The properties men-
tioned above for finite L naturally extend to the thermo-
dynamic limit. The critical field, now given by

h(K)=—F(K,0)— K , 4.2)

is thus positive or zero. At K =0, h!)(0) is nothing but
the entropy per triangle —F'£(0,0)=(1/2L)1nA{%)(0,0),
with A!L)(0,0) given in Table I. Consequently, in the
thermodynamic limit L — oo, we have the exact result

h.(0)=Ing=0.189. .., (4.3)

the transition thus taking place at a nonzero value of .
By continuity, h.(K) will remain strictly positive for
small positive K. Differentiating Eq. (4.2), we get

dh (K)

4.4
T 4.4)

=‘%‘(<U,‘O’j >(K’0)_1)=E(K,0)"‘% ,

where (o0 j ) denotes the correlation function of any
two neighboring spins, and E(K,0) is the zero field aver-
age energy per triangle of the system. Again, as (0,0 j)
is always smaller or equal to 1, we deduce that #.(K) is a
nonincreasing function. Note that Eq. (4.4) is nothing

but the Clapeyron relation,

where E; (respectively, M;) denotes the Ising bending en-
ergy (respectively, magnetization) in the phase i =0 or 1
on each side of the critical line.

Once h.(K) is known, the & dependence of the system
is determined since

—F(K,0), h<h,(K)

—F(K,h)= 3K+h, h>h(K).

4.5)
In turn from Eq. (4.2), 4.(K) is encoded in the zero field
free energy —F(K,0).

A new interesting phenomenon can be read off Fig. 4.
For large enough L, the decrease to zero of h!F(K) with
increasing K takes place over a finite interval [0,K "],
with h{l’~0 for K >K!Y). This is best seen in Fig. 5,
which represents the curves dh!F(K)/dK =E'"(K,0)
—(3L —1)/2L for L=23,...,8 and K
€[0,0.36]. One clearly sees a jump in the slope of
h!"(K) from a finite value (~—1.2 for L=8) to 0.
Moreover, the intersections of the various curves provide
us with estimates of the critical values K!L). The latter
decrease with L and converge to a limiting value
K,~0.1.

In the thermodynamic picture, this means the ex-
istence of a critical value K, of the coupling K, such that
h(K.)=0 (i.e., —F(K,,0)=2K_), and thus 4.(K)=0 for
all K >K,.. In Fig. 4, we have represented in a dashed
line the curve h.(K) as obtained by extrapolating to
L= the values of h{'(K) at a fixed K. Like for our
numerical estimate of g, we obtain the value 4 .(K) as the
logarithm of the limit of the sequence

g (K)=exp(L+ 1A T(K) /expLhP(K) ,

extracted by the Aitken 8-2 algorithm. This direct extra-
polation confirms the emergence of a critical K, and pre-
dicts a value K, =0.11(1). From Fig. 5, it corresponds to
E(K_,0)=0, i.e., a vanishing nearest neighbor spin corre-
lation (o ;0; ) ~O0.

0.00
-0.50 |
2
é\u -1.00 +
=
=
-1.50 | :
l1s !
2.00  I— L 1 HE 1 1 1 1
000 005 010 015 020 025 030 035
K
FIG. 5. dh"(K)/dK=E'"(K,0)—(3L —1)/2L, for

L=2,3,...,8and K€[0,0.36].



V. PHASE DIAGRAM

Our results are summarized in Fig. 6, representing the
phase diagram of the system in the (K,k) plane. We ex-
tended the range of A and K to include real negative
values. The phase diagram is clearly symmetric under
h — —h, while a negative K simply corresponds to an an-
tiferromagnetic Ising coupling, which favorizes folding.
Three first-order transition lines h=h(K), —h. (K)
(K <K_), and h=0 (K >K_) separate the three phases
M =0,%1. The line h (K) naturally extends to negative
K through Eq. (3.1). For large negative K, the M =0
phase is dominated by the two pure antiferromagnetic
states with alternating spins, with free energy
—F(K,0)——3K; hence h (K)~—3K for K—— .
We expect nothing special to occur at K =0 for the line
h.(K), where we have the exact result
h.(0)=Ing=0.189.... Instead our study predicts the
existence of a triple point (K_,0) at the positive value
K, =0.11(1). For the physical zero magnetic field mem-
brane problem, this corresponds to a first-order folding

transition at K =K_. Within the domain M =0, the sys-

tem is insensitive to the magnetic field . Along the con-
stant magnetic field dashed line of Fig. 6, with K increas-

ing from — «, the free energy of the system is —F(K,0)

until one reaches the critical line K =K (h) [inverse of

h=h.(K)], beyond which the free energy becomes the
linear function —F(K,h)=3K +h.
As usual for first-order transitions in the transfer ma-

+0.3

0.2 03
K
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029 || - exp(h)=1.1 |
—— exp(h)=1.2
a
3
a
JBoas TSk 7 S
e, o=
&
0.21 L L
0.00 0.05 0.10

K

FIG. 7. Plot in dashed lines of (1/2L)lnk£,{;’,,s“b(K ,h) for
L=6, exp(h)=1.1 (short dashes), and exp(h)=1.2 (long
dashes), and K €[0,0.15]. The solid lines represent the free en-
ergies —F® (K,h)=h+17K /12, and —F{(K,0). The cross-
ings occur at the critical couplings K/%(logl.2)=~0.05 and
K{®(Inl.1)=0.10.

trix formalism, this change of behavior results from the
crossing of the two largest eigenvalues A ,, and Ay, of
the transfer matrix 7 in the thermodynamic limit.
Indeed this is already visible for finite L, as exemplified in
Fig. 7, where we plot for L =6 (in dashed lines) the two
leading eigenvalues of T'®(K,h) for two different posi-
tive values of A in the vicinity of the corresponding criti-
cal points K!®(h). One clearly sees the exchange of the

two eigenvalues with

_F:)L)
, K<K!M(h)
1 )"max _F(IL)
2L A'sub B _F(IL)
—FWw [ K>KL(,L)(h) s
0

1.5 T T T T T T T
| St
1 ’
| ;
] ]
I ;
1.0 | ) ;
1 1
I ;
1 ]
~_~ 1 ’l
2 ]
0.5 1 H
e ' ;
= ! ; exp(h)=1.0
I i
S exp(h)=1.1
00 ———- exp(h)=1.2 7
]

-0.5 1 1 1 L 1 L 1
000 005 010 015 020 025 030 035

FIG. 6. Phase diagram in the (K,A) plane. Three first-order K

lines h =h.(K), —h.(K) (K <K_), and h=0 (K > K_.) separate

the three phases M'=0,+1 and meet at the triple point (K_,0). FIG. 8. Finite (dashed) and zero (solid) field energy versus Is-
The dashed line represents a constant magnetic field line, which ing coupling, for L =6 and exp(h)=1.2,1.1, 1, respectively, and
crosses the transition line h =h.(K) at a critical value K,(h). K €[0,0.36].
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FIG. 9. Specific heat C{*(K,h) for exp(h)=1 (thick solid
line), 1.1, and 1.2 (dashed lines) and C!(K,0) for
L=2,3,...,8,for KE[0,0.36].

= —F'I)(K,0) denote, respectively, the free energy in the
phase with magnetization M =1 and 0, represented for
L =6 in Fig. 7 in solid lines.

The change of behavior of the free energy along a
constant-field line at K.(4 ) is confirmed at finite L by the
plot of its derivative with respect to K, the Ising energy
EL(K h)= ~-8KF”“)(K,h ), which we represent in Fig. 8
for exp(h)=1,1.1,1.2 and L =6. We clearly see that the
finite field energies E‘®'(K, /) exactly match the zero field
energy E‘'®(K,0) before K reaches the critical value
K!®(h), where they abruptly jump (the more so for
higher £ ) to the asymptotic value (3X6—1)/(2X6)= 1.

The corresponding specific heat
CP(K,h)=3xE'"(K,h) is represented in Fig. 9 for
L=6 in dashed [exp(h)=1.1,1.2] and thick solid
[exp(h)=1] lines. As expected, the finite field specific
heats match the zero field specific heat until K reaches
K/'%(h), where they exhibit a 8-function peak before im-
mediately (the more so for higher 4) reaching a zero
value. The peak for A=0 seems to be qualitatively
different from that for finite A. To see how this peak de-
velops as the size L grows, we have represented on the
same figure the zero field specific heat for L =2,3,...,8
in thin solid lines. The smoothness of the curves might
be the sign of some extra divergence on top of the &-
function in the thermodynamic specific heat C,(K,0),
possibly of the form C,(K,0)~(K,—K)™ ¢ when K ap-
proaches the triple point from below. Our data do not al-
low us at present to reach any conclusion on this point.

VI. DISCUSSION

The main result of this paper is the phase diagram of
Fig. 6. In particular, the existence of a triple point
(K=K_,>0, h=0) at the boundary of the three phases
with magnetization M =0, +1 is a nontrivial outcome of
our study. It is interesting to note that a very similar pic-
ture can be obtained exactly in the case of the folding of
the square lattice. An exact solution can be obtained for
instance by using a transfer matrix that is diagonal in
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terms of folded line variables. As already noted in [6],
the thermodynamic entropy of folding —F,.(0,0) of
the square lattice vanishes due to very strong constraint
that for this particular lattice, folds must propagate along
straight lines all the way through the lattice. A folded
state of the square lattice is entirely specified by the data
of its folded horizontal and vertical lines. For a square
lattice of size L X L, this leads to a free energy per square
— Fyquare(0,0)=lim; _, ,(1/L?) In4£=0, as announced.
Like in the triangular case, the square lattice folding
problem is easily transformed into a (face) square lattice
Ising spin system, with the local constraint that there are
exactly 0, 2, or 4 spins up around each vertex. The zero
field thermodynamic free energy —F,.(K,0) per
square at an arbitrary value of the reduced Ising coupling
K is easily obtained as follows: at K =0, it vanishes; for
K — 0, it tends to the flat state value 2K; for K — — o,
it tends to the completely folded state value —2K. From
the usual convexity property of —F, we conclude that
necessarily

_quuare(K)O):2|K| .

The free energy appears here simply as a competition be-
tween the contribution of the completely folded state
—Fy(K,0)=—2K and that of the flat state
—F(K,0)=2K, with —F . (K,0)=max(—F,, —F).
Analogously, in the presence of a finite positive magnetic
field A, the free energy results from the competition be-
tween the contribution of the completely folded state, in-
sensitive to A, —Fy(K,h )= —2K, and that of the flat (all
spins up) state —F,(K,h)=2K +h. This yields

_quuare(K)h )=max| _FO(K’h ), —F(K,h )]

—2K, K<—h/4
T |12K+h, K>—h/4.

Consequently, the system undergoes a first-order phase
transition from the completely folded state with magneti-
zation M =0 to the flat state with M =1, along the criti-
cal line

hc,square(K )=2( |K* —-K),

the square lattice analogue of Eq. (3.1).

As shown in the resulting phase diagram of Fig. 10, the
qualitative behavior of the system is very similar to the
triangular case discussed above, corroborating a posteriori
the diagram of Fig. 6. A crucial difference is that the tri-
ple point now sits at the origin of the (K,4) plane, i.e.,
K, square=0. Consequently, no folding transition occurs
at positive K for the square lattice, which remains flat.
That K, is positive for the triangular lattice follows
directly from the positivity of the entropy at K =0, which
makes the triangular case more interesting.

A surprising outcome of our study of the triangular
lattice case is the absence of intermediate magnetization
states between M =0 and M=1. Denoting by
—F, (K,0) the contribution of the configurations with
magnetization M =m to the zero field free energy, a
sufficient condition for having no intermediate magneti-
zation is that the critical field 4, (K) governing the
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FIG. 10. Phase diagram of the square lattice folding prob-
lem.

transition between the M =0 and a hypothetical M =m
phase be always larger than h,(K)=h.(K), for K <K
namely

c?

—F(K,0)+F,,(K,0)
m
>h,(K)=—F(K,0)+3K ,

hom (K)=

with m <1. The freezing of the system for K > K, in,
say, the M =1 phase is probably a consequence of the in-
trinsically nonlocal character of the folding constraint,
preventing the creation of bounded domains of down
spins inside a ground state of up spins.

The stability of the M =0 phase at positive K in the
presence of a magnetic field 2 <A (K) is more surprising.
A way of refining the study of the M =0 phase is to intro-
duce a new order parameter, the staggered magnetization

1
Mst=.1~v_< > ’
t

where the sum alternates between triangles pointing up
and down in the lattice. One can then distinguish be-
tween the disordered folded state M =0 and a compact-
ly ordered folded state M >0, where the triangles start
to pile up. In the presence of a staggered magnetic field,
we expect the system to behave qualitatively like an anti-
ferromagnetic (face) triangular Ising model, with a con-
tinuous “piling” transition at some negative value of the
coupling K, , <0. Indeed, as explained in [7], the situa-
tion is very different when we start to unfold the antifer-
romagnetic M, =1 ground state than when we try to fold
the ferromagnetic M =1 one. Local deformations of the
completely folded ground state are allowed and enable a
“low temperature” (large negative K ) expansion in terms
of a gas of loops of unfolded bonds, quite similar to the
standard loop gas expansion of the Ising model. As far as
numerical results are concerned, we only see in Fig. 11
the slow emergence of a peak in the specific heat at a

20,—30;
A v

4425
0.8 -0.6 0.4 0.2 0.0
K
FIG. 11. Specific heat C{"(K,0) for L=4,6,8, and
K€[—0.8,0].

value K. ,=~—0.3. At K=0, an exact solution [8] pre-
dicts a disordered folded state M =0 with finite stag-
gered susceptibility.

VII. CONCLUSION

In this paper, we have derived the phase diagram of
the constrained spin system describing the folding of the
triangular lattice. In the presence of a magnetic field, we
found a critical line along which a first-order transition
takes place between a zero magnetization phase and the
M=1 pure state, terminating at a triple point
(K=K_.,h=0). This transition persists at zero magnetic
field, now driven by the coupling K, and can be interpret-
ed as a first-order folding transition between a folding
phase and the completely flat state of the lattice. The
latter is reminiscent of the crumpling transition of teth-
ered membranes [1-4], which is, however, continuous
rather than first order.

The phase diagrams of Fig. 6 and 10 are very far from
the usual unconstrained Ising ones. It would be interest-
ing to investigate the role of the local folding constraint
by applying it gradually to the Ising model and by look-
ing at the deformation of the phase diagram. In this
framework, one should be able to follow the evolution of
the system from a continuous second-order phase transi-
tion to a first-order one. Note that in the square case
both the Ising and constrained models are special cases of
the eight vertex model in an electric field, yet to be
solved.
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