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A quantum theory of irreversible thermodynamics is developed for a system of dilute quantum parti-
cles in terms of an irreversible kinetic equation for the density matrix, which is assumed to have a struc-
ture similar to the Boltzmann-Nordheim-Uehling-Uhlenbeck equation. The local balance equations for
conserved variables (mass, momentum, and energy) and the evolution equations for nonconserved vari-
ables are derived directly from the density matrix. They have the same mathematical structures as the
corresponding classical equations. It is shown that the local entropy differential consists of a compensa-
tion differential and an energy dissipation term that depends on the path of irreversible processes in the
macroscopic variable space, as in the case of the corresponding classical system. The statistical
definition of temperature for nonequilibrium systems and its operational meaning are discussed in detail.
The extended hydrodynamic equations are presented, which attend the theory of irreversible processes
and are consistent with the H theorem. Application of the theory is briefly discussed.

PACS number(s): 05.30.—d, 05.20.Dd, 05.70.Ln
I. INTRODUCTION

The theories of transport phenomena in macroscopic
systems of gases and liquids are mostly formulated in the
phase space within the framework of classical mechanics,
but transport phenomena in semiconductors and small
quantum devices at low temperatures usually require
quantum mechanical treatments. When faced with such
a problem, one either relies on the density matrix ap-
proach, wherein the density matrix is calculated quantum
mechanically by some approximate means [1], or uses the
Wigner distribution function or its equivalent, semiclassi-
cal distribution functions [2,3], to calculate the desired
transport properties. Furthermore, despite the fact that
macroscopic phenomena, either quantum or classical,
must be subjected to the requirements of the thermo-
dynamic laws, attention is not usually paid to these re-
quirements when quantum transport properties are calcu-
lated in such theories. If transport processes occur near
equilibrium so that a linear theory is adequate, such re-
quirements are usually met even if precautionary mea-
sures are not taken. However, if the processes occur far
removed from the linear regime as in many cases of phe-
nomena in semiconductors and small quantum devices at
high field gradients, the aforementioned thermodynamic
requirements are not automatically satisfied and a ther-
modynamically consistent theory of nonlinear transport
processes will not be ensured unless special care is exer-
cised to satisfy the requirements of the thermodynamic
laws. The kind of theory we are alluding to here has been
developed for transport phenomena in classical systems
[3] that can be sufficiently well described within the
framework of classical mechanics. In this paper, we re-
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move the restriction of classical mechanics and extend
the classical theory into the quantum domain when the
density of the system is sufficiently low so that the statist-
ical correlations arising from the interactions between the
particles are negligible. On this ground, we will assume
that the singlet density matrices are sufficient for a sta-
tistical description of the system (e.g., consisting of dilute
quantum gases or charges or phonons or photons, etc.)
and that the singlet distribution functions obey a set of ir-
reversible (time-reversal symmetry breaking) kinetic
equations. These kinetic equations may be approximately
justified from the quantum Liouville (von Neumann)
equation as traditionally done in statistical mechanics or
simply postulated as is done, for example, in the quantum
semigroup theory [4] of irreversible processes. In either
one of these approaches, it is necessary to formulate a
theory of transport processes in a way consistent with the
thermodynamic laws and the end results would be the
same. Here we will take an approach akin to the quan-
tum semigroup theory, but with the irreversibility im-
posed, as a postulate, on the time-reversal symmetry
breaking collision term in the kinetic equations. In this
paper, we show that a theory of irreversible thermo-
dynamics can be erected with the kinetic equations postu-
lated. A theory of transport processes will be presented
and applied to transport phenomena in semiconductors in
a sequel.

In Sec. IT we present kinetic equations for density ma-
trices together with definitions of necessary symbols for
discussions in the subsequent sections. The entropy will
be defined statistically and its time derivative will be cal-
culated by means of the kinetic equations postulated. In
Sec. III various balance equations for mass, mass frac-
tions, momentum, and internal energy will be derived in
local form. They will be shown to be in the same form as
in the classical theory. The evolution equations for the
nonconserved variables (fluxes) will be also derived from
the kinetic equations postulated together with the local
entropy balance equation derived. In Sec. IV discussions
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are given on the statistical definition of temperature for
quantum gases in equilibrium and nonequilibrium. On
the basis of the definition of temperature for nonequilibri-
um systems, differential forms will be derived for the en-
tropy. The results of this section provide the basis on
which to build the thermodynamics of irreversible pro-
cesses in the quantum fluids considered. In Sec. V a dis-
cussion is given on the form of transition probability to-
gether with a brief discussion on how to apply the theory
to study transport processes. Since the details of the
theory of transport processes will be followed up with ap-
plications to semiconductor problems, this part of discus-
sion will be brief. Concluding remarks are also given in
this section.

IL. KINETIC EQUATIONS

Let us denote the singlet density matrix for a particle
of species a in the system by f,. The system is assumed
to consist of » components. There are N, particles of
species @ in volume V. The global number density then is
N,/V and the total number density is N/V, where
N=N;+N,+ -+ +N,. If the density is sufficiently low,
the statistical correlations are negligible between the par-
ticles. Under this assumption, the density matrix for the
whole system consisting of the » components is given by

(2.1)

This system is assumed to be subjected to an external field
F, which is uniform in space at least over the distance of
interparticle interaction, but may change in time with a
characteristic frequency. The external force on a particle
of species a will be denoted by F,. The potential energy
operator corresponding to this force will be denoted by
B,. It will be assumed that this potential energy varies
very slowly over the range of interparticle interactions so
that it does not affect particle collisions. The Hamiltoni-
an operator H, for a particle of the species a thus may be
written as

H,=H’+3,, 2.2)
where HY is the kinetic energy operator for a particle of

species a:

H)=p2/2m, (2.3)
with p;=p,-p, and m, denoting the mass of species a.
This assumption should be taken with the understanding
that although the interparticle correlations are absent at
the statistical level so that the statistical correlation func-
tions are neglected on account of the density being low,
the particles collide with each other through interparticle
interaction forces at the few-particle dynamical level.
This few-particle dynamics is relevant to the collision
term in the kinetic equations presented later. The density
matrix f, is assumed to normalize to N,:

Trf,=N, , (2.4)

where Tr is taken over the states of a particle of the

4381

species a. The local number density of the species a is
then given by

Tr[8(r, —1)f,]=n, . (2.4)

Statistical averages of dynamical variables can be com-
puted by means of he density matrix introduced:

A,(r,t)=Tr[ A,8(r, —1)f,(1)]=( A, 8(r, —)f,(2)) ,
2.5

where A, is the microscopic expression for a dynamical
variable pertaining to a particle of the species a. The vec-
tor r, is the position vector of a particle of the species a
and r is the position vector in a suitable fixed coordinate
system. Henceforth, the delta function will be abbreviat-
ed as §, =8(r, —r).

In the quantum semigroup theory [4] of irreversible
processes the density matrix is assumed to obey a linear
kinetic equation, such as the quantum Pauli master equa-
tion, which is irreversible in the sense that the motion of
the system is associated with a unidirectional time flow,
and then consequences of such an equation are formally
examined. However, irreversible thermodynamics has
not been formulated therewith. We take up this subject
here with a nonlinear kinetic equation.

Such a linear evolution equation for the density matrix
is a special case of a class of kinetic equations with time-
reversal symmetry breaking built into them. A well-
known example for such a nonlinear evolution equation
would be the quantum version of the Boltzmann equa-
tion. This viewpoint toward the semigroup equations
suggests that one may assume a class of evolution equa-
tions, namely, kinetic equations, for the density matrix of
the system that satisfy a set of conditions such as the ex-
istence of conservation laws of mass, momentum, and en-
ergy in addition to the H theorem necessary for con-
structing the entropy for the system. In the past study
[3] in classical systems, it was found sufficient to assume a
classical kinetic equation meeting such conditions and
formulate a theory of irreversible processes. In such an
approach the precise form for the kinetic equation was
not required until transport processes were investigated
case by case, which then would require a more explicit
form for the collision term in the kinetic equation in
question. Thus the viewpoint taken for this approach to
macroscopic properties of the system is comparable to
the formal theory (i.e., analytical dynamics) of few-body
mechanics wherein either Newtonian equations of motion
or quantum equations of motion are assumed with an in-
teraction force replaceable with a suitable form, depend-
ing on the nature of the problem, and formal aspects of
the theory are studied. To elaborate on what is said here
in the case of irreversible thermodynamics, we may as-
sume that the density matrix f, obeys the irreversible
kinetic equation

3, f, —(if) "' [H,,f,1=R[f,], (2.6)

where [H,,f,] is a commutator with H, denoting the
Hamiltonian operator of a particle of species a and R[ f, ]
stands for the collision term whose collision invariants
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are mass, momentum, and energy and which breaks the
time-reversal symmetry and thus is responsible for the
kinetic equation (2.6) being irreversible, more specifically,
satisfying the H theorem. The first condition gives rise to
the conservation laws of mass, momentum, and energy
and the second condition ensures an H theorem to be
satisfied so that a theory of irreversible processes can be
constructed on it. This collision term is the replaceable
part of the evolution equation for f, mentioned earlier in
allusion to the Newtonian or quantum equations of
motion for few-particle dynamics. Explicit models for
the collision term should be constructed such that they
meet the aforementioned requirements on it and yield an
accurate interpretation of the experimental data on trans-
port properties of interest. Therefore, we regard the role
of the theory of transport processes as that of elucidating
the collision term in the kinetic equation in this ap-
proach. The point is, if the aim is to develop a formal
theory of irreversible thermodynamics, it is not necessary
to explicitly specify R[ f, ] except for the conditions men-
tioned earlier.

However, as a preparation for the future studies on
quantum transport properties in mind, we assume for
R[f,] the following Boltzmann-Nordheim-Uehling-
Uhlenbeck (BNUU) model [5-9] in this work:

§R[f 2 Tr (E)[f, fb(1+E f )(1+Ebfb)
b,a’,b
—f,f,(1+e, )1+, f,)]}, (2.7
where ¢, is 1 for bosons, —1 for fermions, and O for

Boltzmann particles, and W.$'=W'®(k k, |k,k}) is the
transition probability given in terms of suitably sym-
metrized scattering operators describing the collision
process from the initial state (k,,k,) to the final state
(k;k; ). Here k,, etc. denote wave number vectors. The
prime denotes the post-collision value of the parameter or
the quantity in question. The subscripts [e.g., (b,a’,b’)]
to Tr mean that the traces are to be taken over the quan-
tum states pertaining to the particles corresponding to
the subscripts. Here the subscripts a and b are used dual-
ly to denote both the species and the quantum state of the
particle involved. The density matrices in (2.7) are as-
sumed to be diagonal in coordinate representation,
namely, f,=f,(r,r)8(r—r’), etc. The transition proba-
bilities obey symmetry relations W.'=W, and
WSk, k, k. k},)=W (k. k; |k k,). The first relation is
for the symmetry with respect to interchange of particle
species and the second relation expresses the microscopic
reversibility of the collision events under the reversal of
the processes (k,,k,)—(k;,k}) to (k;,kj, )H(ka,kb) and
vice versa. These two symmetry properties of ws) are
sufficient for a thermodynamically consistent theory of ir-
reversible processes in dilute quantum systems as w1ll be
shown. More detailed forms will be required for W5’ for
elucidation of transport processes in comparison w1th ex-
periment, but since our main interest in this work is not
in transport processes, it is beyond the scope of this work
and therefore we defer it to a future work.

It is wuseful to observe that the factors
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(1+¢,f, )1+, f,) and (1+e,f,)(1+¢,f,) appearing
in (2.7) may be regarded as approximate forms for the
pair correlation functions for the quantum particles in
the post-collision and the pre-collision state, respectively.
Such particle correlations arise from the quantum effect,
namely, quantum attractions in the case of bosons and
quantum repulsions (Pauli exclusion principle) in the case
of fermions, inherent to quantum particles. Such correla-
tions are absent in the case of classical Boltzmann parti-
cles for which the doublet density matrix (distribution
function) is simply a product of two singlet density ma-
trices (distribution functions) in the low-density limit. In
this sense, a gas of quantum particles is not ideal in the
manner a gas of the Boltzmann particles is. Note in this
connection that the equations of state for quantum gases
[10] are not in the form of the ideal gas equation of state
holding for the Boltzmann gas. In fact, the quantum
gases have virial coefficients owing to the correlations
arising from the quantum mechanical effects.

It is easy to show that the BNUU form of the collision
term R[f,] satisfies the following general conditions,
mentioned earlier, that must be met by the collision in-
tegral of an irreversible kinetic equation.

(i) It is such that the conservation laws of mass,
momentum, and energy follow from the kinetic equation
(2.6). In other words, if A, stands for the quantum
mechanical operator for mass or momentum or energy,
then R[ f,] is such that A, is a collision invariant:

Tr( A R[f, D=( A, R[f,])=0 (2.8a)
or, in local form,
Tr{ A,8(r, R(f,1}=( A8, —1)R[f,])=0.
(2.8a")

(ii) The H theorem is satisfied by the kinetic equation
postulated. In the case of the collision integral given in
(2.7), this condition demands, and is fully met by, the in-
equality

—Tr{[Inf, —In(1+¢,f,) R, ]}

=Tr{ln(e, +f; DR[f,]} 20, (2.8b)

the equality holding at equilibrium only. Thus the equi-
librium solution faq to the kinetic equation (2.6) is

defined by

Tr{ln(e, +f;e; R[f, 1}=0. 2.9)

eq
We will return to this equation later and find out the ex-
plicit form for f, . It is shown in Appendix A that the

BNUU model satlsﬁes these conditions.

If the collision term is set equal to zero, then (2.6) be-
comes the Liouville—-von Neumann equation for the
singlet density matrix f,, which is nondissipative and
time-reversal invariant. The presence of the dissipative
and time-reversal symmetry breaking collision term in
the kinetic equation is essential for describing irreversible
processes in macroscopic systems and by postulating such
a kinetic equation we are elevating it to the status of a
fundamental evolution equation for mesoscopic descrip-
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tion of macroscopic systems. The question of the origin
of irreversibility therefore is not asked in this approach.
A principal aim of this work is to formulate a thermo-
dynamically consistent theory of macroscopic processes
for a class of quantum systems.

The H theorem, for R[f,] given in (2.7), motivates us
to define the entropy of the global system by the formula

S(t)=—kg 3 Tr[f,Inf, —e,(1+¢,f, )In(1+e,f,)] .
a

(2.10)

We remark that the term entropy used here does not
mean the entropy used by Clausius in the context of equi-
librium thermodynamics to which the entropy in (2.10)
reduces only at equilibrium. We simply tolerate this
overlapping usage of terms out of deference to the tradi-
tion in the kinetic theory of gases. We hope to rectify it
when the basic concepts of irreversible thermodynamics
are taken up for careful analysis elsewhere. In the mean-
time we will use the term as it is. The H theorem then is
expressed as the inequality

as .o

dt

To show that this theorem is satisfied by the kinetic
equation (2.6) with (2.7) satisfying condition (ii) on the
collision term, it is necessary to establish the evolution
equation for Inf, and In(1+¢,f,) since the density ma-
trix is a quantum operator. To this end, we quickly re-
view some of the mathematical identities for operators
and their time derivatives in quantum mechanics.

Let us consider two operators x and y which do not
commute. If operator z is such that

(2.11)

e*eY=e?, (2.12)
then

z=x+y+1[xyl+i[xylyl+ - . (2.13)
If the / nested commutators [[ - [[x,y],¥],...,¥]¥]

where the y’s appear / times within the commutators, are
abbreviated by {x,y}=[[ - [[x,y]ly],--.,y],y], then
we may write z in the form

1
—x4y+
=Xy ,§'11+1

{x,y} . (2.13)

In addition to this relation, the following relation will be
useful in our calculations:

e fyer=Yy —ll—'{y,x’} . (2.14)
1=0**
Applying this relation, we obtain
- ) - 1 d
X |g—" |pX= 1 9 1
yax e Z ’ yax , X ] (2.15)

Since {[y(3/0x)],x/}={y,x' "1} for 12>1, {[y(3/3x)],
x°} =0, and {y,x°} =y, we find
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9
yax

| _ e*—1
w=zwmﬂw=p——y
| !

=1 X

e—x

(2.16)

By using the identity {{y,x'},x™}={y,x'*™}], we easily
find

(2.17)

The following lemma due to Magnus [11] holds.

Let P and Q such that PQ=1 and {y,P}=z. Then,
y=1{2,Q} and vice versa.
The aforementioned mathematical identities are useful in
the following calculations.

Let the operator ¥ be defined such that

f,=exp(F) .

Then, the evolution equation for  is obtained by using
the identities given earlier. First, we note

9 — |98 93
ot exp() ot OF

(2.18)

exp(F)

_ |98 1—exp(—F)
YR 3 ]exp(%)

=(i#)"[H,,f,]+R[f,] . (2.19)

Applying the Magnus lemma to this equation, we obtain

ﬁexp({})=

ot —exp(—gF)

(fﬁ)“[H,,,f,,],l—%—— ’

+R[f,],

&

That is, written in terms of f,,

a
EY Inf,

R Inf,
fa= (l‘ﬁ) [Ha,fa],mf—)

Inf,

+ NI IEY
1—exp(—Inf,)

R(f,]

] . (2.21a)

By applying to this formula the Bernoulli expansion [12]

e’—1 /=
where B; are the Bernoulli numbers B,=1, B, =—1,
Bz=%, B4=_%, B6=%’ etc. and B21+1=0 (121), we
obtain
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9

3 Inf,

f,=(i#)"'[H,,f,]+R[f,]

+ i ﬁ{(iﬁ)—’[n f,]
=1 I ara

+R[f,],(—Inf,)"} .
(2.21a")

A similar calculation can be made for In(1+¢,f,) to ob-
tain the equation

as _
dt
Inf,

-ksum"zTr[[Ha’fa]’T—em

]—kB ETI‘

g, In(1+¢,f,)

BYUNG CHAN EU AND KEFEI MAO 50

‘—a-ln(l+aafa)](1+safa)
ot

= (i) {[H,,(1+¢,f,) (1% e, f,)
! [H,, €afo)l, 1—exp[—In(1+¢,f,)]
+ lsre In(1+eg,f,) 221h
[, 1—exp[—In(1+¢,f,)] |~ 2.210)

By differentiating (2.10) with time and using this result,
we obtain

B k(i)™ 3 Tr{Ing,[H,,f, 1~¢, In(1+¢, £, )[H,,(1+¢,£,)]} —kp S Tr{[Inf, —In(1+¢, £, JRLF, ]}

R(f, ],

fa
1—exp(—Inf,)
g, In(1+¢,f,)

+(if) " 'kp 3 Tr{[H,,(1+¢,f,)], "

The last four terms on the right-hand side can be shown
to vanish and the first term also vanishes at the boundary
of the system. Therefore, we have

ds

—d~t—=—k3ETr{[lnfa-*1n(1+eafa)]§R[fa]}

=kp éTr{ln(aa-Ff;l)ER[fa]}ZO (2.23)

since R[f,] satisfies condition (ii) imposed on the col-
lision term as shown in Appendix A. We note that

Tr[H,,f,]=0, Tr(R[f,])=0,
Tr{[H,, f,],P(Inf,)} =0, Tr{R[f,],P(Inf,)}=0,

where P(Inf,) is a function of Inf,. These identities
have been used to obtain (2.23) from (2.22). Equation
(2.23) will be put into a local form later when local evolu-
tion equations are derived for macroscopic variables.

III. EVOLUTION EQUATIONS
FOR MACROSCOPIC VARIABLES

Statistical mechanical averages of dynamical variables
can be identified with macroscopic variables and their
evolution equations can be derived from the kinetic equa-
tion (2.6) with (2.7) postulated. These evolution equa-
tions for macroscopic variables then are used to construct
a theory of irreversible processes in a way consistent with
the thermodynamic laws with the help of the H theorem
or equivalently the entropy balance equation derived
from (2.22). Their derivations follow the same procedure
as for their classical counterparts, but are much more in-
volved mathematically because of the noncommutativity
of the operators involved. Nevertheless, the final
mathematical structures of the evolution equations ob-

—exp[—In(1+eg,f,)]

R, ],

+kg 3 Tr

1—exp[ —In(1+¢,f,)]
(2.22)

f

tained turn out to be the same as the classical evolution
equations, except that the statistical definitions of the
macroscopic quantities are quantum mechanical. It must
be remarked, however, that when carefully worked out,
the statistical averages of macroscopic quantities do have
quantum corrections to their classical analogs.

A. Conservation laws: Balance equations of conserved variables

The local mass density p(r,¢) at position r and time ¢ is
defined by [13]

i Tr[m,8(r, —r)f,(2)] .

a=1

plr,t)=

The mass density of species a may also be defined by

P (1, t)=Tr[m, 8(r, —r)f,(2)] . (3.2)
This suggests that
p(r,t)= 3 p,(r,t). (3.3)
a=1
It is also convenient to define mass fractions
c,=p.(r,t)/plr,t), (3.4)

which normalizes to unity by definition. By
differentiating (3.1) with time and using the kinetic equa-
tion (2.6) and the aforementioned condition on the col-
lision term, we obtain the equation of continuity. Since
this derivation is a prototype of the procedure used for
deriving evolution equations in the present theory, we
take this example as an illustration. The time derivative
of (3.1) is given by
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> m,8(r,—r)3,f,

a=1

9,p=Tr

= (i)~ \Tr [z m,8(r, —1)[H,, f, ] ]

a=1

+Tr

a=1

> ma8(ra—r)§}t[fa]l . (3.5)

The second term on the right-hand side vanishes owing to
the condition on the collision term R[f,]. By using the
cyclic property of the trace of operator products
Tr(ABC)=Tr(BCA)=Tr(CAB), the first term of the
right-hand side of (3.5) can be written as

Tr{m,8(r,—1)[H,,f,]}
= _Tr{[Haamaaa ]fa}

=—(i#i/2)V-Tr[(p,8, +8,p,)f, ] - (3.6)

The second equality arises as follows: By the commuta-
tion relation [r,,p,]=—(p,r,), where the parentheses
mean that p, operates on r, only, we obtain

2m,[H,,8,1f,=[p,8,1f,
=(Pa[Par82 11 [Par8a ]P0 )f
=[Pa*(Pads)+(p,8,)p,1f,
Now, by using the property of the delta function
V. 8(r;—r)=—V&(r,—1),

where V;=08/0r; and V=38/0r, we arrive at the second
equality in (3.6). Therefore, with the definition of mean
velocities u, and u by the formulas

PaBa(r,1)=Tr[ (p,8, +8,p,)f,] (3.7a)

pulr,t)= é Pau,(r,t), (3.7b)

a=1

we obtain the equation of continuity (mass balance equa-
tion)

9,p=—V-pu. (3.8

It must be noted that the definition of average velocity u,
involves a symmetrized product of p, and 8, and this ap-
pearance of a symmetrized product is a natural conse-
quence of quantum mechanics. Mori [13(b)] and Dahler
[13(c)] used such symmetrized products for momentum
and energy densities. See also Ref. [13(e)]. In Refs.
[13(b)] and [13(c)] the statistical averaging of the equa-
tions, however, is not taken and the kinetic equation does
not appear. The Heisenberg representation is used for
the operators in their calculations. The present method
is similar to the one used in Ref. [13(e)]. In the present
paper a larger set of evolution equations is derived than
in Ref. [13(e)] together with the entropy balance equa-
tion, which serves as the starting point for a thermo-
dynamic theory of irreversible processes. We point out
that various symmetrized products of momenta and a
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function appear naturally when the evolution equations
for macroscopic variables are sequentially derived step by
step starting from the equation of continuity.

We now define the peculiar velocity operator C, by

C,=p,/m,—u.
Then, the diffusion flux J, of species a is defined by

3, =Tr[im,(C,5,+8,C,)f,] . (3.9)

It is important to note that the velocity u acts as a classi-
cal variable as any other macroscopic averaged variables
and thus commutes with the delta function §, and other
quantum mechanical operators. All other mean continu-
um macroscopic variables are classical in that sense.
With this definition and the definition of the substantial
time derivative d,=9d,+u-V, we obtain from (3.8) the
mass fraction balance equation

pd,c,=—V-J, . (3.10)

It is assumed that there is no chemical reaction in the
system.

By differentiating (3.7) with time, using the kinetic
equation (2.6) and applying the same procedure as for the
equation of continuity, we obtain the momentum balance
equation

pd,u=—V-P+pF(r,t) , (3.11)
where P is the stress tensor defined by
r
PBY= 2 (Pa )By
a=1
=3 Tr[;m,(C,5C,,8,+C,gd,C,,
a=1
+C,,0,Copt8,C5Co ), ] (3.12)

pF=3 p,F,=— 3 Ti[8,(V,B)f, 1= S, Tr(5,%,f,) .

a=1 a=1
(3.13)

Here F, is the external force per mass of species a at po-
sition r and F is the mean external force per mass at r.
Note that F,=—V_ B for a particle of species a located
at r,. The greek subscripts 8 and ¥ in (3.12) refer to the
Cartesian components of the vectors and the tensors in-
volved and greek subscripts will henceforth be reserved
for such purpose throughout this paper. Note that the
peculiar velocity product in (3.12) is symmetrized owing
to the noncommutativity of the operators involved.
These symmetrized products give rise to quantum effect
terms in the macroscopic variables associated with them.

The internal energy is intimately related to the stress
tensor. Therefore, the formula (3.12) for the stress tensor
suggests that the internal energy be defined by the formu-
la

pé(r,1)=3 Tr[im,(C,-C,8,+2C,5,-C,
a=1

+8,C,-C,)f,] . (3.14)
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On application of the procedure used for deriving the
aforementioned balance equations for mass and momen-
tum, this definition gives rise to the energy balance equa-
tions as follows:

pd,6=—V-Q—P:Vu+ 3 J,F, . (3.15)

Here Q is the heat flux defined by

Q=3 Q
a=1
= 3 Tr[im,(C2C,8,+C2,C,+2C,C,5,-C,

a=1

+2¢,-5,C,C,+C,8,C2+8,C2C,)f,] . (3.16)

We note that these balance equations have exactly the
same mathematical structures as the balance equations
appearing in the classical theory, except that this time the
statistical mechanical definitions of the macroscopic vari-
ables are quantum mechanical and hence include quan-
tum effects through the symmetrized operator products
and the density matrix.

B. Evolution equations for nonconserved variables

On differentiation of (3.9), (3.12), and (3.16) with time
and use of the kinetic equation (2.6), we obtain the evolu-
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tion equations for J,, P, and Q. In the case of a mixture,
it is more convenient to derive evolution equations for
species components P, and Q, from their statistical
definitions:

P.g, =Tr[;m,(C.5C,,8,+C,58,C,,
+Cy)8,Copt8,Co5C,, ) E, ],

Q,=Tr[Lm,(C}C,8,+C2,C,+2C,C,8,-C,

aBy
(3.17)

+2¢,-8,C,C, +C,5,C2+8,C2C,)f, ] .

(3.18)

Ihe resultg\ are as follgws. With the definitions
P,=P,/p,Q,=Q,/p,and J, =T, /p,
pdP,=—V-$\V—[(d,u—F,)J, +J,(d,u—F,)]

—[P,-Vu+(Vu) P ]+Al, (3.19)
pd,Q,=—V-9'—(P,—p,8)(d,u—F,)

—@V:Vu—Q,-Vu+A" (3.20)
pdJ,=—V-P,—p,(du—F,)—J, -VU+A® . (321

Here the superscript ¢ means the transpose of the tensor,
8 denotes the unit second-rank tensor, and various other
symbols are defined by the statistical expressions

lz(alﬁ)'ya = TI‘{ ‘;‘ma [Caﬁcaycassa + CaBCayBa Cas + CaB(Sa Ca'ycae + 60 CaBCayCas

+CopCacd,Coy +CCry 8, Copt C,,8,C,

Bsa Ca£+Ca58a CayCaB]fa } ’ (322)

J{a}ﬂ)y :Tr{ 3l~2ma [Caﬁcaycazssa + Caﬂca‘ysa C112£ + CaBSa Caycazs + 8{1 CaBCayCaZs + CaBCaze 8(1 Cay

+C CZE 80 Ca,8+ Cazsa CaBCay + Cayaa CaBCaze + 2CaBCayCasSa Cae

ayB“a

+ zcaﬁcassa Caecay + 2Cayca58a CaeCaE+ 2Ca98a CaeCaBCay ] fa } >

(3) — )
(Paﬁye_lﬁaﬁya »

Aizstlﬂz’rr{ %ma ( Caacaﬁaa + Caasa CaB+ Caﬁaa Caa+8a Caacaﬂ)m[ fa ] } ’
AP=Tr{im,(C2C,8,+C2,C,+2C,C,8,-C,+2C,8,C,C, +C,8,C2+8,C2C, )R, ]} ,

Azd)=Tr{%ma(Ca80 +8aCa )m[fa]} .

We reiterate that ﬂlﬂ)w and 1/7,,35)7 are the Bye and By com-
ponents of third- and second-rank tensors ¢’ and ¢,
respectively. We again find that these evolution equa-
tions for fluxes are in the same mathematical forms as for
the corresponding evolution equations in the classical
theory, except that the macroscopic variables therein are
quantum mechanically defined. Nevertheless, these are
new results for quantum systems. In order to cast these
evolution equations into the constitutive equations for
observables measured in the laboratory and more suitable
for formulating irreversible thermodynamics, we intro-
duce the following macroscopic variables:

(3.23)
(3.24)
(3.25)
(3.26)
(3.27)

(3.28a)
(3.28b)
(3.29)

m,=P,—L(P,:8)5 ,
Aa =%(Pa:8)_pa >
Q,=Q,—h.J, ,

where p, is the pressure whose statistical definition will
be given later at a more appropriate stage and ﬁa is the
enthalpy per mass of species a: h,=&,+p,v, with
v,=p, . Equations (3.28a) and (3.28b) mean that the
stress tensor P, is decomposable into the form

P,=II,+A,8+p,5 . (3.30)
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It is convenient to define the following abbreviations for
the symmetrized molecular expressions appearing in the
stress tensor and the heat flux:

hig,=1m,[C6C,, 8, +Cog8,Coy+C,,8,Copt8,CopCo,

—4(C2.8,+C,8,C,
+C,8,C,c+8,C2)8g,1, (3.31)

hY=[Lm,(C2,+C,8,-C,+C,5,-C,+5,C2)

—(p,/p)m,8,1, (3.32)
b=[Lim,(Cc2C,8,+C2,C,+2C,C,5,-C,

+2¢,8,-C,C,+C,8,C>+8,C2C,)

—1h,m,(C,8,+8,C,)], (3.33)
hY=1m,(C,8,+8,C,), (3.34)

where 857, is a Kronecker delta and the Einstein summa-
tion convention is used for repeated greek indices. These
definitions of moments motivate us to define the follow-
ing:

1) — (1)
'M:ﬁ)ye 'I’aﬁys %'paaaeaﬁr

=Tr[l(h(l) Cae+ca5 aB‘y)f I,

w, (3.35)

P2 =L e — (Pa /pa Ve
=Tr{[§(BogsCoc+ Cochiysp)
—L(p, /Py )M, (C,8,+8,C)1f,}
=Tr[H(bP'C,.+C, A, ],
lpg:sﬁ)y_l?}a:g'}’ ﬁaP aBy

=Tr[ HBHC,, +C, BoNE, ] .

(3.36)

(3.37)

With the molecular moments EL” , etc. defined earlier, we
define the dissipative terms

AP=Tr(BPR[f,]) (k=1,2,3,4,...) (3.38)
and the corresponding kinematic terms
ZF=(i#)" ' Tr[im,C2 £, hP]
+Tr |f, gtﬁg,"’—(mr‘[ﬂ.,,ﬁi,"’]l]
(k=1,2,3,4,...). (3.39

When the first term on the right-hand side of (3.39) is cal-
culated a little futther, the kinematic term may be writ-
ten as
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B B (i)™ 1[H,, B ’ ] .

ZP=—V-9P+Tr 3

fa

(3.39")

Note that %) (k <3) are defined in (3.35)-(3.37). Calcu-
lated explicitly in terms of macroscopic variables, these
kinematic terms are as follows:

Z\V=—-v-¢V'—[(d,u—F,)3,]?

—2[M,-y]¥—[N,,0]—2M,V-u, (3.40)

Z2})=-V-9P—2du—F,) I, —p,d, In(p,v°"?)
—2M,:y —2A,V-u—V-J,p,/p,) , (3.41)

Z3=—-V-¢¥—(P,—p,8)-(d,u—F,)
—¢¥:Vu—Q,-Vu—1,d,h,—P,-Vh, , (3.42)

zZ¥=-V-P,—p,(du—F,)—J,-Vu. (3.43)

Here various symbols are defined by

y=1[Vu+(Vu)']—18V-u,

=1[Vu—(Vu)],
M ,0]=N,,0—ell,

The evolution equations for II, pﬁa, A, =p3,,,

Q. ——pQ,, , pJa , and so on are then as follows:
pd fI,=ZV+ A, (3.44a)
pd, A, =ZX+ A , (3.44b)
pd,Q,=ZP+AY , (3.44¢)
pd 3, =ZH+AP (3.44d)

etc., which will be simply represented by the equation

pd, P =ZF L AR (k>1) . (3.44")

Here the dissipative terms A%’ can be obtained from

(3.25)-(3.27) by using the definitions of h} )y, etc. in
(3.31)-(3.34); in fact, A =A\?. These evolution equa-
tions for fluxes I1,, A;, Q;, and J, are constitutive equa-
tions which characterize the nonequilibrium constitution
of the material and irreversible processes therein. It must
be noted that their mathematical structures are the same
as the constitutive equations in the classical theory [3],
except for the definitions of the macroscopic variables in-
volved. Since the quantum system obeys the same macro-
scopic evolution equations as the classical system, this re-
sult is important for irreversible thermodynamics of the
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quantum system of interest here. Together with the con-
servation laws—balance equations for conserved vari-
ables (3.8), (3.10), (3.11), and (3.15)—the flux evolution
equations (3.44a)—(3.44d) form the set of extended hydro-
dynamic equations describing irreversible processes in the
system. These extended hydrodynamic equations reduce
to the Navier-Stokes, Fourier, and Fick equations near
equilibrium.

Before closing this subsection, we would like to make
the following remark regarding (3.44d). This constitutive
equation may be recast in a form which is closer to the
classical equation of motion for the center of mass for
species a. By transferring the d,u term to the left and
making use of the definition of diffusion flux

J,=ps(u,—u), (3.45)

which follows from the statistical definition of J, (3.9), we
obtain from (3.44d)

padu,=p,F,—(V-P,+J,-Vu+7J,d, Inc,)+A¥ .
(3.46)

The term of the left-hand side is the acceleration, whereas
the first term on the right-hand side is the force on the
center of mass of species a; the first term in the
parentheses, namely, —V-P,, gives rise to the thermo-
dynamic driving force which, to the lowest-order approx-
imation, is proportional to the mass fraction gradient, or
the gradient of the chemical potential; and the last term
Af,‘“, the dissipative term, is related to the friction term to
the lowest order since it is proportional to the diffusion
flux itself with the proportionality constant being the fric-
tion constant. Therefore, (3.46) is similar to the Langevin
equation, except that there is no fluctuating noise term
unless one is prepared to assert that the second group of
terms in the parentheses on the right-hand side of (3.46)
is a fluctuating noise term. This identification, however,
is not necessary in the present theory since a theory of
transport processes can be satisfactorily constructed with
the identification with a thermodynamic force mentioned.
Equation (3.46) differs from the momentum balance equa-
tion appearing in the balance equation approach of Lei
et al. [14], who obtained the equation by a perturbation
method for the density matrix.

C. Entropy balance equation

The evolution equations for conserved and noncon-
served variables presented earlier are subject to the con-
straint of the entropy principle, that is, the H theorem.
Since the evolution equations are local, it is necessary to
have the entropy constraint also in local form and such a
local form is the balance equation for entropy. To derive
it, it is first necessary to define an entropy density at posi-
tion r and time t. We define the entropy density by
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St)=[ drpSr,1). (3.47)

Comparison of this with the statistical definition of S(¢)
in (2.10) yields the statistical formula for the entropy den-
sity

pS(r,t)=—ky 3 Tr[f, (5, Inf, ]

—e,(1+¢€,£,){8, In(1+¢,f,)}]

=k 3 Tr[ £, (8, In(e, + £, )]

+e,{6, In(1+¢,f,)}], (3.48)
where the delta function 8, is symmetrized with the loga-
rithmic functions of f, since the distribution function is

generally a function of momentum. It is convenient to
define

Sa=¢,f; 'In(1+¢,f,), (3.49a)

C=In(e, +f,!). (3.49b)
By differentiating the formula (3.48) for the entropy den-
sity and using the kinetic equation together with the
mathematical identities leading to (2.22) and (2.23), we
obtain the entropy balance equation

pd,8(r,t)=—V-J(r,t)+0,,(r1,1), (3.50)

where the entropy flux J; and the entropy production o,
are given, respectively, by

J,(r,1)=ky 3 Tr(L[C,{(C, +F,)8, )

+{(€, +&,)8,1C,1f,), (3.51)

O ene(1,)=—ky 3 Tr({C,5, }RIf,]) . (3.52)

The definition of the entropy production in (3.52) follows
straightforwardly from the production term in (2.23)
kg3: Tr{in(e, +f; )R[f,]}, which we recover on in-
tegrating (3.52) over the volume of the system. The
definition of the entropy flux J (r,¢) in (3.51) arises as fol-
lows. First, observe that it stems from the first term on
the right-hand side of (2.22). After symmetrizing the log-
arithmic factors with §,, the said term can be manipulat-
ed into the divergence form
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— kg (i)~ Tr({8, Inf, } [H,, f,]1—¢, {8, In(1+¢,f,)} [H,,(1+¢,f,)])
=ky(i#)" ' Te([H,, {5, Inf,} 1f, —€,[H,, {5, In(1+¢,£,)} (1 +e,f,))
— (i1 1 2 _ 2
(i)~ ' Tr 2m, [ps, {6, Inf,}]f, 8“2ma [p,,,{Ba1n(1+£afa)}](l+eafa)]
()~ Tr | 32 —(By+[B» (8 Infa} 1+ [Pas (8 Inf, } 1P )
& 2;’ (pa'[pa,{Sa1n(l+e,,f,,)}]+[pa,[8a1n(l+safa)}]-pa)(l+safa)l
()" Tr | [P (Pa {8 Infa])+ (B (8, Inf, )-Pa I
—saﬁ(pa-[pma1n<1+eafa>}1+[pa18a1n<1+s,,f,,>}1-pa><1+eafa>]
—v. 1
=V-Tr zma (paiaa lnfa}+{8a lnfa}pa )fa
1
_Eam[Pa{Baln(1+5afa)]+{8aln(1+saf,,)}pa](l+8afa)
= —V [k Tr(I[C, {(€, +T )8, } + (€, +T,)8,}C, If ) +ukp Tl (€, +F,)8,} £, 11 - (3.53)

Therefore, summing this equation over species we obtain
the divergence term in the entropy balance equation

V-(J,+pSu)=V- 3k Tr(L[C, {(C, +F,)5,}

+{(€, +F,)8,1C, 1)
+ukB Tr[[((‘ga +%a )aa}fa ]] .
(3.54)

In the fourth equality of (3.53), (p, {8, Inf,}) means that
p. operates on {§,Inf,} only and similarly for
[p.{8; In(1+¢,f,)}]. For the fifth equality the property
of the derivative of a delta function is used. Note that if
the distribution function vanishes at the boundaries of
the system, then this divergence term, when integrated
over the volume, does not contribute to the time deriva-
tive of the entropy (dS /dt). This was the result we used
for (2.23).

IV. NONEQUILIBRIUM CANONICAL FORM
FOR THE DENSITY MATRIX
AND IRREVERSIBLE THERMODYNAMICS

To make the extended hydrodynamic equations de-
rived in the preceding section useful for the study of mac-
roscopic irreversible processes, it is necessary to be more
explicit about the flux dependence of the dissipation
terms A'¥ and the entropy production as well as the en-
tropy flux. This aim cannot be achieved unless an expli-
cit form is used for the collision term R[ f, ] in the kinetic
equation. Nevertheless, there still are some aspects of ir-
reversible thermodynamics which we can uncover

without using an explicit form for the collision term. We
will first take up this line of study, since then the results
we obtain thereby will be deemed general, not being
subordinated to a particular model taken for the collision
term. The BNUU models for the collision term will be
explicitly used and then a theory of transport processes
can be developed with the dissipation terms calculated
with the model for the collision term in a sequel to this
work.

A. Equilibrium solution of the kinetic equation

The equilibrium solution of the kinetic equation has
been defined in connection with the H theorem as a densi-
ty matrix satisfying (2.9). Since only the collision invari-
ants such as mass, momentum, and energy satisfy (2.9) by
condition 1 on R[ f, ], it follows that In(e, +f a:) must be

a linear combination of the collision invariants. Thus it is
possible to write f, in the form
eq

£, =[exp(B.(H, —ut)]—e, 17, 4.1)

where u; is the normalization factor determined by the
equation
n,=Tr{8,[expB,.(H, _“2)_811]—1} 4.2)

and S, is a parameter to be determined shortly. Substitu-
tion of (4.1) into (2.10) yields the equilibrium entropy S, :

S, =kgB. , @4.3)

r
Ee +Pe V_z ﬂZNa
a

where
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go=ps/m, , (4.4a)

E,=3TrH,f, ), (4.4b)

p.V=—p." é Tr{e, In[1—¢, expB,(u; —H,)]} .

(4.4c¢)

Identifying E,, p,, and S, with the thermodynamic inter-
nal energy, pressure, and thermodynamic entropy, re-
spectively, and thus p! with the thermodynamic chemical
potential according to the general methodology in the
Gibbs ensemble theory, we are led to conclude that S, is
related to the absolute temperature of the system by the
following relation:

B,=1/kyT, , 4.5)

where T, is the absolute temperature for the system in
thermal equilibrium. This procedure of identifying S,
with the inverse kz T, may be done by means of the en-
tropy differential, but the final result obtained thereby
will be the same. The equilibrium solution (4.1), namely,
the canonical density matrix for quantum particles (i.e.,
Bose-Einstein or Fermi-Dirac density matrix), is unique
since there is only one linear combination of collision in-
variants possible for In(e, +f ,,: ), and this uniqueness is a

necessary consequence of the H theorem. The point we
would like to emphasize here is that although it is not
necessary to explicitly specify the collision term R[f, ] to
obtain unique equilibrium solution, a kinetic equation
satisfying the H theorem is essential to obtain a unique
equilibrium solution. Equilibrium thermodynamic func-
tions can be calculated from the equilibrium canonical
density matrix (4.1).

B. Nonequilibrium canonical form
for the density matrix

The nonequilibrium density matrix f, can be con-
structed in a form similar to the equilibrium canonical
matrix in (4.1). The reasoning behind such a construc-
tion is that, first of all, it is necessary to have the entropy
production in a simple bilinear form similar to the form
in the classical theory if its physical interpretation as the
seat of energy dissipation is to remain the same as in the
classical kinetic theory. Since the statistical formula for
the entropy production contains In(e, +f_ 1), the only
way to obtain a simple bilinear form for the entropy pro-
duction is to express f, in a canonical form as in (4.1).
However, the meanings of the parameters such as 8, and
ué in (4.1) cannot remain the same and require generali-
zations. The nonequilibrium canonical form for f, is ex-
pected to include a parameter related to the temperature
since even the thermal state of a nonequilibrium system
must be characterized by a temperature or its spatial dis-
tribution. Therefore, it will be required to define the tem-
perature of the nonequilibrium system. But its definition
must be operational, that is, the nonequilibrium tempera-
ture must be directly measurable or given in terms of
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directly measurable quantities. To prepare for such a sta-
tistical definition [15], we first define the statistical tem-
perature for the system in equilibrium. For quantum sys-
tems we define T, by the statistical formula

3¢,kpT,= 3 Tr[im,(C28,+2C,-8,C,

+8,Cf,, ) /S Tr6, L, )

(4.6)

where §, is a homogeneous zero-order function of u{ and
B, ! or, put in other words, a function of reduced variable
me=us/m,T,=f /T, only. This reduced variable [z is
homogeneous zero degree of i and T,. In the case of
classical gases, {, =1. This parameter {, is the correc-
tion for the equipartition law in quantum theory. In (4.6)
the factor 1 is decomposable into the factors | and 1, the
former accounting for the symmetrization of C, and §,
and the latter being a factor in the kinetic energy. Equa-
tion (4.6) says that the mean kinetic energy of a particle is
first-degree homogeneous in kz7,. This property is true
regardless of whether the particle is classical or quantum.

Since f, is looked for in a canonical form similar to
(4.1), we now define the nonequilibrium temperature by
the statistical formula

3¢k T=3 Tr[im,(C28,+2C,"5,C,

+8,C2)f, ]/2 Tr(5,f,) .  @.7)

In this statistical formula, the left-hand side is an abbre-
viation of the right-hand side, which has no other opera-
tional meaning than it is a mean kinetic energy of the sys-
tem in a nonequilibrium state. It is essential for making
the ensuing theory something more than a symbolism to
give it a thermodynamic operational meaning. The ther-
modynamic operational meaning of the parameter T is
fixed by its correspondence to the local equilibrium tem-
perature T,(r,t), which is made dependent on position
and time and determined thermodynamically at position
r in the system and at time ¢; to make this position and
time dependence clear and distinguish the equilibrium T,
from the local equilibrium T,, we have made r and ¢ ex-
plicit in T,. To be more precise, we take a sufficiently
small volume around position r at time ¢ which contains a
sufficiently large number of particles as to make a statisti-
cal mechanical method applicable. This small volume is
locally in equilibrium with a temperature probe (i.e., ther-
mometer) of a sufficiently small size, which is calibrated
to the absolute thermodynamic scale. This local temper-
ature is in fact the contact temperature for the volume
element at r and ¢ of interest. This contact temperature
gives the just defined nonequilibrium temperature a ther-
modynamic operational meaning when it is matched with
the contact temperature, namely 7, (r,?) at position r and
t as is done below. It must be remarked that this use of
local equilibrium temperature does not mean that the
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whole system is in equilibrium; rather it means that the
temperature at r ‘and ¢ of the nonequilibrium system is
the contact temperature of the volume element at r and
at time ¢, which is measured with the ideal gas thermome-
ter in the absolute temperature scale. The temperature T
is defined and given an operational meaning such that

S Tr[1(225, +22, 5,2, +8,22)f,,(z,)]
8

a

&= ;
2 Tr(8,f,(z,)]

3> Tr[1(z28,+22,-8,2, +5,,za2)fa°q( z,)]
a

— 7 =§e ’
S Te(8, 1, (2,)]

(4.8)

where z,=(m,B)'/’C, for ¢ in the first line and
z,=(m,B,)"/*C, for £, in the second line. In addition to
this, the internal energy, momentum, and density satisfy
the matching conditions. The internal energy is matched
with the local equilibrium internal energy 6=4¢6,, where
6, is the internal energy computed by means of faeq.

That is,

pé=3 Tr[im,(C25,+2C,8,-C,+8,C2)f,]
a

= Tr[im,(C25,+2C,5,-C, +5,,C,,2)faeq]=peé°e
a

(4.9a)

For the rest of the matching conditions, we impose the
following on the mean velocity and mass density:

pu= 3 Tr[3(p,8, +8,p,)f,]

=2 Tr[3(Pady +8.p,)fs 1=p.u , (4.9b)
p=3 Tr(m,8,f,)=3 Tr(m,8,f, )=p, .  (4.90)

These matching conditions follow necessarily and
sufficiently for the conserved variables from the kinetic
equation postulated if the system is spatially homogene-
ous since the mass, momentum, and kinetic energy are
collision invariants of R[f,] in the kinetic equation. It
can be shown by using the same method as in Ref. [3].
The matching condition on the mean mass densities may
be replaced with a similar condition on the number densi-
ties:
r r
n=7Y Tr(,f,)= ZTr(Bafaeq)=ne . (4.9¢")
a a
Under these matching conditions and (4.8) the tempera-
tures match:

T=T,(r,t) (4.10)
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and thus T is given a physical meaning as the position-
and time-dependent local absolute temperature T, (r,?) at
r and t. These matching conditions are essential for mak-
ing operational the formalism of irreversible thermo-
dynamics presented below.

The nonequilibrium density matrix must be construct-
ed such that these matching conditions (4.8)—(4.9c) are
satisfied and the parameters T and p in the nonequilibri-
um density matrix are endowed with thermodynamic
operational meanings. To implement this strategy, we
construct the local reference density matrix f° involving
T, p,, and u; such that

£0=[expB(H2 —ul)—e, 17! (B=1/kyT),

where S is the nonequilibrium parameter defined by the
left-hand side of (4.9a) and given the thermodynamic
operational meaning by the right-hand side of (4.10), and
similarly for u? by the normalization of f2

n,=Tr(8,£2) .

(4.11a)

(4.11b)

Finally, H)=1m,C2. On the basis of B and u? so deter-
mined, the nonequilibrium density matrix f, is looked for
in the form

f,=[expB(HS+H! —pu,)—e,17!. (4.12)

This is the nonequilibrium canonical form for the quan-
tum gas of interest to which we have alluded earlier.
Here p, is the normalization factor of f, defined by the
relation

n,=Tr{8,[expB(HS+H} —pu,)—¢, 17} (4.13)

and H! is the nonequilibrium correction to be deter-
mined. It is a function of p, to be determined such that
the density matrix in (4.12) is consistent with the H
theorem. This will be the subject of discussion in this
section.

Let us first introduce a weight function o, such that

w,=(2m) 3 exp(—1x2) , (4.14a)
where
x,=(m,B)"/*C, . (4.14b)

This function @, will be the weight function for an or-
thogonal set {#*)(x,): k =1} of tensor Hermite polyno-
mials. With the subscript a omitted from the argument,
a few leading elements of the set are

HOx)=1, #(x)=x,,

H2Ux)=x %585 » (4.14c)

H oy (X)=Xxgx, —8opx, —8ayxp—8p %4 »

etc. The properties of these orthogonal polynomials are
discussed in Refs. [16] and [17] to which the reader is re-
ferred. It is sufficient for our purpose here to note that
these polynomials are orthogonal in the following sense:
Tr[8, 7K (x, )H ™ (X, )0, (X,)] =8, 85 ,  (4.14d)

where i=(i},i5,...,i) and j=(j,j3,.-->Jjm) and 8,!5-
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stands for the sum of all nonredundant permuted prod-
ucts of k Kronecker deltas whose subscripts are com-
posed of indices drawn one each from the sets
i=(iy,ip...,0) and j=(j,js,-..5jn,). This ortho-
gonality relation looks different from the orthogonality
relations of classical orthogonal polynomials, but it is
easy to see that they are the same if the momentum rep-
resentation is used for the quantities involved. Another
way to see it is to use the Fourier transform method to-
gether with the Wigner distribution functions; see Ref.
[15(a)]. This method easily transforms (4.14d) into the
same form as the classical expression.

Since the local equilibrium can be treated as the refer-
ence state, it is reasonable to construct the nonequilibri-
um density matrix on the local equilibrium density ma-
trix fO. Therefore, we are motivated to look for an ex-
pansion of f,—f in a series. By using the weighting
function w,(x,)=(27) 32 exp(—BHY?), we expand f, in
the form

f,=f2+exp[ —BH?—ud)] S ALFH O (x )
k=1
=0+ (2m) 32 exp(Bud)w,(x,) T APHP(x,) .
k=1
4.15)

The normalization conditions (4.11b) and (4.13) demand

Tr [§,0,(x,) 3 APHF(x,) [=0.
k=1

This expansion (4.15) is a quantum version of the classical
Grad moment expansion [16] to which it reduces if the
gas obeys the Boltzmann statistics, namely, if e, =0. We
also remark that this expansion is consistent with the
matching conditions in (4.9) and (4.8) since f‘,cq may be

replaced by fg. Thus, if the collision invariants are col-
lectively denoted by ¢, then the matching conditions may
be expressed by (¢(f,—f2))=0, which is evidently
satisfied by the expansion (4.15) because of the ortho-
gonality relation (4.14d). Therefore, the nonequilibrium
canonical form (4.12) is consistent with the matching
conditions since it is constructed from (4.15), as will be
shown shortly. We take this approach of using expansion
(4.15) since this expansion is easier to construct in a way
consistent with the matching conditions than the none-
quilibrium canonical form (4.12), although the latter is
best suited for formulating a theory of irreversible ther-
modynamics. Thus the strategy is to deduce the none-
quilibrium canonical form from the quantum Grad ex-
pansion (4.15) constructed such that the matching condi-
tions are satisfied. We will show how to construct the
nonequilibrium canonical form (4.12).

First, the expansion coefficients 4 % in (4.15) may be
determined in terms of macroscopic variables. For this
purpose, we first define

O =Tr[8,#X(x,)f,],
O =Tr[8,# X (x,)f7] .

On multiplying 5,7 *(x,) by (4.16), taking the trace,
and using the orthogonality of the tensor Hermite poly-

(4.16a)
(4.16b)
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nomials, we obtain the desired relation of the expansion
coefficient to the macroscopic variables just defined in
(4.16):

A8 =(2m) 2 exp(—Bug)[ O —OP] . @.17)

The macroscopic variables ®% are linearly related to
@ introduced earlier since the set {%. %'} defined in
(3.31)-(3.34) is linearly related to the set of {#*(x,)}.
Therefore, ® and thus 4.¥ can be determined from
@) which obey the evolution equations (3.44").

We now observe that the nonequilibrium canonical
form (4.12) may be rearranged to the form

expB(HY+H. —p,)=¢,+£, 1, 4.12)

and on taking logarithm of (4.12'), substituting (4.16) for
f. !, and rearranging the terms, it is possible to relate H.
to A* as follows:

BH! —Ap,)

=—In [1+(1+saf2)*1 I A;k’%“(xa)]

k=1
+In [1+e,,f2(1+eaf2)‘22 A,ﬁk’ﬁ("’(xa)] ,
k>1
(4.18)

where

Bp, =po—pa (4.19)

with po=p,—3B, and the following relations have been
used:

(1+e,£3) "' =1—¢, exp[ —BH] —pJ)] ,
€ f2(1+8a fg )_2=8a CXP[ _B(Hg —[.LS )]

X {1—¢, exp[ —BHS —ud)]} .
One may then determine H} in (4.13) from (4.18) by using
(4.17) for AS¥ and the orthogonality relation (4.14d) as
will be shown presently.

The ¢,-dependent terms in (4.18) the quantum correc-
tions. On setting £, =0, we recover the classical result
[7]. Here it is important to remark that u, is essentially
the chemical potential of the system subject to an exter-
nal field (e.g., the electrochemical potential if the external
field is electrical) and therefore u]' =u, —%B, is the matter
part of the chemical potential. Equation (4.12) gives €,
in (3.49b) a more explicit form:

C,=BH2+H!—u,). (4.20)
The relation (4.18) suggests that H! is expressible in
terms of the complete set {#'¥(x,): k >1}. Therefore,
we expand H} into a series of #*(x,) (k > 1) and deter-
mined the expansion coefficients. Thus we write

H! = s YRl

k21

(4.21)

The expansion coefficients Y.*' depend on macroscopic
variables only. They may be determined as follows. On
substitution of (4.21) into (4.18) and using the orthogonal-
ity relations (4.14d), we obtain a pair of equations relating
Y¥ and 4%
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+B ' Tr lw(x,, )8, FH ¥ (x,)In ll+eaf2(1+eaf2)_2 > A;’"ﬂ”"(xa)] ] ,
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b A;k)ﬂ(k)(xa)] ]

k=1

(4.22a)
k=1

Ap, =B 'Tr [w(xa)Sa In [1+(1+e,,f2)_1 h> A;“ﬂ“"(xa)] ]

k=1

—B!'Tr [co(xa )8, In [1+eaf2(l+£af2)_2 > A;k’yf""(xa)] ] .
k=1

It is a matter of comguting the right-hand sides of these
equations to find { ¥}*: k > 1} in terms of { A¥: k> 1}.
This problem is akin to the calculation of the partition
function in equilibrium statistical mechanics. We assume
that such a calculation is done in principle. These equa-
tions then make it possible to construct a nonequilibrium
canonical form (4.12), given the quantum Maxwell-Grad
expansion, in a way consistent with the matching condi-
tions on the nonequilibrium density matrix and the con-
dition on temperature. However, the set {#*(x,):
k =1} is not directly related to the observables used in
the measurements of transport processes. We have seen
that the set motivated by such observables consists of
{A%: k=1 given in (3.31)=(3.34). In view of this, we
construct the following set:

hV=m,(C,C,—15C?), (4.23a)
W2=1m,C2~p,/n, , (4.23b)
w'=m,(Lc2c,—k,C,), (4.23¢c)
W=m,C, , (4.234)

etc. Here ffa is the enthalpy per mass of species a and
Pa=B ' Tr[8,¢, In(1+¢,f,)] . (4.23e)

This is the statistical definition of p, introduced in Sec.
III. We assume that these suitably arranged polynomials
form a complete set {h.®: k > 1}. These polynomials are
tensor Hermite polynomials [16,17] of C, and may be ex-
pressed as linear combinations of #'¥(x,) introduced
earlier. For example,

bD=kp T[HP(x,)— L8H2x,)], (4.242)

W =k T[AH2(x,)— L, ] (4.24b)

b=k T(kp T /m,) [ Hx,)— 4, H N (x,)]
(4.24¢)
h£14)=(makBT)l/2-7{(1)(xa) s (4.24d)

etc., where the Einstein summation convention is used for
repeated subscripts for Cartesian components and

‘LB =pﬂ /nakBT_l Y
4.25)
A,=2(m, /kyT)h,—5 .

Note that for classical systems L, =4, =0, but for quan-

(4.22b)

r
tum systems these quantities may be given in series of the
Planck constant or the virial coefficients proportional to
powers of #. The set (4.23) becomes h¥:
k=1,2,3,4,. ..} when suitably symmetrized on multipli-
cation of delta function §, to the terms on the right-hand
side:

BP={n¥s,} . 4.23)

The tensorial set {h'¥] is a quantum mechanical opera-
tor version of the complete set used in the classical ver-
sion of the modified moment method [3]. The leading
members of the polynomial set presented here are clearly
orthogonal to each other either for symmetry reason or
by construction.

It is more convenient to expand H. in the
measurement-motivated set {h{¥: k >1} than the ten-
sorial set {#®: k >1}. Thus we expand

1— (k) (k)
Ha_ 2 Xa ha
k=1

(4.26)

and the nonequilibrium density matrix is then written in
the form

fa = [expB [H2+ 2 Xxgk)h;k)_l"a ]—Ea ]—l :
k=1

(4.27)

Here X' are vectors or tensors depending only on mac-
roscopic variables which determine the time and position
dependence of the density matrix f,. The polynomials
h'¥ are conjugate vectors or tensors depending on mo-
menta. The expansion coefficients X¥ are now deter-
mined from Y.* already given in terms of A4}’ by the re-
lation

S Trl8,0,(x,)# (xR )1X =Y 8!, .
k=1

(4.28)

This equation is easily obtained by equating (4.21) and
(4.26) and making use of the orthogonality relation
(4.14d). This set of algebraic equations determine X\* in
terms of macroscopic variables ®¥' (k >1) through the
chain of equations (4.22a), (4.22b), (4.17), and (4.24).
Since we do not need the explicit formulas for the rela-
tions of X\¥' to ®'¥ in this paper, we will not dwell on
them. We use the nonequilibrium canonical form (4.27)
to construct a theory of irreversible processes in the fol-
lowing. We emphasize, however, that the expansion
(4.26), equivalent to (4.21), is not essential for construct-
ing a basic mathematical structure of thermodynamics of
irreversible processes since one can obtain such a struc-
ture in terms of variables ®% instead of variables ®{*.
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In this connection note that ®* are linearly related to
<bf,"), as is clear from relations in (4.24). Finally, we re-
mark that the nonequilibrium canonical form leaves the
H theorem satisfied regardless of the approximation tak-
en for Y'¥ or X\¥. It is one of the most powerful aspects
of the nonequilibrium canonical form. This statement is
easily verified by using (A2) in Appendix A.

Before we proceed further, we pause to examine. the
significance entailed by the nonequilibrium canonical
form (4.27) or (4.12) with (4.21). Since €, in (4.20) was
originally defined as an operator consisting of a complete
set of operators in the Hilbert space for the system, the
representation of €, in (4.20) with H! expanded as in ei-
ther (4.21) or (4.26) is a projection of the Hilbert space €,
onto the space of macroscopic variables consisting of X¥’
or Y;"). This projection is accompanied by a contraction
of information and nonbijective. The thermodynamic
consequence of this contraction of information will be
clarified later when we will have calculated the entropy
and related differentials.

On substitution of the nonequilibrium canonical form
(4.27) into the statistical expression for the entropy pro-
duction, the following more insightful form for the entro-
py production follows:

r

O =T7'3 3 XPAL . (4.29)

a k21
This form is identical with the entropy production in the
classical theory. This bilinear form made up of X',
which appears in the density matrix f,, and A®, which
is the dissipation term in the evolution equation for @f,k )
gives a physically transparent interpretation for the en-
tropy production that the energy of the system dissipates
from a useful to a less useful form through a dissipative
evolution of nonconserved variables (ﬁf,k ) (i.e., fluxes) and
consequently the dissipation terms A’ of the flux evolu-
tion equations are the seat of energy dissipation in the
system. This interpretation would not have been possible
if the density matrix f, were given in a form other than
that in (4.27). A similar comment can be given for the
entropy flux represented below. We also find the entropy
flux in the form

J,=T'3(Q,—JI)N+T'S I XFyF+J,,
a

a k=1
(4.30a)

r

Jg=kp 3 Tr[L(C,8,+8,C,)e, In(1+¢,f,)],

(4.30b)
which is also in the same form as for the classical theory
except for the quantum contribution J.

In view of the same mathematical structures of the en-
tropy balance equation, the entropy flux, the entropy pro-
duction, and the flux evolution equations as those for the
classical system, the entropy balance equation is, as in the
classical theory, expected to be, and indeed is, in the form

d,$=d,yY—¢6, , 4.31)

where d,V is the compensation differential [3] given by
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r r A
d¥=T"'\d,6+pdv— S p,dec,+3 3 XPd,&}
a a k21
=77! d, 6 tpdv— Eﬂzxdtca

+3 3 xPadl|

4.32)
a k21
6,=—(pT)" '3 [M,:Vu+4,V-u+Q,-VInT
+J,(TVE:—F,)], 4.33)
where
6,=6+3c,8,, (4.34)

ﬂ;"_——_ﬁa +§a’ ﬁz'zﬁ;_‘@a (Qa =$a /ma) . (4.39)

Therefore, 1" is seen as the chemical potential of species
a subject to the external field. Thus, if the external field
is electrical, then 15" is the electrochemical potential.
The other symbols in these equations are

oW =p® =Tr(h¥'f,) (4.36)

with @, =1, /T. The derivation of (4.31) is given in Ap-
pendix B. It must be noted that by the matching condi-
tions taken in (4.9), the Gibbs-Duhem relation can be
written

S ¢, d il =6d,(1/T)+vd,(p, /T) . (4.37)

This relation, used to derive (4.31), follows from (4.11a)
and (4.3) and the equilibrium Gibbs relation for the en-
tropy that follows from the latter. Therefore, from the
standpoint of irreversible thermodynamics, the matching
conditions introduced are essential and, without them,
the parameters appearing in (4.31) and (4.32) do not have
operational thermodynamic meanings, rendering (4.31)
and (4.32) to be an empty mathematical symbolism. Note
that the compensation differential d,¥ is in the same
form as for the classical theory. It is reasonable that the
mathematical structure of the theory of irreversible pro-
cesses is the same for both quantum and classical systems
since irreversible thermodynamics is a description at the
continuum macroscopic level of many-particle systems
and macroscopic variables per se are not quantum
mechanical, although they are the statistical averages of
quantum mechanical operators computed with a quan-
tum mechanical density matrix.

As in the classical theory, one can draw the conclusion
that the entropy differential d,# is not an exact
differential in the macroscopic variable space € spanned
by 6,v,c,, and @‘a"), 1<a <r, k21 because &; does not
vanish away from equilibrium. The balance equation for
¥ can be obtained from (4.31) and (3.51) together with
the expressions (4.29) and (4.30) for the entropy flux and
the entropy production
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r
pd¥V=—V-|T7'3(Q,—f,JI,)
a
r
+T7 'y kz XPyp+3,
a k21

r
+8,+T7!'3 3 XPAP .

a k21

(4.38)

Therefore, if one is inclined to regard the compensation
function ¢ as an extended form of the Clausius entropy,
then the corresponding extended entropy flux should be
defined by

r r
Joomp=T_12(Qa_ﬁaJa)+T—lz ka)¢gk)+qu
a a k21
(4.39)
and the extended entropy production by
r
Oeomp=0LFTT '3 3 XFAPL . (4.40)

a k21

The implications of this balance equation need further
elaboration, especially with regard to the second law of
thermodynamics, and it will be done elsewhere in the fu-
ture.

V. DISCUSSION AND CONCLUDING REMARKS

The principal aim of this paper is in formulating a for-
mal theory of irreversible processes in dilute quantum
gases by using the density matrix. It is found that the
mathematical structure of irreversible thermodynamics
for quantum gases remains the same as for the classical
gases, except for the statistical definitions of macroscopic
variables made in terms of the density matrix and sym-
metrized operators and a contribution to the entropy
arising as a quantum correction. Various authors [13]
showed in the literature that the balance equations for
conserved variables (conservation laws) have the same
forms as their classical counterparts. Therefore, it is not
too surprising that the structure of irreversible thermo-
dynamics should have the same structure as the classical
theory. Nevertheless, it hitherto has remained undemon-
strated even with a particular model and this paper
achieves the goal, at least, in a partial measure with a
special model. The theory of transport processes remains
to be developed. The present mathematical formalism
can serve as the starting point of such a theory. The fact
that the mathematical structure of the macroscopic evo-
lution equations for the present quantum system remains
the same as for the classical systems clearly suggests that
the theory of quantum transport processes will be parallel
to the classical counterpart. We will report on it in the
near future.

Irreversible thermodynamics is necessarily formal in
structure since it is a theoretical framework within which
all macroscopic processes must be described in conforma-
tion to the thermodynamic principles. For this reason we
have deliberately tried to remain formal, especially with
regards to the transition probability W', except for
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some general symmetry conditions that it must satisfy.
These symmetry relations are sufficient for proving the H
theorem and the Onsager reciprocal relations for phe-
nomenological coefficients (transport coefficients) and
thus for making the theory of irreversible processes for-
mulated consistent with the thermodynamic laws. When
a specific form is used for W'§’ for a given dynamical sys-
tem, it is possible to describe the irreversible process of
interest for the system in question. Elucidation of W’
for dynamical systems falls in the category of studies in
transport processes in the system and thus is outside the
scope of the question addressed in this work, namely, the
theoretical structure of irreversible thermodynamics.
Such studies have been already made as applications of
the present theory to transport phenomena, such as mag-
netoconductivities in a quantum wire [18], in semicon-
ductors subjected to a large external field. Applications
to other aspects of semiconductor phenomena will be re-
ported in the near future.

To help the reader grasp the applicability of the
present theory, we indicate that the transition probability
Wk k,|k,k,) for the collision process (k,,k;)
—(k,,k; ) may be given in terms of the transition matrix
element T(k,k,|k,k}) obeying the quantum mechanical
Lippmann-Schwinger equation for scattering [20]:

WAk, k, |k, k})
=27 /%) T(k,k,|k,k})
+P,, T(k,k,|k,k})|?

X8(E,,—E,,)8(k, +k, —k; —k}), (5.1)
where P,, is the symmetrization operator which gives
rise to an appropriately symmetrized transition matrix
element with a plus sign for boson or a minus sign for fer-
mions attached to it. The right-hand side of (5.1) is basi-
cally proportional to the differential cross section for the
collision process (k,;,k,)—(k;,k;), which clearly
satisfies the microscopic reversibility. The transition ma-
trix element can be in principle determined from the
Schrodinger equation or the Lippmann-Schwinger equa-
tion [19] once the interaction potential is assumed for the
process. We note that the microscopic reversibility
satisfied by W'®)(k k, |k’ Kk} ), namely,

WAk, k, k. k,)=WE(k,k, |k, k,), (5.2)
gives rise to symmetry relations between collision bracket
integrals [3] arising from the collision integral R[f,] and
thus ultimately to the Onsager reciprocal relations be-
tween transport coefficients. Such relations can be shown
explicitly and in a straightforward manner by developing
theory of transport processes on the basis of the extended
hydrodynamic equations presented here, if the procedure
described in Ref. [3] is followed. Lack of space does not
permit us to dwell in detail on this subject here, which
does not involve anything new as far as the methodology
is concerned. Therefore, we simply present the result for
a special case where only diffusions are present. Without
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loss of generality of the essential point we will confine the
discussion to a linear process. In this case, it can be
shown that the dissipation term for diffusion is approxi-
mated by the linear form

aa =158 Tr[(R," +h," —h "

_}Ta(4)* )(h;4)+h (4)

+ 3 1% Tr[(A —hP )(h§ —ni W,
b+#a

Rap =167 Trl (A — kD ) (mi —h{*)

where
Q. =[(1—e,fO)1—¢,£))]72. (5.5)
In (5.3) we have used the approximation X\¥=—1J, /p,.

The trace in (5.4) is taken for particles a and b and the as-
terisk means the post-collision value and the prime on a
means another particle of species a. The parameter g is
defined by g =(mB)'/2/(nd )?, where m is the mean mass
and d is the mean size parameter of the particles. On
substitution (5.3) into (3.46) or (3.44d), we obtain the
diffusion flux evolution equation from which the diffusion
coefficients can be extracted. Clearly, the collision brack-
et integrals (5.4b) satisfy the Onsager rec1procal relations
because of the symmetry properties of W'§ postulated.

It was mentioned earlier in Sec. IV that the nonequili-
brium canonical form (4.27) or (4.12) with the expansion
(4.21) is a projection of the Hilbert space density matrix
or, more precisely, a resummation of the projection
(4.15), that is, the quantum Maxwell-Grad moment ex-
pansion. We emphasize that the quantum Maxwell-Grad
moment expansion is not a pure Hilbert space density
matrix, but a hybrid of Hilbert space operators and con-
jugate macroscopic variables. This manner of dually ex-
pressing the density matrix in two different spaces, one
representing fine-grained states of the system and the oth-
er the average states of the system at the macroscopic
level, exacts a cost from the entropy density. The cost is
that the entropy is not a state function in the macroscop-
ic variable space chosen. However, the situation is not
J

3 TeARE, 1= 3 S Tr{(A,+ 4,
a '@ a b

(a )

since A, + A, —

fo f Qab ]

w0 90,1 (a#b),

W £, (14e,f,)(1+e,f,)—

A,— A, =0 by the fact that A4,, etc. are collision invariants.
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AN=—Bg) 'S Rupps 'Tp s (5.3)
b=1
where the collision bracket integral R, is given by
—h" —hi IWeo £ feQur]
(5.4a)
(5.4b)

too serious for the theory of irreversible processes since
there still exists a state function in the chosen macroscop-
ic space on which irreversible thermodynamics can be
built, that is, the compensation function and its
differential. There is much work to be done in the theory
of irreversible thermodynamics along the line suggested
by the theory presented here.

We reiterate that the parameter T=(kzB)"! in (4.27)
and (4.32) is the absolute temperature at position r in the
system and at time ¢, and this is due to the matching con-
ditions discussed earlier. The integrability [20] of the
differential d,¥ implies that ¥ can be constructed in
terms of such T among other variables relevant to the
nonequilibrium system of interest. It must be recalled
that the notion of contact temperature, which is the tem-
perature of the heat reservoir in contact locally with the
system, plays a role in this identification of T with the lo-
cal absolute temperature, and with the temperature T so
identified, d,¥ can be used for developing irreversible
thermodynamics parallel to equilibrium thermodynamics.

APPENDIX A: THE H THEOREM
FOR THE BNUU MODEL

In this appendix we show the BNUU model satisfies
the condition (2.8a) and (2.8b) required of the collision
term R[f,]. On multiplication of collision invariant
operator 4, to R[f,], summation over species, and tak-
ing trace, we find

£,6,(1+e, £,)(1+e, £5)]} =0

(A1)

Thus condition (2.8a) is satisfied.

Proceeding similarly with multiplication of In(g, + f, !) by R[ f, ], we obtain

é'{l‘{{ln(ea+f;l)§R[fa]}

fof(1+e,f,)(1+¢e,f,)
f,f,(1+e, f,)(1+e,f})

ror
=133 T e
a b (ab

[f,a f’(l+Ea fa )(1+Ebfb)_

£, f,(1+e,f£,)(1+e,£3)] [ =0 .

(A2)
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This is the H theorem for the BNUU model.

APPENDIX B: DERIVATION OF THE DIFFERENTIAL FORM FOR ENTROPY

In this appendix we present the derivation of the differential form for the entropy density in (4.31). Since the external
field is assumed to be homogeneous, the field contribution to the Hamiltonian H, may be absorbed into the normaliza-
tion factor u,. Thus we define u, =u, —B,. With this definition, the density matrix f, may be written as

f,=[expB(HS+H! —pu’)—e,17!. (B1)
On substitution of this form into (3.51) [see (3.49) for the definitions of ¥ and €, ], we obtain (4.30), for J,

J —T"‘E(Qa I )+T'S S XPyo+3,,

a k>1
(B2a)
r
Jo=kp X Tr3[C,{8,¢e, In(1+¢,f, )} +{8,¢, In(1+¢,f,)}C,] . (B2b)
a
The entropy production is given by (4.29):
O o= -1 2 2 X(k)A(k) (B3)
a k21
These quantities form the entropy balance equation in the form
pLs=—v1 +0 (B4)

d ent

as a local representation of the H theorem since o, >0, the equality holding valid only at equilibrium.

The dissipation terms A'¥, Q,, and J, can be eliminated from the entropy balance equation (B4) if the evolution
equation (3.44) for ®{¥, the energy balance equation (3.15), and the mass fraction balance equation (3.10) are used. The
entropy balance equation is then cast into the form

d,§=T"'|d,6+pd,v— Z;Ladc 2 S xKd, & [+(pT) 1z[n :‘Vu+A,V-u+Q,-VInT+J,«(TVGE,—F,)]
a k21
r r
HY D 3 XY |+ 3 3 X7 (B5)
a k=1 a k21
where i, =fi, /t and X.©'=Xx'%/T.
By using the definition of Z!¥), it is possible to show
2 > Xyt | 4 2 b Xz = — @lg XH 4 ETT [33_ 2 XORY (i)~ 1 [H,, s izk)l—lzk)] H )
a k>1 a k>1 k21
(B6)
The second term on the right-hand side can be rewritten as
3 XPER (i)~ [H,, S XPER =2 (ag.8,)— (i#) " '[H,, A5, ]
at k=1 k=1 at
3 g, +f;! l N g, + 1! ‘”
+ky\—8,In |————— |—(iA) "' |H,8,In | ————— .
lat T g, +(£0)! @I g, H(£0)7!
(B7)
The first two terms on the right-hand side, when substituted into (B6), give rise to the formula
r r
p3c.dAp,+ 3T, -V(AG,) . (B8)
a a

Since the equation
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S ¢, d, 5 =6d,(1/T)+vd,(p,/T) (B9)

holds, for which the matching conditions on energy and density are used, on substitution of this equation into (B8), we
obtain

p>c,dji,—6d,(1/T)—vd,(p,/T)+ 3,-V(AL,) . (B10)
a a
The last term in (B7), when summed over species and taken trace, can be recast into the form
A1 —p o /T]=V-To—ky $Tr |25, 1n [~ | it |5, 1n | —Set fe Bl
pt[p PV ] sq B§ r ot q 1N €a+(f2)_l ! a»0q 1N Ea+(f2)_1 ’ ( )

where the pressures are defined by the statistical formulas

Pa=B ' Tr[8,¢, In(1+¢,f,)] ,

P= 3P,

p,e=B; ' Tr[8,e, In(1+¢,f2)]

Pe= 2P,
a

(B12a)

(B12b)

Note that B, in p, can be replaced with B by the temperature matching condition and therefore p and p, are multiplied
by the same T~ ! in (B11). Combining these results, we obtain the desired results

d,eS°=d,‘I’—5L

for the entropy balance equation.

(B13)
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