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Numerical study of a Seld theory for directed percolation
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A numerical method is devised for the study of stochastic partial differential equations describing
directed percolation, the contact process, and other models with a continuous transition to an absorbing
state. Owing to the heightened sensitivity to fluctuations attending multiplicative noise in the vicinity of
an absorbing state, a useful method requires discretization of the field variable as well as of space and
time. When applied to the field theory for directed percolation in 1+1 dimensions, the method yields
critical exponents which compare well against accepted values.
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I. INTRODUCTION

The study of critical phenomena in simple nonequili-
brium lattice models has reached the stage where many
transitions can be assigned to one of a small set of univer-
sality classes. For continuous transitions into an absorb-
ing state, a very high degree of universality has been
found, with many examples supporting the prediction
[1—3] that such transitions belong generically to the class
of directed percolation (DP). Examples include the basic
contact process and its variants [4-8], surface reaction
models [9,3,10], branching and annihilating random
walks with odd parity [11—13], assorted multiparticle
processes. [14-17],and even models with multiple absorb-
ing configurations [18—22]. Each is an interacting parti-
cle system characterized by rules for elementary process-
es such as creation, annihilation, and difFusion. Looking
at the rules, there is little to tell us what sort of critical
behavior to expect, nor why it is universal. Understand-
ing of universality emerges instead from the study of
coarse-grained formulations which capture the large-
scale features essential to critical behavior. In such field
theories the microscopic picture of particles on a lattice is
replaced by a set of densities which evolve via stochastic
partial differential equations (SPDEs). At this level,
renormalization-group methods may be applied
[1,23—26]. A basis for universality appears if one can
show that the continuum descriptions for various models
difFer only by irrelevant terms. At present, however,
there are many more models known (on the basis of nu-

merical work —simulations and/or series analysis) to
have DP critical behavior than have been studied using
field theory. Useful continuum descriptions of multipar-
ticle processes, for example, have yet to be devised
[2,27,28].

It is of interest, therefore, to study SPDEs for none-
quilibrium systems and to compare their behavior with
the lattice models they are supposed to describe. But
solving a nonlinear SPDE is not generally feasible by ana-
lytic means and so numerical methods must be sought
[30]. Numerical integration has been applied to several
SPDEs, for example, the time-dependent Ginzburg-
Landau equation describing phase separation [31—33]

and the Kardar-Parisi-Zhang equation [34-36]. In prob-
lems with an absorbing state, however, the usual ap-
proach does not yield useful results. A method for deal-
ing with such systems is proposed in the present work
and is used to study the field theory for the contact pro-
cess.

The outline is as follows. In Sec. II I describe the origi-
nal model and the corresponding SPDE. The integration
scheme is introduced in Sec. III and results are presented
in Sec. IV. A discussion and summary follow in Sec. V.

II. LA.rrICE MODEL AND FIELD THEORY

In the contact process (CP) [4], each site of the d-
dimensional cubic lattice X either is vacant or is occu-
pied by a particle. The transition rules are easily stated:
a vacant site with n occupied nearest neighbors becomes
occupied at rate An/2d an, d particles disappear at a unit
rate, independent of their surroundings. Evidently the
vacuum is absorbing; the active phase, characterized by a
nonzero stationary particle density p, exists only for
sufficiently large ~, (and only, strictly speaking, in the
infinite-volume limit). There is a continuous transition
from the vacuum to the active phase at a critical value A,,
[37]. (In one dimension A,,=3.2978 [38,39].) The transi-
tion belongs to the universality class of directed percola-
tion. (Note that the d-dimensional CP corresponds to
directed percolation in d+ 1 diinensions. )

Janssen [1] proposed a continuum description of the
CP and allied models:

ap(x, t) =ap(x, t) —bp —cp + +DV p+g(x, t) .
Bt

p(x, t) ~0 is the coarse-grained particle density; the el-
lipsis represents terms of higher order in p. i(x, t) is a
Gaussian noise, which respects the absorbing state (p=0}
by virtue of the covariance:

'1(x, t)1(x', t'}~p(x, t)5(x —x')5(t —t') .

This form can be justified by coarse graining the CP, in
the limit of large bin size. Let n,. be the number of parti-
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III. NUMERICAL METHOD

Can Eq. (1) be integrated numerically? To begin, we
discretize space, obtaining a set of Langevin equations
which in one dimension take the form

dp(), t) =ap(i, t) bp +DV p+g—(i,t), (3)

cles in bin i and b, n; the change in this number during a
brief interval. The latter has expectation
bn; ~ an; +O(n; ) (with a ~A, —1) and under the cus-
tomary assumption of Poissonian statistics for reaction
systems, its variance equals hn;. For sufficiently large
bins we may approximate hn; by a Gaussian. Thus, since
reactions in different bins are uncorrelated, coarse grain-
ing the original model leads to a stochastic field theory
with Gaussian noise whose autocorrelation is proportion-
al to the local density. (There is also noise due to the
fluctuating diffusive current. But diffusive noise does not
affect the critical behavior in the present case and so I
shall ignore it in the interest of simplicity. ) Since Eq. (1}
involves multiplicative noise, one must decide upon an in-
terpretation [29]. As shown in Sec. III, the Ito interpre-
tation of Eq. (1) is demanded by physical considerations.

In mean-field approximation [the spatially uniform,
noise-free version of Eq. (1}],the vacuum becomes unsta-
ble when a =0 and for a, b &0 there is an active state.
When fluctuations are taken into account, the critical
point shifts to a, &0 and the critical behavior is nonclas-
sical. For example, the stationary density in the CP
scales as p ~(a —a, )~, with P=0.277 in one dimension.
(In mean-field theory P=1.) Field-theoretic analysis
[1,24] reveals that the cubic and higher-order terms are
irrelevant to critical behavior as long as b &0. (Such
terms are therefore ignored in what follows. ) The situa-
tion is analogous to that in equilibrium critical phenome-
na, where the Ising universality class is generic for mod-
els with a scalar order parameter and short-range interac-
tions.

Without noise, Eq. (1}is a reaction-diffusion equation,
which exhibits a mean-field critical point. It is perhaps
surprising that driving a reaction-diffusion equation with
multiplicative noise leads to the proper exponents. Of
course the condition expressed in Eq. (2) is crucial in this
regard. On the other hand, it is not clear whether adding
a properly scaled noise to the reaction diffusion equation
always yields a useful field theory [2,27].

Further unanswered questions are whether solutions in
Eq. (1) exist and, if so, whether they reproduce the phe-
nomenology of the lattice models they are supposed to
describe. (For example: Can the field actually fluctuate
into the vacuum?) Such issues never arise in
renormalization-group analyses, where the SPDE merely
serves as a basis for perturbation theory, which proceeds
by expanding the formal solution. Since the exponents
emerging from the e-expansion analysis of Eq. (1) are in
good agreement with series and simulation results, there
is no reason to doubt its validity in this context. The
present work is concerned with nonperturbative (numeri-
cal) solutions to a discretized version of the SPDE.

dp=[ap bp + ,']dt+V pd—g(t) . — (6)

It includes a constant source term, so that p=0 is no
longer absorbing. Clearly this is not the problem we be-
gan with. Hence Eqs. (1) and (5) should be taken in the
Ito sense.

Integrating Eq. (5) we have

hp=[ap bp ]bt+~pb, W, — (7)

where b 8'=M5t Y and Y is Gaussian with zero mean
and unit variance. Now to prevent p+hp from going
negative, I propose to discretize the density by setting

where i is a site index (for convenience we assume a
spacing hx = 1 in the discretization) and
7 p(i, t }=—p(i+ 1,t)+p(i —l, t }—2p(i, t} is the lattice La-
placian operator. The noise term satisfies
g(i, t)q(j, t')=I p(i, t)5;f5(t t—') .(I is related to the
growth rate A. in the CP. We may regard it as constant
over the range of parameter values of interest here and
set I =1 from here on}. Applying the Cauchy-Euler
method to these equations [29], we find

p(i, t+ht ) p(i,—t) = [ap(i, t) b—p(i, t) +D& p(i, t)]Et

+v'p(i, t)ht Y(i,t),
where the Y(i, t) are independent Gaussians with zero
mean and unit variance. Equation (4) is similar to the set
of stochastic diflerential equations (SDEs) derived in Ref.
[30] from discretization of a SPDE. The latter scheme,
however, is not useful here, due to the dominance of the
noise in the vicinity of the critical point. Indeed, once we
discretize time there is nothing to prevent p(i, t) becom-
ing negative. We might attempt to remedy this by stipu-
lating that whenever integration yields p(i, t) & 0, the den-
sity at that site be set to zero. But this artifice is not
without drawbacks. We are interested in the critical re-
gion, where p is small. If the typical magnitude of the
first term on the right-hand side is e, the noise term is of
order ~e and so overwhelms the deterministic part of the
evolution. In the original equation, the cumulative effect
of the systematic term is not obliterated by the noise,
which has zero mean. But this is no longer so if we trun-
cate the noise in an unsymmetric manner. In simulations
using the max[p, 0] rule, the process never reaches the
vacuum (even for a & 0). Regions of density zero are rap-
idly repopulated by nearby active sites. It appears, then,
that straightforward numerical integration of Eq. (1) is
not useful.

Consider, for the moment, the Ito SDE (a Malthus-
Verhulst process), with the same local terms as Eq. (1):

dp=[ap bp ]dt+~—pdg(t),

with d g(t) =dt Equation (5. }describes Brownian motion
in a potential which grows proportional to p for large p
and has a minimum (for a, b &0) at p=alb. There is an
absorbing boundary at p=0, corresponding to the vacu-
um in the CP. Now suppose we had interpreted Eqs. (1)
and (5) as Stratonouich equations. The Ito SDE corre-
sponding to the Stratonovich interpretation of Eq. (5) is
[29]
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p=npm;„(n ~0) and at the same time to truncate Y
symmetrically by restricting its magnitude so that
I YI ~ Y „W. e require Y,„ht ~ Qp, „to avoid neg-
ative densities. This can be achieved in a variety of ways,
for example, be setting

max (8)

and

(1nht )'b, t
pmin (9)

Equations (8) and (9) represent but one of an infinity of
choices. Determining which is optimal for a specific
problem is left as a subject for future work. I take
p;„ht in hopes of minimizing the effect of a discretized
density. The relatively slow growth of Y,„poses no
essential dilffculty. (Note that for b,t=10 we have
Y,„=3.07, about three standard deviations. ) Indeed, all
noise distributions having zero mean and finite variance
should yield qualitatively similar behavior. If one were
interested solely in universal properties, the Gaussian
could be replaced with a uniform distribution in the in-
terest of computational efficiency.

Having discretized p, we can define an integer process
by exploiting the invariance of Eq. (5}under the rescaling

b~b'=ah, (10)

p~p a

(12)

If we choose a=p;„, then p' is restricted to integers
0. Discretization (in time} of Eq. (5} leads to a noise

term Y&pht; in the rescaled equation it becomes
Y&p'ht/a. (Y is a zero-mean, unit-variance Gaussian,
truncated as described above. )

We now have a discretized version of Eq. (5) in which
positivity and zero-mean noise are ensured at the cost of
a "quantized" density. Since p' can change only by in-
teger steps, it is likely (especially for small p') that many
increments of the density will be rejected for being of less
than unit magnitude. It therefore seems advisable to in-
troduce a continuous variable 1b, which accumulates the
increments in density at each time step. Whenever
I/I ~ 1, the integer part is transferred to p'.

In summary, the numerical scheme for Eq. (5) is as fol-
lows. At each time step /~/+ A,f, where

and

bQ=(ap' b'p' )ht+ Y&p'h—tla. , (13)

(15)

where square brackets denote the integer part. (Initially,

g is zero. ) Equations (13)—(15} may be viewed as a
Malthus-Verhulst process in which the population
change hn =hp' is approximated by a suitably truncated
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FIG. 1. Evolution of the
SDE, Eq. (5), for a = 1.5
ht=2X10 4; o, At=10 4.

(Et=10 ').

mean density in the discretized
and b=1. G, At=10 ', +,
The inset shows a typical trial

Gaussian random variable. Simulations show the popula-
tion fiuctuating around a quasisteady value p, =a /b and

eventually becoming trapped at zero (see the inset of Fig.
1}. In Fig. 1 the mean density for a sample of 10 trials is

plotted for several time increments. (The model parame-
ters are a =1.5 and b =1;p=1.6 initially. ) The density
decays exponentially, with relaxation times 12.9, 9.7, and
9.8 for time increments 10,2X 10, and 10, respec-
tively. This is in good agreement with the mean first pas-
sage time 10.3 for hitting p=0. [The latter is obtained
from the Fokker-Planck equation corresponding to Eq.
(5) [29].]

Our treatment of the SPDE, Eq. (1), closely parallels
that of Eq. (5). Discretization and rescaling of Eq. (3)
yields a set of difusively coupled Malthus-Verhulst pro-
cesses

and

b,P; =(ap,' b'p,' +DU—p,')b, t+ Y;(/ p,'b, t/a (16)

(18)

IV. RESULTS

I applied the scheme detailed above to systems of
severa1 hundred to several thousand sites in order to

[The rescaling of Eqs. (10)-(12} does not affect the
diffusion coefficient. ] We have converted the original
SPDE into a lattice of discrete stochastic processes which
approaches the continuum model as ht and hx ~0.

A final technical point is that when integrating the
coupled equations, the three parts of the evolution—
deterministic on-site contributions, the noise term, and
diffusion —are implemented separately, in turn (over the
entire lattice), at each step. (Transfer from g to p' is
made following each of the three substeps. ) Unphysical
events such as a site becoming empty and subsequently
acting as a source for its neighbor, are eliminated by this
measure.
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FIG. 2. Steady state density versus a in simulations of the
discretized SPDE, Eq. (15}, with b=1 and lit=10 ~. Solid
squares, D = 1; open squares, D = 10.

study the critical behavior of Eq. (1). To begin, I de-
scribed results for the steady state, obtained in a series of
long runs (of duration tf =10 ), on lattices of 500-2000
sites, using a time step ht =10 . The coeScient b was
set to unity; diffusion rates D = 1 and 10 were considered.
The stationary density p(a) (expressed in its original
units, prior to rescaling), is shown in Fig. 2. The data
suggest a continuous transition to the vacuum at a criti-
cal value a, (=0.77 and 0.36 for D =1 and 10, respective-
ly). To estimate the order-parameter exponent P, one
must estimate the critical value a, and then plot the den-
sity versus b, =a —a, on log scales. For D =1, a reason-
ably linear plot (for small b, ) is obtained when we choose
a, =0.769 (see Fig. 3). A least-squares linear fit to the
five points nearest a, yields a slope P=0.295, in fair
agreement with P=0.277 for the one-dimensional CP.
As is often the case, the slope depends quite sensitively
upon one's estimate of the critical point and so this
analysis is not very precise. (Taking a, =0.765, for exam-
ple, one finds P=0.39.) The slope (=0.45) obtained from
the D =10 data suggests a more mean-field-like behavior
for faster diffusion. Indeed, a, appears to shift towards

and

P(r)~t ',
n(r)~rv,

R'(r) ~t'.

(19)

(20}

(21)

I studied spreading in simulations beginning with a lo-
calized density [typically, p(i, 0)=p;„over the 10-20
sites nearest the origin and p(i 0)=0 elsewhere) for
D=b=1. Time increments of 10 and 10 were em-
ployed, as ht =10 resulted in excessive run times. The
trials (on the order of 10 at each a value of interest} ran
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its mean-field 0 with increasing D. For larger D a cross-
over from mean-field-like to DP-like behavior presum-
ably occurs very near the critical point.

In order to derive quantitative results on critical
behavior, I turn to the "time-dependent" method [2,40],
in which one studies the dynamics of spreading from a
distribution localized near x =0. The quantities of in-
terest are the survival probability P (t), mean total densi-
ty n (t), and mean-square spread R (t), for a large sample
of independent trials, a11 with the same initial condition.
P(t) denotes the probability of not being in the vacuum
state at time t, n (t) is the sum of the site densities (aver-
aged over all trials, including those which
have reached the vacuum by time t}, and
R (t)—:g j p(j, t)/n(t). In a subcritical system (a (a, ),
we expect P and n to decay exponentially, while R (t}~ t
For a &a„P approaches a nonzero limiting value
n (t) = t (in d dimensions) and R (t) =t, as a fraction of
trials survive indefinitely and spread at finite speed into
the surrounding vacuum. At the critical point there is no
characteristic time scale for relaxation and the evolution
is characterized by nontrivial power laws

2-
~ o ~

~ tO ~ ~
~ ~O

~ oyIO
~0~ 1

~0
~ ~

~ ~ ~ ON
~ ~ ~ 00

I i I I I i I

-2
-6

0 2 4

In t

6 8

FIG. 3. The data of Fig. 2 (D =1) plotted versus 5=a —a„
assuming a, =0.769. The straight line, fitted to the five points
nearest a„has a slope 0.295.

FIG. 4. Time dependence of the suvival probability P, total
density n, and root-mean-square spread x, for a =a, =0.721,
6 =D =1, and Et=10 . The straight lines are least-squares
fits (for slopes see Table I).
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to a inaximum time of 4000 (1000 in the studies employ-
ing ht = 10 } and were performed on lattices of
500-900 sites, sufBciently large that the active region did
not reach the boundaries.

Using the criterion of asymptotic power laws at the
critical point, I estimate a, =0.7210(5) for bt =10 and

a, =0.568(1) for ht =10 . A plausible explanation for
the increase in a„as ht is reduced, is that as p;„be-
comes smaller and the truncation of the noise less severe,
Suctuations to zero density occur more readily. When
plotted versus ht '~, the data for a, suggest a finite
limiting value a, (0)=0.8, with a, (b, t ) =a, (0)
+constX~ht. The present very limited data (three
points for D =b =1}are of course insuScient to permit a
firm conclusion in this regard.

Figures 4 and 5 show the evolution of the survival
probability, mean population, and root-mean-square
spread [x,=—+R (t)] for Et=10 and 10, respec-
tively. In the latter case data from slightly off-critical
values are also plotted, which show some curvature.
From least-squares fits to the asymptotic linear region in
these log-log plots, I derive the exponent estimates listed

TABLE I. Critical exponents from numerical integration of
the SPDE.

0.1597(3)'
directed percolation

0.317(2) 1.272(7)

0.15(1)
present work ht =10

0.28(1) 1.18(2)

0.159(6)

'Reference [38].
Reference [41].

present work Et=10 '
0.326(10) 1.23(2)

In t

FIG. 5. Same as Fig. 4, but for ht =10 '. Dots, a =0.565;
open squares, a =0.568; circles, a =0.570.

FIG. 6. Average density pro51es for D =8 = 1,
a =a, =0.721, and ht = 10 '. From narrowest to broadest:
t =0, 500, 1000, and 4000.

in Table I. Uncertainties, given in parentheses, are sub-
jective estimates based on the spread of exponent values
found in simulations with a =a, . While not of high pre-
cision, the exponents found here compare rather well
against the known DP values. Derivation of truly precise
results will require longer runs and larger samples, so
that a, can be fixed more reliably, and short-time correc-
tions to scaling can be eHminated by means of a local-
slope analysis.

Figure 6 shows the evolution of the mean density
profile in the critical system (b, t =10 and a =0.721).
Following an early buildup in the central region, the
profile broadens and becomes more sparse. An interest-
ing aspect of the last-time profile, which merits further
study, is its large sIiread, compared to a Gaussian distri-
bution. (That is, x" )3x .)

V. DISCUSSION

We have seen that some care is required in integrating
a field theory with multiplicative noise and an absorbing
state. To avoid negative densities and complete domi-
nance of noise, the SPDE must be regularized in some
fashion. The present work shows discretization of the
field variable to be a suitable method for tempering the
equation. Similar conclusions apply to the associated
SDE. In fact, the method devised here yields an accurate
relaxation time for the latter problem.

Despite discretization of the density, the present ap-
proach retains the essential features of a continuum
description. The density approximates a continuous vari-
able and spatial coupling occurs solely through difFusion.
Moreover, creation and annihilation are expressed here in
a naive mean-field-like manner (they are represented, that
is, by terms proportional to p and p ). Nontrivial critical
behavior arises by virtue of properly scaled, multiplica-
tive noise. The exponent values derived from the discre-
tized SPDE are in rather good agreement with accepted
values for DP in 1+1 dimensions, arguing for the relia-
bility of the method. The numerical scheme proposed in
this work may therefore be of value in testing candidate
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theories for models which have so far resisted analysis in
continuum representation.
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