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Conditions for the ayyearance of wave chaos in quantum singular systems with a pointlike scatterer
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In this paper, we discuss quantum properties of singular systems with a single pointlike scatterer that
are almost integrable (pseudointegrable). Special emphasis is placed on the investigation of the appear-
ance of so-called wave chaos. Based on a general argument, we deduce the necessary condition for the
appearance of wave chaos in singular systems with a pointlike scatterer. Numerical results of a rec-
tangular billiard with a single pointlike scatterer show that the signature of wave chaos is observed in

various energy regions according to the value of the coupling constant of the scatterer, as expected from
the general argument.

PACS number(s): 05.45.+b

I. INTRODUCTION

Chaos can be rigorously defined in classical mechanics.
The essential mechanism which brings about chaos is
known to be the stretching and folding mechanism [1—4].
Stretching occurs along unstable directions, while folding
occurs along stable directions. The average magnitude of
the stretching is expressed by the Lyapunov exponent.
We can regard deterministic systems as chaotic if and
only if the Lyapunov exponent is positive.

Contrary to classical mechanics, persistent stretching
and folding does not seem to occur in quantum mechan-
ics. From the viewpoint of algorithmic complexity [5], it
is known that autonomous bounded quantum systems are
not chaotic in general. Even in a kicked rotator, which is
a driven system, it is observed [6] that the quantum ener-

gy never persistently diffuses as it does classically. The
main concerns of studying chaos in quantum mechanics,
which is often abbreviated as quantum chaos, do not con-
sist in seeking persistent stretching, but in understanding
generic quantum properties of quantized classically
chaotic systems. It is considered one of the main aspects
of quantum chaology [7,8] to understand, in terms of
quantum mechanics, the necessary and suScient condi-
tions for deterministic systems to be classically chaotic.

Concerning autonomous bounded, systems, a large
number of theoretical and numerical studies have been
performed and have revealed an intimate relation be-
tween the quantutn spectrum (energy levels and wave
functions) and the underlying classical dynamics. There is
a conjecture that the local level statistics for classically
chaotic systems are well described in terms of random
matrix theory [9,10]. In particular, if the Hamiltonian
has a time reversal symmetry, the level statistics are de-
scribed in terms of a Gaussian orthogonal ensemble
(GOE). This is in sharp contrast with the level statistics
for classically integrable systems, which are described by
Poisson statistics in generic case [11].

Quantum aspects of so-called almost integrable [12]
(pseudointegrable [13]) billiards have attracted renewed
attention in recent years [14]. Rational polygons or rec-
tangular staircases are typical examples of such billiards.

From the classical viewpoint, almost integrable systems
can be considered as integrable in the sense that all orbits
are stable except unstable orbits which are of measure
zero. A straightforward application of the correspon-
dence between the level statistics and the classical dy-
namics implies that the level statistics of almost integra-
ble systems are not substantially different from Poisson
statistics. Some numerical studies have, however, re-
vealed that this is not the case. It is observed in rec-
tangular staircases [15] that the level statistics gradually
approach GOE predictions as the number of steps in-
creases. The level statistics close to GOE predictions are
also observed in rational polygons [16]. Indeed, it has
been recently asserted [17] that finite mathematics is in-
dispensable for understanding the physics of rational po-
lygons and indicates that such polygons can actually have
a positive Lyapunov exponent, contrary to assertions
based on continuum mathematics.

Another interesting example of almost integrable sys-
tems is a singular billiard with a single pointlike scatterer,
which is obtained by attaching a pointlike obstacle to an
integrable bilhard. One of the specific features of such
singular systems is that they have an additional system
parameter, that is, the coupling constant of the scatterer,
which does not exist for rational polygons or rectangular
staircases. (We will later introduce two kinds of coupling
constants in this paper: the bare coupling constant and
the physical coupling constant. Unless there is danger of
confusion, the former is merely referred to as the cou-
pling constant. ) The authors of Ref. [18]have examined
the case of a rectangular billiard and observed that the
chaotic spectrum emerges if the coupling constant of the
scatterer is large enough. This phenomenon has been
called wave chaos because its appearance is attributed to
purely quantum effects: owing to the uncertainty princi-
ple, the pointlike particle moving in the billiard gains a
"size" and indeed hits the pointlike obstacle. Despite the
plausible and attractive notion of wave chaos, the authors
of Ref. [19] have recently noticed that the basis taken
into account in the calculation in Ref. [18] is overly trun-
cated and have shown that the level statistics never ap-
proach GOE predictions even if the coupling constant is
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infinite.
One of the main purposes of this paper is to give a

definite answer to questions concerning rectangular bil-
liards with a single pointlike scatterer, particularly
whether or not wave chaos exists and, if it exists, what
the condition is for its appearance. To this end, we con-
sider a general case where a single pointlike scatterer is
attached to an autonomous bounded integrable system,
and deduce the necessary condition for the appearance of
wave chaos. In Sec. II we briefly review a rigorous treat-
ment for singular systems with a pointlike scatterer
which is based on self-adjoint extension theory. A cou-
pling constant of the scatterer, which will be referred to
as the bare coupling constant in this paper, will be formal-
ly defined in a natural way following this theory. Some
general properties of singular systems with a pointlike
scatterer are clarified in Sec. III. First, we examine a sim-
ple one-dimensional case in order to extract the physical
meaning of the bare coupling constant. We will see that
it is not a direct measure of the strength of the scatterer
in the physical sense. We then attempt to deSne another
coupling constant of the scatterer in such a way that it
directly represents the physical strength of the scatterer.
It will be referred to as the physical coupling constant in
this paper. It will be shown that things are quite different
according to whether a & 0 or 0(a & 1, where a is
deSned so that the average level density of the integrable
system is p,„(E}-Efor large energy E. While the phys-
ical couphng constant can be defined in a straightforward
manner for a &0, this is not the case for 0 & a & l. Intro-
ducing an effective basis; however, we obtain the condi-
tion for the physically strong coupling for the latter case.
A remarkable feature in the case of 0&a (1 is that the
energy region where the physically strong coupling
emerges is difFerent according to the value of the bare
coupling constant. We apply, in Sec. IV, the general con-
sideration made in the preceding section to a rectangular
billiard with a pointlike scatterer. The validity of our ar-
gument is con5rmed numerically. The quantum spec-
trum of this system is also investigated in detail. It will
be shown that wave chaos indeed appears under the ap-
propriate condition expected from the general argument.
Furthermore, the results obtained in some previous pa-
pers are reexamined from the present point of view. We
summarize the present work in Sec. V.

II. FORMALISM

Several methods are known for solving problems with a
singular (zero-range) scatterer in quantum mechanics

I

q„(x)y„(y)
G(0)(

z n

(2)

where z is the energy variable.
We now proceed to attach a pointlike obstacle to the

integrable system. The first step for this is to remove the
relevant scattering point xo. This is done by restricting

Ho to Ho [D with the domain

D = [y(x) FD (Ho ) ~y(xo) =0] .

It is a straightforward matter to prove that Ho [D is a
symmetric (Hermitian) operator but not a self adj'oint-
operator. In general, a self-adjoint operator is a sym-
metric operator. The converse is, however, not necessari-
ly valid. The self-adjointness is required for the Hamil-
tonian in quantum mechanics in order to ensure the uni-

tarity of the time evolution operator. The general
prescription for extending a symmetric operator to self-
adjoint operators is given within the framework of self-
adjoint extension theory. The theory tells us that if

(4)

then all of the self-adjoint extensions of Ho [D are given

by a one-parameter family of the Hamiltonian

He =Ho,

with the domain

[20,21]. One of them is based on seif-adjoint extension
theory, originally developed by von Neumann. Its appli-
cations for bounded singular systems are given in Refs.
[18,22]. In this section, we will give a brief sketch of the
formalism, restricting ourselves to necessary points for
the following discussion. It can readily be seen that a
coupling constant of the singular scatterer is formally in-

troduced in a natural way following the theory.
Suppose that an autonomous bounded integrable sys-

tem with the Hamiltonian Ho is given. Let E„andy„(x)
(n =1,2, 3, . . . ) be the energy eigenvalues and the corre-
sponding eigenfunctions of Ho, respectively,

Hog„(x)=E„y„(x).
The domain of Ho, D(HO), is a set of square-integrable
functions with an appropriate boundary condition. The
Green's function of the integrable system is given by

D(He)=[1i(x)~if/(x)=q(x)+cG'"(x, xo,.+i) ce'eG"'(—x, xo , —i);g(x)e. D, CEC,O&e&27rj .

The condition of Eq. (4) can be rewritten in terms of the average level density of the unperturbed integrable system,

p,„(E),as follows:

p,„(E)f dE&+ao .
o E'+1

This indicates that if

p (E)-E
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for large energy E, then a & 1 is required.
Let us suppose in the following that a & 1 holds. In this case, it is known that the Green s function for the system

with the Hamiltonian He is given by

Ge(x, y;z)=G' '(x, y;z)+G' '(x, xo;z)Te(xo;z)G' '(xo, y;z), (9)

where Te(xo;z) corresponds to the transition matrix (T matrix) in the scattering theory and is given in terms of the un-

perturbed Green's function as

T(z):Te—(xo;z)

e' —1

(i —z) jG' '(x, xo;z)G' '(x, xo;+i)dx+e' (i+z)fG' '(x, xo;z)G' '(x, xo; i)—dx
(10)

Substituting Eq. (2) into Eq. (10) yields the T matrix

T(z)=[vs ' —G(z)]

where

sine
)E~ + (12)

of Eq. (9):

lt„(x)=N„G''(x, xo;z„},
where the normalization factor N„is determined by

o( (x ))'

(z„EI}—

(15)

(16}

G(z)=G(xo', z)= g (q)„(xo)) + (13)
III. BARE VERSUS PHYSICAL

COUPLING CONSTANTS OF THE SCATTERER

Note that v~ ranges over all real numbers as 0&e (2~.
A perturbed system can be uniquely specified by assign-
ing a real number va (and the position xo of the scatterer).
In this sense, va might be considered as a coupling con-
stant of the scatterer. We will hereafter refer to va as the
bare coupling constant.

We can realize from Eq. (11) that the eigenvalue prob-
lem of the perturbed singular system is reduced to finding
all roots of the transcendental equation

G(z)=vs ' . (14)

Figure 1 shows a schematic graph of G(z). It can be seen
that because G(z) is a monotonously decreasing function
of z between two unperturbed energies, each solution of
Eq. (14) is isolated between them. It should also be noted
that G(z} has just one infiection point between two un-
perturbed energies. The physical meaning of the
infiection points of G(z) will be discussed in detail later in
this paper.

The eigenfunction g„(x)with eigenvalue z =z„,which
is the nth root of Eq. (14), is obtained by analyzing the
residue of the corresponding pole of the Green's function

In the preceding section the bare coupling constant of
the scatterer, va, has been defined by following self-
adjoint extension theory. The physical meaning of vz is,
however, not clear at this stage. It will be shown in this
section that va should not be considered as a direct mea-
sure of the strength of the scatterer from the physical
point of view. In order to obtain such a measure, we will
introduce another coupling constant and make clear the
relation between the two coupling constants.

In order to clarify the reason for introducing another
coupling constant of the scatterer, we begin by examining
a one-dimensional billiard problem with a pointlike
scatterer, which we frequently come across in standard
textbooks of quantum mechanics. Not only is this easy to
handle but it also has the merit that we know from the
start how to define a coupling constant which directly
represents the strength of the scatterer. In addition, it
serves to make clear the relation between the two cou-
pling constants.

Suppose that a pointlike particle with mass M =
—,
' is

moving in a one-dimensional billiard with length I =m.
The Hamiltonian of this system is

dHo= — + V(x),
dx

where the potential is given by

(17)

Z
En+ s

o, 0&x~~
oo otherwise . {18)

The eigenvalues E„andthe corresponding eigenfunctions

y„(x)(n = 1,2, 3, . . . ) of Ho are given by

FIG. 1. Schematic graph of G(z) in pq. (13). and

E„=n (19}
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p„(x)=v'(2/m. ) sinnx,

respectively. Let us attach a pointlike obstacle to the bil-
liard. To avoid numerical complexity, the position of the
obstacle is supposed to be the center of the billiard
[xo=(m/2)]. In this case, the stationary Schrodinger
equation is written as

g (q2„ i(~/2))'
n=1 z —E2„

+ Ezn —)

Eon-~+1
—1=Up

(28)

[See Eqs. (13) and (14).] A direct comparison with Eq.
(27) and Eq. (28) tells us that vii differs from vi, and
indeed yields

H+U6 x ——
0 P g(x) =zg(x), (21)

v~ '=vii ' —g (y2„,(n./2))
n=1 E',„,+1

(29)

It is a well-known fact that the jump of the derivative of
the wave function at the pointlike obstacle is proportion-
al to UP. Because the system has a re6ection symmetry
(x~n x), we c—an assume the wave function in the left
half as

7T
i)'j(x) =c sinkx 0 x

2
(23)

and in the right half as

P(x) =c sink (m. —x) 7r—&x &~
2

(24)

where c is a normalization constant. [The continuity of
the wave function at xo=(m/2) has already been taken
into account by employing the same normalization con-
stant in Eqs. (23) and (24).] Using the condition of Eq.
(22), we can obtain the following equation, which deter-
mines the perturbed eigenvalue z =k:

1 km

2k
tan =Up

%ith the aid of

(25)

7T 7Tx
tan

4x 2

00
1

„=,x —(2n —1)
(26)

and using (yz„,(~/2)) =(2/vr) and E2„,=(2n —1),
we can rewrite Eq. (25) as

(y2„ i(m /2) )

z —Ezn —
&

—1=Up (27)

Note that, because we have located the obstacle at the
center of the bilhard, it affects only even parity unper-
turbed eigenstates [p„(x)with odd n]

On the other hand, if we apply the formalism in the
preceding section to this simple system, we can obtain

where z and g(x) are an eigenvalue and a corresponding
eigenfunction of the perturbed system, respectively. The
value of a real number vt, in Eq. (21) can be considered as
a measure of the physical strength of the scatterer as we
might naturally expect.

The integration of Eq. (21) over an infinitesimal range
which includes the position of the obstacle, xo=(m. /2),
leads to

r r

lim it/ —+ri —g' ——rl =vpy — (22)
ggo 2 QC E

vp
' ——vii

' —g (q „(x,))' E„+1 (30)

In the following argument, we will refer to UP defined by
Eq. (30) as the physical coupling constant. In terms of vp,
the T matrix of Eq. (11) is rewritten as

T(z)=[v~ ' —G' '(xo, xo, z)]
The physical meaning of Eq. (31) is clearly seen by ex-
panding the right-hand side (rhs) in a Taylor series,

(31)

T(z)=vp g (G' '(xo, xo, z)vt, )" . (32)
n=0

Considering that the Green's function G'"'(x, y;z)
represents a particle propagation from x to y, we realize
that the T matrix of Eq. (32) represents a sum of multiple
scatterings by the pointlike obstacle with the coupling
constant Up. This also justifies our identification of UP

with the physical strength of the scatterer.
It is important to notice that the above discussion has

one subtle problem concerning the convergence of an
infinite series. The infinite series on the rhs of Eq. (30)
converges if and only if a(0 in Eq. (8). (In case of the
one-dimensional billiard problem, a= —

—,'. Hence, the
infinite series converges. ) Therefore the definition of the
physical coupling constant v~ in Eq. (30) is justified if and
only if a&0. In this case, the difference between the
inverses of the bare and physical coupling constants is
nothing but the limit of the infinite series, which is a cer-
tain constant value independent of energy z. For
0 ~ a & 1, however, the definition of the physical coupling
constant in Eq. (30) loses its meaning. Thus, we are
forced to deal with Uz explicitly. Then how should we

recognize the strength of the scatterer in the physical
sense7

In order to clarify essential points for 0 ~ a & 1, we first
notice the fact that although each of the two terms on the
rhs of Eq. (13) diverges when summed separately, the
sum of the two together converges into a finite value (at
fixed z+E„).Therefore, even if we restrict the infinite

A lesson which we obtain from the one-dimensional
billiard problem just discussed is summarized as follows.
First, the bare coupling constant U~ introduced in the
preceding section can never be a direct measure of the
strength of the pointlike scatterer. Second, we can realize
a prescription for how to define, in terms of u~, a cou-
pling constant which directly represents the strength of
the scatterer: we should dejfne such a coupling constant
by
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„=t(2n —1) 8
(34)

we obtain

& IG'(&)I &p,„'-~2&(q„(x,))'&p,„. (35)

The above consideration leads us to the conclusion that
the upper bound on the allowable error in G(z), say e, is

(36)

{This, of course, does not mean that e is exactly
((y„(xo)} )p,„,but that e is of the order of, or approxi-
mately, ((qr„(xu)) )p,„.) Note that we have implicitly as-
sumed in Eq. (33) that the average level density p, „

is con-
stant over the whole energy region. This is not the case
in general. Nevertheless, this assumption is quite ade-
quate because the series on the left-hand side (lhs) of Eq.
(34) converges rapidly into the hmit. This means that e
can be estimated in terms of the locally averaged quanti-
ties in the energy region under consideration.

We stress that although the physical meaning of e
might not necessarily be clear at this stage, it is not a
mere error in G(z} and should be taken as a certain finite

series within a finite number of terms, say n,„,the error
induced in G(z) can be controlled within an arbitrary ac-
curacy by taking nm, „assuSciently large. Keeping in
mind that any physical essence must never be lost, we be-
gin by making an estimate of the upper bound on the al-
lowable error in G(z).

It is obvious from Eq. (15) that if a perturbed energy ei-
genvalue is close to an unperturbed energy eigenvalue
then the corresponding perturbed eigenfunction is not ap-
preciably difFerent from the corresponding unperturbed
eigenfunction. This is because the Green's function on
the rhs of Eq. (15) can be approximated by a single term
which has a pole at the unperturbed energy and the resi-
due of which is proportional to the unperturbed eigen-
function. This indicates that disturbance by the obstacle
could be visualized only for the eigenstates having an ei-
genvalue z„such that G(z) has an inflection point in the
vicinity of the eigenvalue z„(seeFig. 1). This gives us a
criterion for an estimate of the upper bound on the error
in G(z): we can allow the error involved in approximat-
ing G(z) by a finite summation to the extent that it does
not essentially change G(z) in the vicinity of the
inflection points. This means that the magnitude of the
allowable error in G(z) should be appreciably smaller
than ( IG'(F)I )p,„',the product of the average absolute
value of the derivative of G(z) at the inflection points 2'

and the mean level spacing. Here, the average ( ) is tak-
en over the energy region under consideration. Let us
make an estimate of the product just mentioned. Assume
that p,„canbe considered as constant in the energy re-
gion. Replacing {y„(xu)) in G(z) by the average value
and assuming that the inflection points of G(z) appear at
the midpoint between two neighboring unperturbed ener-
gies, we can loosely estimate

(IG'(~)I)p.-„'-((9„(*.) }2& y
(n —

—,'}p,„']''"
Using

value as estimated above. The magnitude of e can be
considered to represent an extent of the allowable error in
vz '. In other words, the physics in the energy region un-
der consideration is not distorted by changing v~ by an
extent of e.

Let us proceed to the next step. We define an effective
basis by [y„(x)] [n =1,2, 3, . . . , n, ff(z, e)], where
n, ff(z, e) is determined by

(q „(xo))' +
( )+ 1

z —E„E+ 1
(37)

or, equivalently,

neff(z, e) E„
G(z) = g (q)„(xu)) +

z E„E+1 (38)

The number of the unperturbed eigenfunctions consisting
of the effective basis, n,tt(z, e), depends on the energy z as
well as on the value of e just introduced and can be con-
sidered to be a minimum number of the lowest unper-
turbed eigenstates for obtaining G(z) within the accuracy
of e. [Note that the terms with n )n, ff(z, e} in the infinite
series of G(z) have a negative contribution. ] Using Eq.
(38), the transcendental equation of Eq. (14), which deter-
mines perturbed energy eigenvalues, is rewritten as

n ff(z, e)

(y„(xu)) =vs +e . (39)
n=1

1 nE
z —E„E+1

A remarkable feature in Eq. (39} is that the summation
on the lhs is not an infinite series but a finite summation.
This indicates that we have finally come to the point
where the same argument as for a &0 holds for 0 ~ a & 1:
we define the physical coupling constant of the scatterer,
vp(z), by

n«(z, e) E
(vt (z)) '=vs ' — g (y„(xu)) +e,

~=1 E +1 (40)

which depends on the energy z through z explicitly as
well as through e implicitly. In terms of up(z), Eq. (39) is
written as

n, ff(z, E) (~ (x ))2
=(ut, (z) )

n=1 n

(41)

Immediately, we can see a similarity between Eqs. (41)
and (27). Taking a limit (ut, (z) } '~0, we can attain the
condition for the physically strong-coupling limit in
terms of the bare coupling constant vz..

ll eff(z, E') E
v~

' — g {y„(xo)) e. —
E„+1 (42)

Equation (42) indicates the relation which should be
satisfied between vz and z in order for the physically
strong coupling to indeed occur.

One of notable physical indications of Eq. (42) is that
for any positive value of vz there exists an energy z which
satisfies the condition of Eq. (42). This is because n,ft(z, e)
is an increasing function of z and diverges to infinity as
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z ~ 00 (for 0 ~ a & 1). Suppose that we first set us to be a
certain large positive value. Then the strong coupling
occurs at low energy. If the value of u~ decreases adia-
batically, the strong-coupling region shifts to the higher
energy region and diverges to infinity as vs~0 (as the
system gradually approaches the integrable system
without the scatterer). It is also understood that for a
fixed positive value of v~ the physically strong coupling
appears only in the energy region where Eq. (42} is
fulfilled, while it never appears at the lower or higher en-
ergy.

Formally, the above consideration for 0 ~ a & 1 is ap-
plicable to the case of a &0. The essential difFerence be-
tween the two cases is that although the summation on
the rhs of Eq. (42) diverges as z~ ao [n,s(z, e)~ OD ] for
0 ~ a & 1, it converges into a certain finite value for a & 0.
This is consistent with the fact that the value of vz such
that the physically strong coupling appears is indepen-
dent of z for a & 0 as pointed out before.

Before closing this section, we summarize the discus-
sion for 0 a &1. In this case, we have encountered in
the beginning the problem concerning the divergence of
an infinite series. This is because we have attempted to
take into account the whole basis, [y„(x)]
(n =1,2, 3, . . . ), which includes redundant contamina-
tion shading the underlying physics. We have realized,
however, that we need not assign the value of vs

' exactly
as long as we do not miss the infiection points of G(z}.
The magnitude of e is considered to be the upper bound
on the allowable error in vs

' and should be determined
according to the energy region under consideration. An
efFective basis has been introduced as a collection of
necessary and sufhcient lowest unperturbed eigenstates
which reproduce the physics of the perturbed system in
the energy region. By restricting the whole basis to the
efFective basis, we have succeeded not only in removing
negligible contamination without losing any physical
significance, but also in avoiding the divergence of the
infinite series. In this way, we have obtained the condi-
tion for the physically strong coupling to appear for
0&a&1.

IU. WAUE CHAOS IN RECTANGULAR BILLIARDS
%'ITH A POINTLIKE SCATTERER

1 8 8Ho=- + + V(x,y),
2M QZ2 py2

(43)

where the potential is

In this section, we apply the discussion in the preced-
ing section to rectangular billiards with a single pointlike
scatterer. Its validity is con5rmed in numerical results.
Also, statistical properties of energy eigenvalues as well

as wave functions are examined in order to see whether
or not wave chaos appears under the condition expected
from the general argument. Furthermore, some previous
papers are reviewed from the rene~ed viewpoint.

The Hamiltonian of a rectangular billiard with side
lengths l„and1„is given by

0, O~x ~l,O~y ~l
Vx, y

='
otherwise .

By solving the stationary Schrodinger equation for Ho
with the Dirichlet boundary condition that wave func-
tions vanish on the boundary, we can straightforwardly
show that the eigenvalues E„„andthe corresponding

X

eigenfunctions y„„(x,y) (n„,n» =1,2, 3. . . . ) of Ho are
x' y

'2 2 '

n„~
2M l

ny 7T

I
(45)

and

„(x,y) = 4
'

n m.x n~y
sin sin

X y x y

(46)

respectively. We set the mass M =8m and the side lengths
l„=(n/3) and I» =(3/n ) in the following argument. To
simplify things, we consider the case where a pointlike
scatterer is located at the center of the rectangle;
xo= [(I„/2),(l /2)]. In this parametrization, only even-

even parity states (with n„and n odd) are affected by the
obstacle. Arranging the double-indexed eigenvalues and
eigenfunctions of the even-even parity states in ascending
order of magnitude of eigenvalues, E„and p„(x,y)
(n =2, 3, . . . },we obtain

E„
G(z)=4 Q +

E +1
(47)

oo

4 g +
n=n (z e)+[ Z En En+1

(48)

because (p„(x,) )'=4 for any n. The average level density
of the even-even parity states are given by p,„(p)—1 fol
lowing the Weyl formula. This means E„-n.Note that
a=0 for two-dimensional billiards. Therefore, we cannot
define the physical coupling constant vp in a trivial
manner [as in Eq. (30)]. In the following numerical treat-
ment, we take 100000 lowest even-even parity states,
which is enough to obtain suScient convergence in ener-

gy regions under consideration.
Let us begin by finding the condition for the physically

strong coupling following the consideration in the previ-
ous section. It should be described in terms of the bare
coupling constant vz. We first notice that the upper
bound on the allowable error in G(z) (equivalently in
U~ '), e, is of the order of one, independently of z. Indeed
we can estimate e -4 following Eq. (36), because
(y„(xo)) =4 and p,„-l. (That the value of e is 4 is due
to our specific geometrical choice to put the scatterer in
the center of the rectangle. On the other hand, the
energy-independence of e is valid for any xo. Indeed we
will see later in this paper that the amplitude distribution
P(g) takes the same form for any p„except small n).
Hereafter we set a=1, which justifies the following esti-
mate of the number of the unperturbed eigenfunctions
consisting of the effective basis, n, ff(z, e} By followin. g
Eq. (37), n,s(z, e) is determined by
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e. This is because the average of the derivative of G z at
the inflection points as well as the average level density
are independent of the energy. The broken line in Fig. 2
shows the values of 41nz in Eq. (60). It '

t at the inflection points of G(z) actually appear along
t is curve. In order to see the physical importance of the
inflection points of G(z), we show a "transition" of a per-
turbed wave function along G(z) in Fig. 3. Figures

G(z)
)(B (a)

50

E„-n,
a)

n &(z, g) g —Ee& ~ E +1
(49)

Here, we set

F(z,E)=F, (z,E)+F2(E), (50)

F, (z, E)= 1 dE = —in lz El-
z —E (51)

Here, let us re lacep ce the summation by an integral on the
lhs of Eq. (48). Then, because p,„(E)-1and hence

F2(E) —=

E+1dE= —' ln(E +1)

If 1(z &E then
2

F, (z,E)=—InE+ —+—— +. . .E 2 E

Fz(E)=lnE+ 1

E2

holds. Hence

(52)

(53)

(54)
5Q

34

d

e

35 36

F(z,E)=—+. . . . (55) (:(z) I I I I
I

~ 1
/

l I
I

(b) :
i z, an 2(E)Note that the logarithmic terms in F (z E) and F

ul ica'tes t atcancel each other in F(z,E). Equation (55) i d' h 50

4z

n,tf(z, e)

Thus, the approximate estimate of ( )lf eff z, e & is given by

(56)

n, tr(z, e)—4z
(57)

5Q I I I
'

I

395 396 397 398 399
By following Eq. (42), the condition for the physically
strong coupling is determined by

n &(z, e)
dE —e. (58) G(z) I I I

I
I I I I

I
I I I I

I
y I I I

Here we have replaced the summation by an integral on
the rhs as before. ) Equations (52) and (54) indicate that
Eq. (58) can be written as

50

Ug -41 n, n( irez') —6 .
—1 (59)

Keeping Eq. 57) and @=1 in mind and ignoring the
, we nally real-redundant constant on the rhs of Eq. (59) fi

simp e orm.
ize t e condition for the physically strong coupling in a

—50
3996 3997 3998 3999 4000

4

a s a I a i ~ s I aI I I I s s s s

UB 4 1I1Z (60)

Let uet us proceed to check the validity of the present ar-

G(z) in three difl'erent energy regions. Our first
tion is that the es

'
ns. ur rst observa-

e (-1) is
a e estImate of the order of the maga't d f
quite satisfactory: this "resolution" '

niu eo

to cc
o u ion is adequate

'see the inflec, tion points of G(z) in the h
direction. We al

in e orizontal
e also recognize the energy independence of

FIG. 2. Behavior of G(z in
Un ert

) in t"ree differen energy regions.
nperturbed energies are indicated b 1 1y vertica ines on the z

axis. The broken line is a lotp of 41nz. In (a), the coordinates of
the points indicated by a, b, c d
z, (z) )=(34.88, 84.84), (34.93,47.24), (35.16 16.31

), and (35.58,—49.11), respectivel . In (b) h
nates of the oin

'
y. n, t e coordi-

e point indicated by f are (z, G(z) )=(396.50,27.25).
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3(a)-3(e) correspond to the wave function for. the eigen-
states indicated by a —e, respectively, in Fig. 2(a). Each is
considered as the eigenfunction with an eigenvalue z for
the system with Uz '=G(z). From Fig. 3, it can be
confirmed that the mixture of the unperturbed eigenfunc-
tions actually emerges in the vicinity of the inflection
points of G(z), while the wave function does not differ
substantially from one of the unperturbed eigenfunctions
in the region far from the inflection points.

The theoretical and numerical considerations just
made convince us that the condition of Eq. (60) is in-

dispensable for the appearance of wave chaos in our
singular rectangular billiard.

We now stand at the point where we start to investi-
gate statistical properties of the quantum spectrum in-
cluding energy eigenvalues and wave functions, which tell
us whether or not wave chaos indeed appears in rec-
tangular billiards with a single pointlike scatterer. %'e be-
gin by examining the amplitude distribution P(f) [23],
which corresponds to the probability of finding a value of
wave function. For quantized classically chaotic billiards
with area S, there is a conjecture [23,24] that the proba-

'
I a

!

((- ~ ~ @T
''' ') ( '~o 0 Q~+ '~ o

j((~Do )f~q) @ccvg$(&c&g(stpg@ep~@~(co j
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((~l((~Mjij(I"~!,i ~%i& I'« I ji(((i~ij](((Z3)

"~~Qli~oQ 5)(~I) '4(M)) i~C~
i

~MW)&l(~~)& .+(~ggllitj)QCXj3
iiMi/I~I(M)j)J(~~)Jf(i~~~ j))t~~g'lit~~~

)~&

((Q))tg~b- )jf~PQ(limp~)f(jj@&qg

i&W&LiCM Maji&«Q"~»

FIR. 3. The contour plot of the wave function for the eigenstates indicated by a -e in Fig. 2(a) and f in Fig. 2(b) is shown in (a) —(f),
respectively. Each wave function corresponds to the eigenfunction with an energy eigenvalue z for the system with Uz =G(z). A
pointlike scatterer is located at the center of the billiard.
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FIG. 3. (Continued}

bility is given by
' 1/2

P(g)= S
2' e

—(sP/2) (61)

This might be expected to appear in the physically

I

strong-couphng region in our case. On the other hand,
the following assertion is valid in the weak-coupling hmit
for rectangular billiards, where f is one of the unper-
turbed eigenfunctions Iy„„}in Eq. (46): if we restrict

the domain of 1I to a rectangular subdomain, enclosed by
nodal lines, on which g is positive, then P(f) is given by

P(f)=
P(g}= —K ~, 0&/&»/(4/S)

m (2+v S P) 2+v Sf
0, 4&»/(4/S),

(62)

K(k)= f"
V 1 k sjn6I

(63}

where S =I„I»and K(k) is a complete elliptic integral of
the first kind,

(The result is independent of the value of n )If f is. one
of Ip„„}in Eq. (46} and its domain is restricted to the

aforementioned rectangular subdomain, then P(f) can be
written as

[Note that Eq. (62) is independent of the values of n„and
n» ]Equati. on (62) is verified as follows. First, we consid-
er a one-dimensional case. Let g be one of

q&„(x)=»/(2/I) sin (64)

1/2
2 1

Pi(l;p)= ir 2—If
, 0, g&»/(2/I) .

0& 1I «(2/I)
(6S)

(n =1,2, 3, . . . ). In this case, it is easily shown that if the
domain of p is restricted to segments on which p is posi-
tive, then the amplitude distribution is given by

(66}

Substituting Eq. (65) into the rhs of Eq. (66) and evaluat-
ing the integral lead us to Eq. (62). Equation (62) indi-
cates that if we ignore the fact that, for n„and n odd,
the total domain of g=p„„(justinside the rectangle)

has one more {or less) rectangular subdomains with posi-
tive g than those with negative itI {which is justi6ed for n„
and n„large}, then P(g) on the whole rectangle can be
expressed as follows:

—,'P(i&I), 0& lgl «(4/S)
P( )= '

0, (y(&&(4/S).
Our numerical result of P(P) is shown in Fig. 4. Similar-
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ly, as before, Figs. 4(a)-4(e) correspond to the case of
eigenstates indicated by a —e, respectively, in Fig. 2(a).
The solid line corresponds to the strong-coupling limit in
Eq. (61), while the broken line corresponds to the weak-
coupling limit in Eq. (67). It can be seen from Fig. 4 that
a Gaussian-like shape appears in P{f)in the vicinity of
the inSection point of G(z), while on departing from it
such a shape tends to disappear, returning to a shape like
Eq. {67). In Fig. 4(c}, an asymmetric structure unlike a
Gaussian curve is observed. We sometimes come across
such a structure for small energy. As the energy in-
creases, however, this asymmetry tends to disappear as
shown in Fig. 4(f). This corresponds to the case of the

point f in Fig. 2(b}, the location of which is also in the vi-

cinity of an inflection point of G(z}. Figure 3(f) shows
the corresponding wave function, which again exhibits a
complicated pattern as expected.

%e now proceed to examine the level statistics of our
singular billiard. Figure 5 shows the nearest-neighbor lev-
el spacing distribution P(S) for various values of Us

The statistics are taken within the eigenvalues between

z,ooo and z4ooo in all cases. Also, the spectral rigidity
b,3(L) is shown in Fig. 6 for the same values of Us

' as for
P(S}. The average is taken over the same energy region
as for P (S). It is observed from Figs. 5 and 6 that as the
value of uz

' increases from 0 to 30, the level statistics

0.5

, I ~ I
I

1 I I ~

0.5 (b)-

0.4 0.4

0.3

0.2 0.2

0, 1 0. 1

0. I I I } I I I

0 0

0.5 (c)

i I I I
(

I I I I
)

I 1 I I

0.4 0.4

0.3

0.2 0.2

0. 1

0

0
0

P (4')

0.5 0.5

0.4

0. 1

0
0 0

amphtude 4sMbunon P (g) for the eigenstates indicated by a -e in Fig. 2(a) and f in Fig. 2(b) is shown in (a)-(f),
phag limit iu Eq. (61), wh

Eq. (67).
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FIG. 5. The nearest-neighbor level spacing distribution P(S) is shown for U~ =0, 10, 20, 30, 40, 50, and 100. The statistics are
taken within the eigenvalues between zi~ and z4000 in all cases. The solid (broken) line is the Wigner (Poisson) distribution.
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900-1100
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1300-1500
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1900-2100
2100-2300
2300-2500
2500—2700
2700—2900
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3100—3300
3300—3500
3500-3700
3700-3900
3900-4100
4100-4300
4300—4500
4500-4700
4700-4900
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6 083
4 1.0
6 082

1.137
0.724
1.247
0.970
1.015
1.200
1.100
1.030
0.973
1.026
1.471
0.895
0.851
1.060
1.022
1.063
0.958
1.221
1.141
1.305
1.698
1.295

0 081
3 0.94
4 0.70
9 0.961

0.584
1.030
0.797
0.794
1.012
0.902
0.834
0.782
0.843
1.219
0.703
0.680
0.880
0.810
0.849
0.753
1.005
0.926
1.060
1.436
1.083

1 075
5 0.90
6 0.68

0.95
0.584
1.041
0.810
0.828
1.030
0.931
0.869
0.824
0.879
1.289
0.753
0.726
0.921
0.863
0.908
0.806
1.068
0.984
1.130
1.508
1 ~ 145

8 1.060
5 1.249
9 0.953
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0.821
1.394
1.096
1.107
1.336
1.205
1.146
1.057
1.137
1.587
0.972
0.941
1.150
1.112
1.162
1.047
1.310
1.231
1.386
1.828
1.382

0.93
1.15
0.88
1.203
0.771
1.317
1.030
1.073
1.252
1.149
1.087
1.020
1.077
1.527
0.936
0.889
1.108
1.065
1.112
1.004
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1.355
1.747
1.338
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5 081
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0.914
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1.288
0.755
0.730
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0.867
0.893
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1.041
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1.109
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0 1.00
2 075
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0.629
1.088
0.850
0.827
1.041
0.930
0.860
0.792
0.860
1.226
0.705
0.686
0.884
0.809
0.839
0.745
0.990
0.911
1.040
1.426
1.065

9 098
7 1.15
0 087

1.179
0.750
1.277
1.004
0.995
1.214
1.100
1.035
0.946
1.017
1.429
0.856
0.830
1.026
0.984
1.023
0.911
1.167
1.080
1.222
1.647
1.235

2 0.72
64 0.92

5 071
1.011
0.628
1.111
0.864
0.902
1.090
0.998
0.932
0.890
0.939
1.361
0.812
0.777
0.981
0.928
0.976
0.871
1.136
1.049
1.209
1.591
1.211
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1+500 1 E6(z)-4 g +
soo z E„E„+1 (68)

This truncation causes an error in G(z), which is estimat-
ed to be

resemble the unperturbed case (in the energy regions list-
ed in Table I).

From the above results concerning the statistical prop-
erties on the quantum spectrum, we can draw the con-
clusion that waVe chaos indeed occurs in the vicinity of
the inflection points of 6(z) in singular rectangular bil-
liards with a single pointlike scatterer. Because the phys-
ically strong-coupling region has logarithmic dependence
on the energy, it is expected that the signature of wave
chaos can be observed for any positive value of uz. as the
value of Uz decreases to zero, the energy region where
wave chaos occurs shifts to the higher energy region
along the logarithmic curve.

Before closing this section, let us reexamine some pre-
vious papers from the present point of view. In Ref. [19],
it has been shown that in the strong-coupling limit in the
sense of vs '~0, P(S) does not become Wigner-like but
still remains Poisson-like in shape. This observation is
the same as in Fig. 5(a). (Actually, both calculations are
the same except that the statistics are taken within slight-
ly difFerent energy regions. ) The reason for this is easily
recognized in the present context. In the limit of
vz '~0, it is only at low energy that the physically
strong coupling emerges. As the energy increases, the
limit of Uz '~0 tends to depart from the physically
strong-coupling region.

Also, the observation in Ref. [18] can be well under-
stood from the present viewpoint. The authors in Ref.
[18] intend to examine the dynamics of the strong-
coupling limit in the sense of U& ~0 by making a trun-
cation of the basis: in finding the 1th eigenvalue z&(-1),
G{z) is approximated by

V. CONCLUSION

To conclude the paper, we summarize the general ar-
gument which tells us the necessary condition for the ap-
pearance of wave chaos in singular systems with a single
pointlike scatterer.

Suppose that an autonomous bounded integrable sys-

tem with the Hamiltonian Hv is given. Let E„andy„(x)
(n =1,2, 3, . . . ) be the energy eigenvalues and the eigen-

functions of Ho, respectively. Furthermore, assume that
the asymptotic average level density in the high energy

region is

p (E) E~

Then, a &1 is required in order to attach a pointlike
scatterer to the integrable system. In this case, we can
specify a perturbed system by assigning a real number us,
which has been called the bare coupling constant of the
scatterer in this paper. If we define

G(z)= g (y„(xo)) +

where the pointlike obstacle is assumed to be placed at
xo, then the eigenvalue problem of the perturbed system
is reduced to the transcendental equation,

6(z)=us ' .

The dynamics of the singular system is essentially
different accordingly as a &0 or O~a(1. For a &0, we
can define the physical coupling constant vr by

00 En
vp =vB

—g ({pn (XO) ) E„+1
because the infinite series on the rhs converges. The
necessary condition for the appearance of wave chaos is
Up '-0, that is

vs '- g ({p„(xo))E +1

(69)

This leads to

56(z}-4[F(z, i —500)—F(z, 0)—F(z, i +500}], (70)

where F(z, E) is given in Eq. (50). This yields

56(z)-4 lnz, (71)

for large z. Equation (71) indicates that the strong-
coupling limit in the sense of us '~0 in Ref. [18]precise-
ly corresponds to the physically strong-coupling limit in
the sense of us '~41nz[(u~(z)) '~0]. This is the
reason why the authors in Ref. [18] have observed that
P (S) becomes Wigner-like in the hmit of vs '-+0 [actual-
ly (u~(z)) '~0]. Their observation that this property is
energy independent might confirm the validity of our
present discussion: the logarithmic dependence of the
strong-coupling region on the energy indeed continues in
the higher energy region.

For 0 a &1, we cannot define the physical coupling
constant explicitly, contrary to the case where a &0. In
this case, let

e- ( (q&„(xo)) )p,„,
where the average ( ) is taken over the energy region un-
der consideration. We then introduce an effective basis by
[y„(x)][n =1,2, 3, . . . , n, tt(z, e)], where n,tt{z,e) satis-
fies

n ~(z, e)

G(z) = g (y„(xu)) + E„+1
The number of the unperturbed eigenfunctions consisting
of the efFective basis, n, tt{z,e), can be considered as a
necessary and sufficient number of the lowest unper-
turbed eigenstates needed to reproduce the dynamics of
the perturbed system in the energy region under con-
sideration. In terms of e and n,tt(z, e), the necessary con-
dition for the appearance of wave chaos in the perturbed
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system is given by

This indicates that if wave chaos exists it appears in vari-
ous energy regions according to the value of U~.

Note that what we have shown in this paper is the
necessary condition for the appearance of wave chaos. In
general, it depends on the underlying dynamics (eigenval-
ues and eigenfunctions) of integrable systems whether or
not wave chaos actually appear when a pointlike obstacle
is added to them.

For rectangular billiards with a single pointlike scatter-
er, we have shown in this paper that wave chaos indeed
appears under the condition mentioned above. It is ex-
pected that the signature of wave chaos can be observed
for any positive value of vz. As the value of Uz decreases
to zero, the energy region where wave chaos appears
shifts to the higher energy along a logarithmic curve.

Let us close the paper by making two comments.
First, the assumption of the integrability of unperturbed

systems is unnecessary for the general argument made in
this paper. Needless to say, we should refrain from using
the term of wave chaos if unperturbed systems are chaot-
ic in themselves. Second, we have seen that there still ex-
ists an appreciable difference from GOB predictions in
63(L) even for the physically strong co-upling limit. This
might imply that the degree of wave chaos is not strong
for rectangular billiards with a single pointlike scatterer.
Our recent preliminary results show, however, that lk3(L)
becomes closer to GOB predictions as the number of
scatterers increases. This conSrms our present con-
clusion that pointlike obstacles indeed cause wave chaos
in rectangular billiards.
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