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For an arbitrary finite-time thermodynamic or information-based process we derive a lower bound on
cumulative entropy production, as well as the associated optimal operating strategy for minimizing en-

tropy production. The optimal path corresponds to a fixed rate of entropy production in the system,

provided the rate of change is calculated in terms of the natural dimensionless time scale of the system.
The constant thermodynamic speed algorithm for simulated annealing is derived from first principles
and shown to be the leading term in a general expansion which represents the optimal solution. The re-

sults are valid for uniform systems (no spatial gradients) in which the involved intensive thermodynamic

quantities are uniquely defined. The method and conclusions are easily extended to other objective func-

tions, such as minimal loss of availability, and to assorted thermodynamic control variables.

PACS number(s): 05.70.Ln, 02.30.Wd, 02.70.Lq

I. INTRODUCTION

The minimization of dissipation is often an important
objective in thermodynamic and information-based sys-
tems. In thermodynamic systems this translates into
minimizing entropy production, minimizing loss of avai-
lability or, in general, minimizing the loss of a potential
work, which is equivalent to minimizing loss of the ap-
propriate free energy function. Helmholtz free energy is
one specific example for the (T, V, N) ensemble (the
canonical ensemble), i.e., systems in which temperature
T, volume V, and number of particles N are constant.
However, any free energy corresponding to its particular
statistical ensemble may be appropriate to the problem
under consideration; for example, minimizing loss of
Gibbs free energy for the (T,p, N) ensemble, where p
denotes pressure. An earlier optimization of molecular
diffusion through a membrane at constant T, V, and p, p
being the chemical potential of the system [1],would ap-
propriately have been carried out with a grand canonical
ensemble.

In information-based problems such as simulated an-
nealing [2,3], entropy production has an analogy in terms
of the number of questions asked or the number of com-
puter iterations performed [4]. Simulated annealing
refers to stochastic simulation procedures for dealing
with complex combinatorial optimization problems with
a formal analogy to statistical thermodynamics. Many
annealing schedules or cooling strategies have been pro-
posed [2,3,5 —14]. The aim optimally is to find that cool-
ing strategy which minimizes entropy production in the
entire process for given initial and final states or, alterna-
tively, arrives at the lowest energy state in a given time.

In all these cases one can relate to the problem in ther-
modynamic terms. A given system must be brought from
a given initial state to a final state in a fixed, finite time
(or, equivalently, with fixed, finite resources, such as fixed
heat exchanger area in heat exchange problems) with the
least total dissipation. Note the distinction between this
problem and a seemingly similar one analyzed in tradi-
tional irreversible thermodynamics. The problem solved
here is a global or integral one, in which cumulative dissi-
pation over the complete path is to be minimized. The
traditional problem is of a local or differential nature, in
which one considers and minimizes the rate of dissipation
at each instant of time (see, for example, [15—17]). The
two problems are not equivalent and consequently can
have markedly different solutions.

The system's environment is the control through which
we drive the system. Thus the system does not evolve ac-
cording to some nominally naturally occurring kinetic
equation, but rather is actively controlled so as to folio~
the optimal path. In most problems considered to date, a
single control variable only has been considered; for ex-
ample, temperature. Analyses are easily extended, how-
ever, to problems with more than one control variable.
For clarity of illustration and presentation we will restrict
our analysis here to the single control variable problem.

We will derive a lo~er bound on entropy production,
as well as the operating strategy that minimizes entropy
production in a finite-tine process, for any spatially uni-
form thermodynamic system. The validity of the optimal
path is independent of the degree of nonlinearity of the
system, as long as all thermodynamic state variables are
well defined and no gradients exist within the system.
Coupling of the system to the surroundings naturally in-
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volves differences of intensive state variables of non-
neghgible magnitude. We then show how this optimal
operating strategy can be translated into a specific algo-
rithm for how the system. 's temperature should evolve in
time in terms of the system's relaxation time and heat
capacity. The algorithm emerges as a series expansion
about small deviations from equilibrium.

Previously, an algorithm for simulated annealing stud-
ies had been derived based on operating at constant ther-
modynamic speed [18,6,9]. The constant thermodynamic
speed strategy has proven superior to other proposed
paths in a large number of instances [6—8], but not in all
cases [10,11]. Our derivation will show clearly how one
arrives at the constant thermodynamic speed strategy
from first principles, why it is limited to problems where
deviations from equilibrium are small, and how to im-

prove the algorithm by retaining progressively more
terms in the series expansion that represents the nominal-
ly exact result.

Our starting point is requiring minimization of cumu-
lative entropy production, and our control variable is
temperature (pertinent to simulated annealing and to
problems in heat transfer, be it heating or cooling). For
problems where the goal is minimization of loss of poten-
tial work (i.e., minimization of dissipation of the relevant
free energy}, our method is easily adapted to that particu-
lar objective, and the algorithm for the optimal path can
be derived analogously. Furthermore, the control vari-
able can be chemical potential in mass transfer problems,
magnetic field in magnetic systems, stress in elastic sys-
tems, or whatever the appropriate intensive thermo-
dynamic variable may be. Optimal thermodynamic
operating strategies previously derived for problems in
heat transfer [19] and heat engine design [20] follow as
special cases of the more general result derived here.

II. MINIMUM ENTROPY PRODUCTION PATH

In this section we will derive a lower bound on the en-
tropy produced in the universe hS" when a system is tak-
en from a state described by the initial extensive variables
X;=(U;,V;,N;, . . . ) to a state described by the final
values Xf=( Uf, Vf, Nf, . . . ) during a fixed time r, where
U denotes internal energy, V volume, and N particle
number of the system. We will also derive the optimal
operating strategy that will achieve the minimum entropy
production; for example, optimal heating rates in heat ex-
change or optimal cooling schedules in simulated anneal-
ing.

In [21] it was shown that a lower bound on loss of
availability could be calculated from analysis of the rate
of change of internal energy. The same argument enables
one to calculate a lower bound on entropy production
from analysis of the rate of change of entropy [22]. The
general statement would be that a lower bound on dissi-
pation of any thermodynamic free energy can be calculat-
ed by analysis of the rate of change of its corresponding
extensive variable (e.g.; internal energy U for Helmholtz
free energy, enthalpy I for Cxibbs free energy, entropy S
for entropy production, etc.).

In analogy to the analysis of [21],the instantaneous en-

tropy production dS" can be expressed in terms of
changes in the conjugate extensive variables X and inten-
sive variables Y by

dS"=EY-dX, (2.1)

where

BS BS BS 1
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S gU+ 1 & S
2 QU'

where hU=U —U' is the deviation of system energy
from its hypothetical value U' if it were in equilibrium
with the environment. The first term on the right-hand
side of Eq. (2.2) includes the thermodynamic metric
D S= [8 S/BX,.BX1] first introduced by Weinhold at a
point [23] and later extensively studied by Salamon and
co-workers [24—26, 18]. Evaluating the derivatives in Eq.
(2.2) yields

1 1 —1 e(T}hU+ hU +T' CT C T
(2.3)

p denotes the chemical potential and S the entropy of the
system; hY= Y—Y' is the difference in intensity between
the system's value Y and the environment's value Y' that
gives rise to the flow of extensity dX from the environ-
ment to the system. Our goal is to derive that operating
strategy, or environment path, Y'(t) (t=time), which
will take the system from X, to Xf in time v. while pro-
ducing as little entropy as possible along the way.

An earlier attempt to derive the optimal operating stra-
tegy for Y'(t ) relied upon a hypothesis that the system al-
ways be kept a fixed number of standard deviations in en-
ergy from the environment's energy [9]. Our derivation
stems directly from the requirement of minimal entropy
production and can generate the optimal operating stra-
tegy as an expansion, the leading term of which is the
same as the result of [9]. This leading term, however,
turns out to be the overwhelmingly dominant term in
problems where the process time is long compared to the
system's relaxation time (e.g., for well-annealed systems
in simulated annealing).

Our derivation provides a direct connection to statisti-
cal mechanics and information theory [9] and makes the
ensuing bound on entropy production and the calculation
of the optimal path immediately applicable to simulated
annealing. We limit our analysis to one pair of conjugate
variables, U and 1/T, in order to make the derivation
more transparent. Note that all the steps in the deriva-
tion are easily extended to any set of conjugate thermo-
dynamic variables.

In this simple formulation the intensity difference can
be expressed as an expansion about equilibrium between
system and environment (the superscript e denotes prop-
erties of the environment),

b, Y=(1/T) —(1/T')
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where we have de5ned

8(T)=1+
2C BT

(2.4)

Next we need the phenomenological connection be-
tween the degree of deviation from equilibrium hU and
the resulting extensity flow dUldt. This is where the
nonequilibrium nature of the process enters. However,
since this will in general be a complicated relation, we use
the functional form of its asymptotic behavior for small
hU,

dU —1

dt s(T)
(2.5)

(2.6)

so that Eq. (2.5) can be rewritten as

As long as we use the instantaneous apparent relaxation
time s(T), this is not an approximation. Rather, s( T) is
the local inherent unit of time of the system and is
defined by Eq. (2.5). The natural (dimensionless) time
scale g for the process is therefore given by [27]

tional change in temperature with time should be propor-
tional to the ratio of the thermodynamic speed to the
root-mean-square Suctuations in the energy, so the small-
er the Suctuations in energy the faster can be the temper-
ature change. An alternative form [7] of Eq. (2.12),

v
eq (2.13)

where {E) is the average energy of the system, E,q(T)
the energy the system would have if it were in equilibri-
um with the environment at temperature T, and a the
standard deviation of E, shows this interpretation even
more clearly.

The derivation in [9] assumes that the optimal path at
all times is a constant number of standard deviations
from equilibrium; this leads to v, being constant. Howev-
er, the assumption that the optimal path should have con-
stant thermodynamic speed need not be invoked to arrive
at Eq. (2.12).

We continue the general derivation in the spirit of the
original derivation of the dissipation bound [21] by now

applying the Cauchy-Schwarz inequality to Eq. (2.8)
while using Eq. (2.9}to obtain

U = —hU. (2.7)

A similar de5nition of "local time" has been used to ad-
vantage in solving the highly nonlinear Stefan problem
[28].

We now have the tools to calculate

r
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hS"= J„EYdX= f (2.8) (2.14)

where, using Eqs. (2.2}and (2.7},
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The first term on the right-hand side of Eq. (2.9),
'2 '2

L,,
d(
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dU dU
dg dT

dT = dT
dg dt

(2.11)

so that with Eq. (2.10) one obtains

dT v, T
dr ev'C (2.12}

Equation (2.12) may be interpreted to mean that the frac-

is the square of the thermodynamic speed v, , namely, it is
the square of the natural-time derivative of the thermo-
dynamic length L, [9] calculated with the entropy metric
—D S.

The constant thermodynamic speed path used in [6]
and derived in [9] follows by recognizing that

dS" 2 8(T) dU
dg ' CT dg

(2.15)

Consequently, constant rate of entropy production, when
expressed in terms of natural time, is the path or operat-
ing strategy which produces the least overall entropy.

Again using Eqs. (2.10) and (2.11), one can express the
optimal path, Eq. (2.15), in a form similar to Eq. (2.12):

with:-=gf —
g; being the total duration of the process in

natural dimensionless time units.
The bound in Eq. (2.14) is one of the main results of

this paper. It states that the entropy production in the
process is not just non-negative, as insured by traditional
thermodynamics, but greater than or equal to a positive
path-dependent quantity divided by the process duration.
The general conclusion is of course the same as in the
original derivation [21], but two major differences exist:
(i) The metric expansion of the intensity difference Eq.
(2.2) is carried beyond the first term and thus is not limit-
ed to processes very close to equilibrium and to constant
heat capacity; (ii) the ongoing relaxation of the system is
incorporated by a modification of the time scale (and thus
kept within the integral rather than taken out in an aver-
aged fashion as was done in [21]).

The equality (lower bound) in Eq. (2.14} is achieved
when the integrand is a constant, i.e., when

T
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' 1/2
dT 1+ 8(T)e(dT!dt ) T1+ + =const X

(2.16)

The constant thermodynamic speed algorithm, Eq. (2.12),
is thus the leading term of the general solution in an ex-
pansion about equilibrium behavior. In principle, any
desired degree of accuracy can be achieved by retaining
an adequate number of terms in the expansion Eq. (2.9).
This, of course, presupposes that all thermodynamic state
variables are well defined throughout.

III. EXAMPLES AND DISCUSSION

A. Thermodynamics

=a+bY,X
dt

(3.1)

where a and b are constants, and in which the relaxation
time is constant. Note that a linear system's heat capaci-
ty C and thermal conductance sc may be temperature-
dependent as long as their ratio s=C/~ is constant.
Hence the conclusion of [20] extends to a broader class of
systems than originally realized.

An illustrative specia1 case arises when the heat capaci-
ty is independent of temperature and with no require-
ments for the relaxation time. Then Eq. (2.15) sums to a
simple analytical expression,

dS"
dg

V2
S

(3.2}

which, by Eq. (2.12), is constant when

d lnT const
dt

(3.3)

i.e., the optimal temperature path can be obtained by
solution of Eq. (3.3) regardless of the distance from equi-
librium.

First we consider optimal strategies that have been de-
rived for various thermodynamic systems in light of the
path derived above, Eq. (2.15), namely, that the optimal
path is the one along which the rate of entropy produc-
tion is constant, provided the time scale used is the in-
trinsic dimensionless one defined in Eq. (2.6). In [20] it
was shown that for any system obeying a linear transfer
law with constant coefficients, e.g., Newtonian heat
transfer, the optimal path (for minimizing entropy pro-
duction) corresponds to a constant rate of entropy pro-
duction (with respect to clock time}. To first order in
Eqs. (2.15} and (2.16} that is equivalent to constant ther-
modynamic speed [9].

This can be viewed as a special case of Eq. (2.15) in
which the relaxation time is constant (as opposed to de-
pending on temperature). In fact, it provides a clear gen-
eralization of the definition of "linear" system for which
constant rate of entropy production with respect to clock
time corresponds to the optimal path: a system for which

As noted in [19],the theorem of [20] for linear systems
is clearly not valid for nonlinear systems such as non-
Newtonian heat transfer laws like radiative heat transfer.
Examination of similar calculations of optimal paths for
highly nonlinear systems, e.g., in the liquid-solid phase
transition (classical Stefan problem) [29], reveals a similar
conclusion. Equation (2.15) does, however, correctly de-
scribe the optimal path for these nonlinear systems. In
these instances our new theorem does not offer a new
solution; rather it provides a simpler, faster way of arriv-
ing at the correct answer and places these results within
the framework of a universal observation.

The validity of our results is restricted to uniform sys-
tems, i.e., no spatial gradients. A notable exception is the
Stefan problem (solid-liquid phase transition) where our
results are valid, provided the system proper is taken to
be the moving phase boundary, with the solid and liquid
regions viewed as the thermal couplings to the surround-
ings [29].

In general, when spatial gradients exist within the sys-
tem, the optimization procedure is far more complicated
than depicted here. Several approaches have been pro-
posed: (i) introduction of an entire field of controls on
the system to regulate the internal dissipation [30]; (ii} ap-
plication of spatially varying reservoirs around the sur-
face of the system with subsequent averaging of the ener-

gy and/or mass exchanges [31]; (iii) using average
effective thermodynamic state variables for the system as
a whole and collecting all the internal irreversibilities into
a single entropy production term. These situations are
beyond the scope of this paper.

The main results of this paper, the bound Eq. (2.14}
and the optimal path Eq. (2.15), contain two new notions:
(i) an untruncated expansion of the driving force of the
process, Eq. (2.2); and (ii) derivatives with respect to the
intrinsic time g, Eq. (2.6}. The latter implies that the op-
timal process slows down when the relaxation time in-
creases. For glasses and spin glasses [32) this may lead to
an essential standstill. In essence the reference frame
now follows the system rather than the observer. This
idea is also used in relativity and for solid-liquid phase
change problems [28].

B. Simulated annealing

Problems in which a significant new degree of accuracy
and new solutions may emerge come from simulated an-
nealing. In simulated annealing studies one usually is
searching for a cooling schedule that will minimize entro-
py production [4]. In most problems for which simulated
annealing is employed, heat capacities and relaxation
times cannot be known at the outset and are estimated at
each step of the annealing based on the entire past history
[8]. Both can vary markedly with temperature.

The value of the cooling schedule of Eq. (2.12), derived
originally in [9,6], can now be understood as limited to
systems which are close to equilibrium, or equivalently,
for which the observation time is long compared to sys-
tem relaxation time. In these cases, the correction terms
noted in Eqs. (2.15}and (2.16) will be small, if not negligi-
ble.
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This will not be the case when the system being cooled
is not close to equilibrium. Indeed, the inferiority of the
path Eq. (2.12) relative to other cooling strategies has
been noted for simulated annealing problems where the
observation time is relatively short [10,11]. We addition-
ally note that it fails to reproduce the optimal path in
nonlinear systems such as the phase-change problem [28].

The result derived here, however, does provide a better
algorithm in principle. The degree to which the system
deviates from equilibrium and from linearity will deter-
mine the number of terms one must retain in the expan-
sion of Eqs. (2.15) and (2.16). Therefore we would sug-
gest that simulated annealing studies for which the con-
stant thermodynamic speed algorithin has not succeeded
to provide satisfactory results be performed with the op-
timal algorithm derived here. If systems that are not
very far from equilibrium are chosen, then only a small
number of terms in the expansion of Eqs. (2.15) and (2.16)
need be retained (i.e., the series converges rapidly).

IV. SUMMARY

Our fundamental finding is that the optimal strategy
for driving any thermodynamic or information-based
process so as to minimize entropy production is to insure
that the rate of entropy production is constant when ex-
pressed in terms of the natural dimensionless time scale
of the system (clock time divided by the system's relaxa-
tion time}. This observation provides a universal frame-
work for understanding the findings of earlier studies on
optimal paths for simple linear systems, and what was
considered to be the apparent dearth of a universal basis
for determining the optimal path of processes that are
nonlinear and/or not close to equilibrium.

In simulated annealing the constant thermodynamic
speed algorithm [18,6,9] can now be derived from first
principles and can be shown to be the leading term in an
expansion in deviations from equilibrium behavior. This
not only explains why the constant thermodynamic speed
algorithm failed for markedly nonlinear systems and for
systems not close to equilibrium, but also provides the
correction terms with which the optimal cooling schedule
can be generated. An immediate test of this observation
would be to anneal systems for which the constant ther-

modynamic speed algorithm had proven inferior to alter-
native strategies with the new cooling schedule derived
here, provided an adequate number of terms in the ex-
pansion is retained.

Our detailed derivation has been restricted to the
minimization of entropy production and to a single con-
trol variable (temperature). However, the method
presented here is easily generalized to cover:

(i) The minimization of dissipation of any thermo-
dynamic free energy (equivalently, minimization of loss of
potential work) provided the appropriate thermodynamic
ensemble is defined; e.g., availability, Helmholtz free en-
ergy, Gibbs free energy, grand canonical ensemble ( T, V,
and p, constant}, etc.

(ii) Any appropriate intensive control variable, such as
chemical potential for problems in mass transfer, magnet-
ic Geld for magnetic systems, etc.

(iii} Systems with more than one control variable, in
which case our scalar equations become vectorial equa-
tions, but the conceptual and mathematical paths to solve
for the optimal strategy are qualitatively unmodified.

Note that the fundamental conclusion must apply to
these seemingly different but equivalent problems.
Namely, the optimal path for minimizing the loss of avai-
lability, for example, is the strategy in which there is a
constant rate of change of availability when the rate of
change is calculated with the natural dimensionless time
scale of the system. As such, one in principle now has an
algorithm for minimizing dissipation based on any free
energy criterion with respect to any appropriate intensive
variable (or number of intensive control variables) for sys-
tems that may be nonlinear and/or not close to equilibri-
um.
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