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Dendrites and fronts in a model of dynamical rupture with damage
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Inspired by our previous studies [Phys. Rev. Lett. 6$, 612 (1992);J. Phys. I 2, 1621 (1992); Phys. Rev.
A 45, 8351 (1992)] for a random system of the antiplane model of dynamical rupture controlled by a

damsge field (also coined "thermal fuse model" in its electric analog), here, we examine mainly the case

of two-dimensional ordered systems (square lattices and continuum), in order to highlight the similarities

with and also the differences from other growth phenomena. Two situations are studied: (1) the cata-

strophic growth of a crack from a nucleus at constant applied stress and (2) the steady-state propagation

of a rupture front in a strip under constant applied displacements at the borders. In discrete lattices, nu-

merical simulations of case 1 show a rich "phase diagram" of rupture patterns as a function of the dam-

age exponent m, with four-leaf-clover-shaped cracks for low m and dendriticlike cracks with complex

sidebranching for larger values of m. In case 2, the discrete nature of the lattice is at the origin of the

observation of many possible coexisting solutions for crack propagation. The case of a one-mesh-thick

semi-infinite central crack is solved analytically for its crack tip velocity, which is uniquely determined

by a growth criterion involving the history of the damage field at all points ahead of the crack tip. %'e

then present the continuum formulation of the steady-state propagation of a rupture front in a strip un-

der constant applied displacements at the borders, and we find a continuous family of solutions

parametrized by the velocity, similar to the Saffman-Taylor problem, which has an infinity of degenerate

solutions in the absence of surface tension.

PACS number(s): 64.60.Ht, 05.40.+j, 62.20.Mk

I. IN+RODUCTION

Recently, a simple dynamical version [1]of the electri-
cal fuse model for rupture in random media [2] has been
proposed, in which fuses are heated locally by a general-
ized Joule effect. When its temperature reaches a given
threshold, a fuse burns out irreversibly and become an in-
sulator. This thermal fuse model can be considered as an
extension of a vast class of models studied in the last few
years in the statistical physics community in order to un-

derstand the universa1 feature of rupture in random
media. These works have allowed a partial classification
of some possible difFerent regimes of rupture [2,3] and in
particular have underlined the links between the physics
of fracture and fractal growth phenomena [4], thus pro-
viding new insight in this field. For example, tensorial
elastic fracture in the presence of lattice anisotropy leads

to fractal shapes [5] while the corresponding scalar rup-
ture growth gives nonfractal shapes [2,3]. However,
these results have been obtained in models in which the
evolution of the rupture is quasistatic. There is no dy-

namics but only an irreversible process with no time

scale, in the spirit of the growth models such as DI.A
(diffusion limited aggregation), which describe the quasi

static irreversible evolution of complex interfaces [4]. In-

troducing a dynamics as in our thermal fuse model [1],
delay and relaxation effects become important and have

been shown to give birth to a wealth of behaviors with

fractal crack patterns even in a scalar framework. In-
terestingly, it was realized that this model (with the spe-
cial choice of parameters tn = 1 and a =0, see below) con-

tains the basic physics to describe damage by electromi-
gration of polycrystalline metal films [9].

In this paper, we pursue further the analogies between
problems of rupture in statistical models and general
growth and propagation phenomena, by pointing out the
existence of remarkable similarities between the thermal
fuse model [1]and the problem of dendritic solidification
on one hand and that of front propagation such as in the
Saffman-Taylor finger problem on the other hand [6,7].
Our study is similar in spirits to the attempts of Refs. [8]
to identify the roots of complex fractal growth structures
in stochastic and random models from the study of or-
dered systems. Therefore the main thrust of the present
paper is in the study of homogeneous systems, containing
at most a single initial crack (a notch in the mechanical
language) used to initiate the rupture. Much to our
surprise, we found an extremely rich phenomenology
even in these simple cases where no quenched or annealed
disorder is present. Our study presented below suggests
ingredients which may be at the origin of the fractal
crack structures observed in Ref. [1] for quenched ran-
dom systems, such as the coexistence and their competi-
tion of multiple crack solutions both in discrete lattices
and continuum systems, and the existence of some
amplification of very small noise near the advancing
crack tips and on the crack sides.

In Sec. II, we first reca11 the definition of our model,
both in the electrical and mechanical contexts. We also
describe the difFerent regimes. In Sec. III, we first present
some results on rupture patterns obtained in weakly
disordered systems submitted to a supercritical applied
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current (stress) and possessing an initial defect. We ob-
serve a dominating role of the initial crack compared to
the distributed disorder in controlling the rupture pat-
tern. This led us to the main body of our study which
concerns the same problem in homogeneous systems. A
remarkably rich "phase diagram" for the rupture pat-
terns is found as a function of the "damage" exponent m.
In Sec. IV we study both a difFerent geometry (strips) and
a diff'erent excitation [imposed applied voltage (displace-
ments) at the strip borders instead of current (stress)].
Families of solutions for the stable propagation of rup-
ture fronts at constant velocities are found both for
discrete and continuous systems. A connection with the
Sahan-Taylor problem of a low density Quid pushing a
larger density fiuid in a channel [6,7] is proposed. Exten-
sive numerical simulations to test these difFerent regimes
show that the discrete nature of the lattice dominates the
behavior. It is only in the limit of very small damage ex-
ponent m and very large applied voltage that the numeri-
cal simulations find rupture patterns obeying the
Sahan-Taylor solution with half-strip width crack
fronts.

II. DEFINITION OF THE THERMAL FUSE MODEL
AND ITS MECHANICAL ANALOG

A. Electrical information

Each bond of an l. by I. two dimensional (2D) square
lattice of unit mesh oriented at 45' with respect to the
two borders is a fuse. The 45' orientation ensures that all
bonds play equivalent roles in a homogeneous medium.
Furthermore, the maximum current at the tip of a crack
is not in general in the direction collinear to the crack but
is at +45'. Periodic boundary conditions are assumed in
the direction perpendicular to the two borders which act
as bus bars. Some current or voltage is applied on the
lattice and the current fiows through the system from one
bus bar to the other. As in the quasistatic random fuse
model [2], the electrical voltages and currents are as-
sumed to have infinitely short response. The current dis-

tribution in the network, i.e., the current i„in bond n for
all n, is determined as for a static input current, i.e., by
solving the Kirchoff law. In the numerical simulations,

I

we have used the conjugate gradient technique, with an
error criterion e ~ 10 . Once the current in each bond
is known, it is reported in the equation giving the time
evolution of the nth fuse temperature T„(t):

CdT„/dt =6„'i„—aT„.
This thermal equation is inspired from the physics of a
real fuse which burns out by melting. It governs the time
evolution of the temperature T„ofthe nth fuse of specific
heat C, conductance G„=R„'(with G„varying from
bond to bond in a disordered systems), and carrying the
current i„.The first term of the right hand side, G„i„,
accounts for a generalized Joule heat source and —a T de-
scribes the coupling to a thermal bath. The definition of
the model is completed by the rule that a fuse burns out
irreversibly when its temperature reaches the tempera-
ture threshold T,h (chosen equal to unity for all fuses).
After such a breakdown, we assume that the current dis-
tribution in the remaining fuses adjusts itself instantane-
ously. The dynamics is thus solely controlled by the
temperature evolution. Note that after each fuse break-
down, the new calculated set of currents is injected back
into the thermal equation (1), with the new initial condi-
tion that the temperature of each bond at the beginning
of the new heating period is that just reached before the
last rupture event. Iterating the procedure again and
again after each rupture and denoting by t, the time at
which the ith rupture event occurs and [i„(r;)jand

[T„(t;)j the corresponding sets of bond currents and
temperatures on all remaining bonds, we obtain the fol-
lowing general time dependent temperature expression
for the nth bond:

for t, & t & t, +, if T„(t)& 1 . (2)

B. Mechanical information

The mechanical analogy is the following:

current
voltage
Kircho8' law
temperature T
"Joule" heating
coupling to the heat bath
rupture criterion T,„=1

force
vertical displacement
antiplane elasticity
damage variable D
rate of damage increase under stress
work hardening or healing
rupture criterion D,„=1

Each bond is now an elastic element, allowed to deform
only in the direction perpendicular to the lattice plane,
thus defining the so-called antiplane deformation. Then,
the tensorial elasticity equation reduces to the Laplace
equation for the stress and strain fields (in a homogeneous

system) [10,1(c)]. To make complete the electrical-
mechanical analogy, we interpret the temperature as the
damage variable characterizing a given element of the lat-
tice. %'e assume that the damage D„ofelement n obeys
the following equation, which constitutes an exact
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translation of Eq. (1):

dD„/dt =6„'s„a—D„.
dD„/dt is the rate of damage process assumed to increase
as the mth power of the stress s„onthe nth element. The
term —aD„accounts for a possible hardening or healing
process. This formulation is very similar to the one intro-
duced by Kachanov [11] to describe the propagation of
cracks under condition of creep. We also note the analo-
gy with the theory of damage [12]. The rupture criterion
is D =1, i.e., when the damage has reached this thresh-
old, the element is not able to carry any force. It is im-
portant to stress the difference with an elastoplastic mod-
el in which the deformation is divided into an elastic and
a plastic component. Here, the deformation is fully elas-
tic and the damage field does not enter the compatibility
condition for the total deformation which is automatical-
ly verified by the elastic antiplane deformation. In Refs.
[1(b}, 1(c)], the term "plastic" was thus misused and
should be understood as damage in the sense defined
here.

C. General properties

The simplicity of the model stems from the separation
of the time evolution of the electrical (elastic) and
thermal (damage) fields: the electric intensity (force) dis-
tribution evolves instantaneously under the thermal
(damage) rupture of a new bond and the thermal (dam-
age) field changes continuously under the fixed electric
current (force) distribution until the next rupture occurs.
This feature simplifies the analysis and the numerical
computations greatly. Therefore this model is maybe the
simplest one can think of which incorporates naturally a
dynamics in a statistical model of rupture.

The dynamics present in this model possesses two lev-
els of memory effect. The first level comes through the ir-
reversible evolution of the electric network, similarly to
previously studied random fuse models [2]. The second
level stems from the memory contained in the additional
temperature field which is an additive function of all the
previous thermal history of each bond in the network.
Moreover, the thermal coupling between each fuse and a
bath allows the temperature of each fuse to evolve to-
wards a steady-state value with a characteristic relaxation
time.

In order to characterize and classify the properties of
the thermal fuse model, we need first to distinguish be-
tween the following different situations.

(1) One can choose to impose a constant voltage drop
per unit length ( V) across the system. In this regime, two
subcases must then be discussed.

(i} V is smaller than the threshold V,h (=1 in the units
where the conductances 6 and the parameter a are equal
to 1 for an infinite uniform network} determined from Eq.
(1) by the condition that fuses infinitely far from all boun-
daries and all cracks reach the temperature rupture
threshold T,h=1. In this regime at fixed voltage V,
cracks can grow only when sufEciently large initially so
that the current enhancement at their tip is sufficiently
large to make them reach eventually the temperature

rupture threshold. In the same regime for a given initial
crack, there is a lower voltage threshold (dependent upon
the initial shape of the crack) below which the system is
stable, and apart from a possible transient, does not suffer
any breaking events. Above this lower threshold and
below V,h, a rather general solution is the steady-state
propagation (at constant velocity) of a crack front. The
steady-state nature of the solution is due to the fact that,
as the crack length increases, the total conductance de-
creases. As the voltage is fixed, the input current de-
creases. Hence there is a competition between the grow-
ing current enhancement at the increasing crack tip and
the decrease of the bias current. The net effect turns out
to be a saturation of the current at the crack tip, making
possible the steady-state crack front propagation. We
will study this regime in detail in Sec. IV, in relation to
the propagation of crack fronts in strips of finite widths.

(ii) V is larger than the threshold V,h, defined above.
Then, in the absence of any crack tip enhancement effect,
fuses far from the crack eventually break down in a finite
time. It is thus not possible to find steady-state rupture
front propagations with a constant velocity. If the sys-
tem is prepared with some defect or notch, the crack will
nucleate from this defect and accelerate without bound
[we do not account for the finite electromagnetic (electric
case) or acoustic (mechanical case} wave velocity], with
an acceleration law which depends on the damage ex-
ponent m. Notwithstanding the fact that a11 bonds can
break in principle, this does not occur in general and the
rupture occurs on a small subset as a result of the current
amplification at the tip of the growing crack. We have
carried simulations in this regime in connection to the
question of the determination of the rupture front shape
propagating in a strip of finite width (see Sec. V).

(2) One can choose to impose a constant current densi-
ty (I) within the system. For a given initial crack, there
exists a current threshold above which the situation is
similar to case [(1)(ii)] above. Below this threshold, the
system is metastable and does not rupture macroscopical-
ly, after a possible transient. Alternatively, imposing a
given current, whatever its smallness, there is a minimum
crack size (or configuration} above which the crack be-
comes unstable and accelerates without bound: due to the
current enhancement at the crack tip which grows
without bound as I&L in an infinite system, where L is
the crack length, the current at the tip will become
larger, for sufficiently large L, than the threshold to reach
the temperature rupture threshold. Below this size, the
system is again metastable. Therefore, for a constant ap-
plied current, only the accelerated crack regime is found.
This case has been addressed already in Refs. [1(b), 1(c)]
for a large set of values of m in disordered network and in
Ref. [9] for the special case rn =1 with a =0 in homo-
geneous systems. We come back to this regime in Sec. III
for the case of homogeneous square lattices with a single
small initial nucleating crack.

III. CATASTROPHIC CRACK GROWTH
FROM A NUCLEUS AT CONSTANT APPLIED STRESS

Consider a large square network of size L by L as
defined in Sec. II, which contains an initial defect at its
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center corresponding to the removal of a single bond. At
time t =0, a constant macroscopic current I is applied to
the network. We want to study the geometry of the
crack patterns as a function of the applied current and
damage exponent m.

A. Nucleation regime in quenched random systems

This problem is suggested from our previous study of
quenched random systems in the limit of an applied
current I just above threshold I, [1]. Indeed, for a given
bond resistance distribution, there exists a minimum
value I, of the input current necessary for global rupture
to occur. Below I„somebond breakdown may occur but
the rupture eventually stops before deconnection of the
system into two pieces. For I very close to but larger
than I„the rupture process can be decomposed into two
steps. The first step is the breaking of the weakest bond,
which will then act as a nucleation center. The second
step is the growth of a large crack developing from this
nucleation center. In the first regime, the Joule heating
breaks down the bond which presents the strongest heat-
ing power. Once this "hottest" bond is broken, the defect
strongly distorts the electric current field around it.
Namely, the intensity in the neighboring bonds is typical-
ly (4/rr)I for the square lattice tilted at 45' with respect
to the bus bars. These bonds are thus heated much more
efficiently than all the others in the network for small or
no disorder. They reach the rupture threshold T,z first.
The process goes on with the connected growth of a large
crack until the final blowup of the total network. We
have called this regime the "nucleation" regime [1],since
once a bond breaking has been initiated, the evolving
rupture grows from this "nucleation" center. This "nu-
cleation" regime occurs only for sufficiently small disor-
der, so that the Joule heating power =[(4/n)i] in the
bonds at the tip of the first broken bond is significantly
larger than all the other heating powers in the other
bonds. The first broken bond is always the same, whatev-
er the applied current. However, in the vicinity of the
threshold I„slightly different values of the applied
current may lead to different breaking patterns, either at
the local or global scale, due to the successive ruptures at
different positions [1].

The "nucleation" regime is characterized by the
growth of a few branches with a degree of sidebranching
depending mainly on the damage exponent m. It is possi-
ble to nucleate artificially a similar structure by putting
by hand a central crack in a quenched random lattice.
Figure 1 presents the resulting rupture patterns obtained
with m =2 for different increasing applied currents I in
large systems L =180 with a small disorder on the con-
ductances of the bonds of the lattice, defined by the prob-
ability distribution I'o(G), chosen uniform in the interval

[1—bo/2, 1+ho/2] with ho =0 2in this . example.
For all applied currents, we observe a similar branched
structure growing from the nucleus. We note the ex-
istence of a diffuse set of small cracks, the more so the
larger the applied current. This is the signature of the
delay effect contained in Eq. (1) according to which some
bonds may finally end up breaking because the accumula-
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FIG. 1. Typical crack patterns at the final stage of rupture in

a square lattice of size 180 by 180 tilted at 45'. The conduc-

tances are uniformly sampled in the interva1 [0.9,1.1]. The three

pictures correspond to exactly the same disorder realization

with, however, different applied currents. (a) Regime close to
the rupture threshold: I=I,=0.913; (b) intermediate regime

I= 1; (e) asymptotic regime I=30 ( &&I, ).
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tion of thermal energy allows them to reach the rupture
threshold, even if their heating rate is not very large.
When increasing the applied current from I=I, to + ~,
we thus observe a crossover from a regime characterized
by a sidebranching, reminiscent of dendritic growth, to a
regime where the sidebranching as well as the main crack
become very disordered. This stems from the fact that
the effect of the quenched disorder on the rupture growth
is less important for small I, dominated by current
amplification at the crack tips, than for large I's dominat-
ed by disorder. The three figures 1(a}—1(c} should be
compared to Figs. 7(a)-7(c) presented in Ref. [1(b)] under
the same conditions except that the central defect was ab-
sent in Ref. [1(b)]. The straight crack structures are ab-
sent in this case for intermediate and large current since
the main mechanism becomes that of damage dominated
by the disorder, and not the nucleation and growth of a
single branched crack.

B. Crack groWh from a central nucleus in ordered systems

In order to pinpoint the origin of the branching pro-
cess observed above and in [1(b}],we were thus led to
study the growth of a crack in a perfectly ordered lattice
possessing a central nucleus of unit mesh size, in a way
similar to a small notch in standard mechanical tests.
Much to our surprise, we found an extremely rich phe-
nomenology of shapes (four-leafed clover, fingers, dendri-
ticlike side bifurcation, needles) as the creep exponent is
changed from 0 to + oo, as shown in Figs. 2 and 3. This
interesting regime is observed for a total applied current
much larger than the threshold I, =n./4=0. 785. For
these large applied currents, we have previously shown
[1(b)] that the sequence of rupture and crack patterns be-
comes independent of I (this is the regime where the cou-
pling with the heat bath is negligible in comparison to the
Joule heating term}. In this case, for m ~ 1, the growing
cracks are structures oriented at 45' with respect to the
horizontal bus bars. For smaller m, the cracks are more
complex structures, which tend to take the geometry of
the infinite cluster at the percolation threshold, as m ~0
[1]. On the contrary, the regime just above threshold is
characterized by the strongest sensitivity with respect to
perturbations [1] due to the competition between the
Joule heating and the coupling with the thermal bath.

Figure 2 shows the set of elements which have broken
at increasing times during the rupture process for three
different values of the damage exponent m: (a) m =0.02,
(b) m =0.8, and (c) m =2.2. The chosen times are such
that the size of the patterns is much smaller than the lat-
tice size ( ~0.2L at most), ensuring small corrections due
to finite size e8ects which are known to be extremely im-
portant for large cracks (see [13],and references therein).
For all values of A which have been studied, the patterns
appear to be growing in a self-similar way, with a size re-
scaling allowing deduction of the pattern at a given time
from that at a previous time. The set of ruptured ele-
ments presents a shape which remains constant as a func-
tion of time (homothetic) and the dynamics of growth of
the crack is described by the knowledge of a single scal-
ing factor giving the size r(t) of the crack. As stated

above, at longer times, finite size e8'ects become impor-
tant and distort the shape with a breakdown of self-
similarity in time. For the early times, it is thus possible
to attribute to each m a well-defined crack topology. The
dependence of this crack topology on the damage ex-
ponent m is given in Fig. 3. For small m, cracks present
the shape of a four-leaf clover with an orientation break-
ing the +45' symmetry of the underlying lattice, due to
the initial orientation of the crack nucleus. When in-
creasing the exponent m, the cracks keep the characteris-
tic four-leaf clover shape. However, their orientation is
modified and they rotate counterclockwise as m in-
creases. Furthermore, the central ruptured zone, con-
taining broken elements in the two +45' directions,
shrinks and eventually disappears around m =0.3. For
this value and above, the cracks have their four branches
now perfectly oriented at +45'. The branches shrink in
width as m increases. Figure 2(b) shows the shape of the
growing crack for m=0. 8. We observe again a self-
similar regime in time at small times such that the finite
size effect is not felt. At longer times, the fingers thicken.
Note that in this regime, the crack grows by accreting
new rows of broken elements growing from the initial nu-
cleating central crack. When m tends to 1, we have ob-
served an extremely intriguing set of transitions, charac-
terized first at m =0.98 by the fusion between the two up
and the two bottom fingers. Around m=0. 99, side-
branching occurs in the form of two thick branches grow-
ing from the side in the middle part of two opposite main
branches. At m=0. 995, further sidebranching occurs
and seems to proliferate. At m =1 exactly, a single side-
branching, one for each branch is recovered which is
characterized by a smooth envelope starting from the tips
of the main branches. As m increases further, these side-
branches rupture into sub-branches. The patterns in Fig.
2(c) illustrate the typical shapes of the cracks for m
significantly larger than 1 (here m =2.2) at increasing
times. Again, we observe the self-similarity in time, by
comparing the shapes at the three increasing times. The
sidebranching, which is present for m up to approximate-
ly 2.5, disappears for larger values, where only two
straight branches dominate.

The existence of thick fingerlike patterns for low m is
reminiscent of finger patterns obtained, for instance, in
the Safman-Taylor problem of a low density fluid push-
ing a larger density fluid in a channel [6,7]. The side-
branching phenomena observed for m around 2 and
above are very similar to those characterizing the growth
of dendrites in solidification problems [6,7]. Particularly
intriguing in an ordered deterministic system is the obser-
vation of an irregular system of secondary branches in
this regime (m ~ 2). These structures are the geometrical
consequence of the large sensitivity of the gromth
phenomenon with respect to disturbances. In our numer-
ical simulations, there exists a residual numerical noise,
which when amplified by the nonlinear dynamics is the
cause of the chaotic sidebranches. This is verified by add-
ing a controlled annealed noise to the current field or to
the temperature Geld which results in much enhanced
disorder in the sidebranching patterns. The existence of
a small quenched disorder on the conductances (see Fig.
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FIG. 2. Snapshots at increasing times of the set of ruptured elements for a constant applied current I=30. Since the crack bor-
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m larger than 4 typically the sidebranching disappears).
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1) also results in more irregular sidebranches. Side-
branching can thus be attributed to an amplification at
scales of the mesh size of noisy fluctuations on the side of
the advancing cracks. This noise amplification relies on

the conjunction of the threshold nature of rupture, the
long-range electric interaction, and the delay effects in-
duced by the temperature field. This is in contrast to the
mechanism of sidebranching which has been proposed in

~ X
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$000
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Pdd

FIG. 2. (Continued).
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dendritic solidification [14] relying on a wavelength selec-

tive amplification of noise near the tip which is then con-

vected behind.

IV. STEADY-STATE CRACK GROWTH IN STRIPS
UNDER CONSTANT APPLIED DISPLACEMENTS

The observation of dendriticlike crack patterns in Figs.
2 and 3 suggests further exploration of a possible analogy

between the formation and propagation of a crack in our
thermal fuse model and the propagation of fronts in
solidification or viscous fingering problems [6,7]. The
work of Barber, Donley, and Langer [15] has also ad-
dressed this question of a possible analogy between the
propagation of cracks in strips and that of solidification
fronts or of viscous fingers in channels. They studied the
problem of velocity selection in the propagation of a

M= .2

FKJ. 2. (Continued).
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crack in a viscoelastic medium, showing memory efFects.
Contrary to solidification fronts or viscous fingers whose
velocity is determined by a microscopic characteristic
scale, the capillary length when surface tension is present
[16],there are no analogous subtleties in the crack propa-
gation problem. It was found in Ref. [15] that the crack

tip velocity is unique and simply selected by a balance be-
tween mechanical work and viscous dissipation. We ad-
dress the same question of the shape and velocity selec-
tion of cracks in the context of the thermal fuse model
and Snd a result similar to the Sahan-Taylor problem,
i.e., a continuum of crack solutions parametrized by the
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O. '5 9$

d.2

q 5
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FIG. 3. Schematic "phase diagram" showing the dependence of the crack topology on the damage exponent m in the case where a
crack grows from a central nucleus under constant applied stress.
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velocity. The dilerence with the work of Barber, Don-
ley, and Langer [15]stems from the diferent physical in-

gredients: in our case, rupture does not obey an energy
balance but is controlled by the damage variable (temper-
ature in the electrical fuse language) which involves a
long time accumulation over history.

V

A. Analytic calculation in a narrow strip
with a central semi-in5nite crack

Consider a strip of width equal to three meshes of a
nontilted square lattice. The upper boundary is put at
constant voltage V and the lower one at voltage 0. Con-
sider the existence of a semi-infinite crack extending from—~ to bond 0 as shown in Fig. 4. We are looking for a
solution in which the crack tip propagates at a constant
velocity U, if it exists. We now exploit the simplicity of
the thermal fuse model, appearing in the decoupling be-
tween the electric field and the thermal field controlling
the rupture. Since we are looking for a solution for a
crack moving at a constant velocity, it is then enough to
solve for the current field in the semi-infinite crack
geometry and to move this solution in the frame of the
advancing crack. Knowing the current on all bonds, we
will then plug it into the thermal equation (1) in order to
find the velocity U. The analysis will show that this solu-
tion is stable against branching or velocity fluctuations.

Due to the symmetry of the problem, we need only to
determine the voltages Wo, 8', , . . . , 8'„,. . . at
nodes 0, 1, . . . , n, . . . to + 00 and the voltages
V&, V2, . . . , V„,. . . at the nodes —1, —2, . . . ,—n, . . . , —~ in the lines shown in Fig. 4. The Laplace
equation yields (see Fig. 5}

V

W,

V-W
„

FIG. 5. Definition of the voltages 8'0, 8'&, . . . , 8'„,. . . at
nodes 0, 1, . . . , n, . . . to + ~ and the voltages
Vl, V&, . . . , V„,. . . at the nodes —1, —2,, . . . , n, . . . , —~
which a11ow us to derive the recurrence equation from the La-
place equation.

V„+)+V„)—3V„+V=O,

W„+)+W„)—5W„+2V=O, (4b)

whose physical nondiverging solutions are, respectively,

V„=V —Csn+',

W„=2V/3+C'ss,

where

s3 =(3—&5)/2=0. 382,

s, =(5—&21)/2=0. 209 .

(Sa)

(51)

(6b)

The two constants of integration C and C' are deter-
mined from the two matching conditions on the nodes
—1 and 0:

Wo+ V2+ V —3V, =0 (node —1),
W, + V, +2V —5WO=O (node 0) .

This yields

C = ( V/3)(4 —s, ) /[(3 —s, )(5—s, )
—1],

C'=( V/3)c,

(7a)

(71)

where c=(2—s3)/[(3 —s3}(5—s5}—1] .

The current flowing in the nth central vertical bond is
then

FIG. 4. Geometry of the strip of width equal to three meshes

of a nontilted square lattice. The upper boundary is put at con-

stant voltage V and the lower one at voltage 0. (a) Case of a

semi-infinite crack extending from —~ to bond 0 and placed on

the central row; (b) semi-infinite crack of total asymptotic thick-

ness equal to the whole strip width, with one mesh difference be-

tween the first and second row and the central one.

i„=W„—(V—W„)
=28'„—V

= V/3+2C's,"=( V/3)[1+2cs5 ], (9)

considering that all bonds have the same unit conduc-
tance. The constant c has been defined in Eq. (Sb).
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ht=U ', (10)

taking a unit square lattice mesh. In the frame moving
with the crack tip at constant velocity U, the temperature
profile on the bonds in front of the crack is stationary, as
is the current distribution which allows the use of the
static solution (9). Let us call 80,8,, . . . , 8„,. . . the tem-
perature of the bonds 0, 1, . . . , n, . . . just after the
breaking of bond —1 (corresponding to the progression
of the crack by one unit lattice mesh) and take the time of
this event as the origin of time. Using Eq. (2) for all
bonds with 6„=1for all n yields

To(t) =80e "+(i0 /a)[1 —e "],
T, (t)=8,e "+(ii /a)[1 —e "],

(1 la)

(1 lb)

T„(t}=8„e"+(i„/a)[1 —e "]

for n up to + 00, (1 lc}

where i„is given by Eq. (9}. The next rupture event will

take place on bond 0 which first reaches the rupture cri-
terion To(r =b, r) =T,h at time t =Lit. At this time, for a

crack propagation at a constant velocity,
T&(t =Et)=8o, . . . , T„(t=Et)=8„ i, . . . , for n up to
+ ~. Eliminating the 8„syields the following equation
for ht:

T —
&

—
[1 & aha][&m+— &m& an't+&m

—2aht+—. . .

+ &
m& naht+. . . —

(12)

Inserting Eq. (9) into Eq. (12) determines ht as a function
of V and a. Let us restrict our attention to the simple
case m =1 which yields T,h in Eq. (12) under the form of
a simple geometric series. It then gives easily

Let us now use this result to determine the thermal his-
tory of the fuses in front of the propagating crack and its
velocity. Since we are looking for a constant velocity U
of the crack, the time interval ht during two successive
breaking events is constant:

possible values of X in the interval 1.01~X~1.28. We
find that b, t~O, i.e., U~+ Oo as X~1.01 whereas
ht~+ 00, i.e., U~O as X~1.28. In between, the crack
velocity crosses over continuously from + oo to 0. The
velocity U of the crack tip as a function of the parameter
X is shown in Fig. 6. These two limiting behaviors have
simple interpretations. For X~1.01, the applied voltage
drop is high and is such that the bonds far away from the
tip are close to rupture even in the absence of the current
enhancement efFect produced by the presence of the crack
tip. It is then natural to expect a diverging velocity if all
bonds can rupture almost simultaneously, even far away
from the crack. In the other limit X~1.28, the applied
voltage drop is small and is such that the highest current
i0 in the network is barely large enough to heat the fuse

placed at the crack tip up to the temperature threshold

T,h =1 even in an infinite time. It is thus natural to ex-

pect a vanishing velocity in this case. For X) 1.28, i.e.,
for a small applied voltage V, the crack does not propa-
gate since no bond can reach the temperature threshold.
For X & 1.01, bonds far away from the crack tip blow up
simultaneously in the network. It is not possible to ob-
tain a crack propagation at constant velocity in this re-
gime since the whole network is unstable. We will show
below that, in this regime of large applied voltages, it is
possible to obtain connected cracks growing in an ac-
celerated way from a nucleus.

This discussion is valid as long as the parameter a
quantifying the coupling with the thermal bath (or the
hardening process in the mechanical analog model) is not
vanishing. Indeed, for a =0, there is no solution to the
problem since any nonvanishing current always leads to
an unbounded heating of the bonds. The bonds far away
from the tip have always enough time to reach the rup-
ture threshold and do it independently of the crack tip
propagation. This case is thus similar to the one for a%0
with X&1.01 in which there are no solutions with a
crack growing at a constant velocity. The above results
have been derived analytically for m=1, which is the
simplest case. Similar qualitative behaviors hold as long
as m & 0, with of course different intervals on the applied
voltage drop in which a solution exists. The case
m ~+ ~ is also easy to analyze and shows that the crack

ht =a 'ln '

$5
3aTr —1 —2c

V

3aTr —1 —2c
V

(13)
U (Arbitrary linear scale)

where c has been defined in Eq. (gb). Using the values of
s3=0.3820, s5=0.2087, and c=0.1402 [Eqs. (6) and
(8b)], expression (13) can then be cast into the form

=-1/lnl1. 28-XI

e ' '=5[X—1.28]/[X —2.33], (14)

where 0
1.01 1.28

X=3a/V

X=3aT,h/V . (15)

Since we are lookmg for positive ht's, e ' ' takes values
in the interval [0,1]. From Eq. (14), this constrains the

FIG. 6. Velocity U of the crack tip as a function of the pa-
rameter X=3aT,h /V for m = 1 in the geometry defined in Fig.
4(a)-
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4—s5
—an't

1= (1— ' ') ~ +
3g 9 2s5 1 e

—an't

cs e an't
5

—ab, t
5

1
where c=

tip velocity is a monotonous increasing function of m at
fixed V. This trend can also be checked to hold for all
positive values of m, at fixed V.

We have considered the case where the semi-infinite
crack is just in the middle of the strip. It is also interest-
ing to examine the case of other crack shapes, such as, for
instance, the one shown in Fig. 4(b), and ask the question
of whether such a shape can propagate undeformed. In
the moving frame, it is easy to solve for the node poten-
tial and current distribution, in a way similar to what has
been done previously. The condition that the first and
third rows propagate at the constant velocity U= 1/b, t
provides a first equation for ht, which for m = 1 reads

+V

-V

FIG. 7. Strip geometry showing the crack having the shape
of a finger and propagating in an underformed way at a constant
velocity U. A constant voltage +V is applied at the two bus
bars y =+1.

The condition that the central row propagates at the
same constant velocity U= 1/b, t gives a second equation
for ht, which for m = 1 reads

( 1
an't)—

1 — (1—s5)
V

3Q

2c5

These two equations are in general incompatible except
for certain values of the couple ( V, a). For a discrete set
of such values, in addition to having the single row solu-
tions, many other shapes, deduced from generalizations
of the shape represented in Fig. 4(b), can propagate in an
undeformed way. Note that the degeneracy for ht of the
two above equations occurring for certain values of ( V, a )

can be interpreted as a "commensurability" criterion
stemming from the discrete nature of the network, such
that the time intervals between successive bond ruptures
are equal for different rows. The case of a semi-infinite
crack in one of the lines of vertical bonds in contact to
one of the bus bars can be studied in a similar way. We
also find a solution with a constant velocity with, howev-
er, a smaller velocity than for the central crack shown in
Fig. 4(a) and a different voltage interval in which the
solution exists. A similar analysis can be carried out for
strips of larger finite widths L [17] and for the L possible
positions of the semi-infinite crack as well as for other
more complex shapes. The analysis becomes, however,
more cumbersome as L increases. Again, for the same
applied voltage, the semi-infinite crack at the center
possesses the largest velocity, since this configuration
produces the largest current enhancement effect at the
crack tip. As the channel width increases, the geometry
of the crack becomes more sensitive to any quenched dis-
order that it may encounter in its growth, due to the di-
minishing lateral confinement of the bus bars. It may
thus begin to meander laterally with respect to its main
growth direction, as found in square systems in the pres-
ence of a large disorder.

The main conclusion of this work is the finding that,
for a given geometry, the crack tip velocity is uniquely

determined by a nonlocal growth criterion involving the
increase of the temperature (damage field) at all points
ahead of the crack tip, as seen from Eq. (12) with (10).
The crack tip velocity is solely determined by the time
needed to heat a fuse from T=O at x ~+ 00 to T=1 on
the crack tip. The coexistence of several solutions for the
same applied voltage (the finite number coming from the
finite width of the strip) suggests that the crack front ve-

locity problem could be similar in the continuous limit to
the class of interface growth problems exemplified by the
SafFman-Taylor problem which has an infinity of degen-
erate solutions in the absence of surface tension. Howev-
er, in our problem, the difFerent solutions are stabihzed
by the discreteness of the lattice and it is not clear a priori
what occurs for a continuous system. In the following
section, we examine this question.

B. Continuous formulation

In order to pinpoint further the common aspects and
the differences, if any, between the present thermal fuse
model and more general growth phenomena, we present
the continuous formulation of the previous problem of a
semi-infinite crack front propagation in a strip of finite
width with a constant voltage (displacement) applied to
its borders.

Let us consider the geometry shown in Fig. 7 in which
the "crack" is the interior domain of the curve HOG.
Note that we allow for a crack geometry which is not a
line in 2D but rather a finger of finite width. This is sug-

gested from the numerical simulations presented in Sec.
III which showed fingerlike solutions for small m. In the
ruptured interior domain of the curve HOG, the current
is zero. Elsewhere in the strip, the potential at point
(x,y) is denoted 4(x,y). Let us note y=kf(x), for
—~ & x ~ 0, the equation giving the boundary of the rup-
tured region, taking the origin at the tip of the crack.
The continuous version of the thermal fuse model for the
steady-state propagation of a cracked front is defined by
the following set of equations written in the frame mov-

ing with the crack:



50 DENDRITES AND FRONTS IN A MODEL OF DYNAMICAL. . . 4339

Vz@=0 for all points outside the crack (Kirchoff law),

4(X,y =+1)=+V (imposed potential on the two bus bars),

B4/Bn ~y
—+f( ) 0 (zero current flowing through the crack boundary),

—UBT/BX=G '(V@~ aT—(thermal heating and coupling thermal bath),

T(X~+~,y)-+G '(2V/G) /a (uniform asymptotic temperature far ahead of the crack),

T(X,y =Sf(x))=1 for —00 (x ~0 (rupture condition on the crack border) .

(16a)

(16b)

(16c)

(16d)

(16e)

(16fl

Equation (16d) is the continuous version of Eq. (1) written in the frame moving at the constant velocity U of the crack.
Note that no thermal diffusion is taken into account, in agreement with the definition (1) of the model. The term—UBT/Bx stems from the change of variables (x,y, t)-+{X=x —Ut, y) and corresponds to the time derivative of a solu-
tion of the form T(x,y, t)=T(x —Ut, y) propagating in an underformed way at the constant velocity U. U is a priori
unknown as in Sec. IV A and must be determined from the set of Eqs. (16}. In the frame moving at U, the crack
geometry, the electric potential, current density, and the temperature field are constant. G is the conductivity of the
strip defined by j(x,y) =GV4. Equation (16f) expresses the fact that the boundary of the crack is by definition just at
the threshold temperature T,h =1 for rupture.

The problem of the steady-state propagation of a semi-infinite crack front in a strip of infinite width at which border
are applied constant displacements appears very similar to the Sahan-Taylor problem of the penetration of a single
finger of air into a Hele-Shaw channel of thickness b and width 2 filled with a fiuid of viscosity )u. In this case, the equa-
tions governing the steady-state propagation of the finger in the frame moving with the finger read

V 4=0 (mass conservation for an incompressible fluid),

V4(x,y =+1)=U (vanishing fiuid velocity on the two borders),

Be/Bn ~y +f( ) 0 (zero fluid flux flowing through the finger boundary),

V4= (b /12', )—Vp (Darcy's law),

p(x~+ ic,y}~0 (uniform low pressure far ahead of the finger),

p( —ie &x ~0, f (x) &y & +f—(x))=1 (uniform high air pressure in the finger) .

(17a)

(17b)

(17c)

(17d)

(17e)

(17fl

iI) is the velocity potential in water defined by v=V@, v
is the flow velocity (averaged along the transverse direc-
tion to the Hele-Shaw plane}, and U is the velocity of the
finger. p(x,y) is the pressure in water at point (x,y). The
two problems obey the same Laplace equations (16a) and
(17a}. The boundary conditions on the two strip borders
are dual to each other {imposed 4 for the crack problem
[Eq. (16b)] and imposed V4 for the air finger problem
[Eq. (17b)]). The boundary conditions on the crack and
finger boundary are identical [Eqs. (16c) and (17c)].
Equations (16e} and (17e) are essentially identical since
they impose a constant value to the additional field (the
temperature in the crack case and the pressure in the
finger case) very far from the tip of the crack (finger).
Equations (16fl and (17fl are identical in the sense that
the crack and finger boundary corresponds to the iso-
value of the additional field. Equations (16d) and (17d)
both allow us to determine the additional field from the
potential 4. However, they are quite different since Eq.
(17d) is local and in fact yields p = —(12@/b )@+const,
showing that, with Eq. (17f), the finger boundary is an
equipotential. This implies with Eqs. (17c) and (17d) that
the local normal velocity of the air-water interface is pro-
portional to the normal component- of the pressure gra-
dient: i)„-Bp/Bn-B@/Bn. This local growth law is
common to many other surface growth phenomena. In
contrast, the determination of the temperature field is a

nonlocal problem in the sense that it demands the solu-
tion of the partial differential Eq. (16d) with boundary
conditions (16e) and (16f). Assuming a crack boundary
profile y =Sf(x), one can solve for the potential field 4
solution of Eqs. (16a)-(16c). Then, the question is that of
the existence of a solution for the temperature field obey-
ing Eqs. (16d) and (16fl with some velocity U.

It is possible to write an expression similar to
U„-Bp/Bn -B4/Bn (valid for the Saffman-Taylor prob-
lem} for the crack case. Indeed, consider an arbitrary
point on the moving crack boundary. Then the velocity
of this point is v„=U and v~ =0 since its motion is paral-
lel to the Ox axis. The component of this velocity normal
to the boundary is given by u„=u„cosi))=U cosP, where

P is the angle between the normal to the boundary and
the Ox axis. Using U obtained from Eq. (16d} yields the
local growth velocity of the crack,

u„=—[G '))VC)) aT]/(BT/Bn)—, (18}

where we have replaced cosg(BT/Bx) by BT/Bn. This
holds because the crack boundary is an isotherm and the
gradient of the temperature is thus normal to it.

We now indicate how to solve for the crack shape
y=kf(x). First, we write the formal solution of Eq.
(16d}as

T(x,y)= —G 'U 'e'" J ~V@(x',y)~ e '" Uiix'

(19)
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where the constant cte is determined from the condition
(16e). The crack boundary is the loci of points (x,y} such
that T(x,y)=1, which, using Eq. (19), yields an implicit
equation y =+f (x},once 4(x,y} is known. The difficulty
of the problem stems from the fact that the shape

y =kf (x) must be made compatible with the electric po-
tential field which must obey Eqs. (16a)—(16c). We ex-
plain in Appendix A the general method for solving the
problem.

There is a degenerate case for which the analysis can
be carried out explicitly: the case of an infinitely thin
crack. The problem is then much simpler since only the
crack tip velocity (and not the crack geometry) remains
unknown. It is determined by the condition of consisten-
cy of the electric potential and the temperature field. In
this geometry, the electric problem (16a)—(16c) can be
solved exactly, as shown in Appendix B. Reporting this
solution in Eq. (19) with T= 1 then yields the crack tip
velocity U. The solution of this special case is shown in

Appendix B.
There is another limit which allows for an explicit

treatment and which turns out to recover exactly the con-
tinuum of solutions of the Saffman-Taylor problem (17)
(see Appendix A). I.et us consider the limit where the
front velocity U is small. By small, we mean that the
term UBT/Bx can be neglected compared to the two oth-
er terms in the right hand side of Eq. (16d). This implies
that the temperature is always equal to

T=a 'G '/~Ve~~ (20)

everywhere. The crack boundary is thus given by the
condition (16f) a 'G '~V4~ =1 where V4 must be
evaluated on the crack boundary. Since B4/Bn =0 on
the crack boundary according to (16c), then
~V@~ =BC/Bs, where s is the curvilinear abscissa of the
crack border, whose origin is conveniently taken at the
tip. This means that the equation of the crack border is

B4/Bs =aG' = V', (21)

i.e., the crack frontier corresponds to a constant B4/Bs.
Note that V' has the physical dimension of a voltage in
the units where the strip width extends from —1 to +1.
Equation (21) yields 4= V's, with our choice of origin.
Sufficiently close to the tip such that Be/Bs =BC/By for
cos((}=1, where P is the angle between the normal of the
border and the Ox axis, one has 4= V'y, which corre-
sponds exactly to the Saffman-Taylor solution (see Ap-
pendix A). Thus the shape of the cracks is close to the
fingers of the Saffman-Taylor problem in the region
where the frontier is approximately vertical, i.e.,
sufficiently close to their tips. Further away, their shapes
depart from the Sa8man-Taylor fingers. Indeed, from
4= V's and since 4 ~ V, this means that s must be finite,
i.e., the length of the crack frontier should be finite. In
other words, this does not give a fingerlike shape extend-
ing to —00, but rather to a front which connects to the
two bus bars at a finite distance from the tip. This con-
clusion is valid as long as the conditions for neglecting
the term UBT/i' hold. The connection of the crack to
the two bus bars must thus occur with a sufBciently large
angle so that

~
UBT/Bx

~
remains smaller than

G '~V4~, this last term going to zero as the angle P
(defined in Fig. 7) goes to n. /2. Note also that this solu-
tion involves a rather special continuum limit. Indeed,
suppose that one starts from a discrete lattice of mesh
size b,x. For the term UBT/Bx to be small compared to
the first term on the right hand side of Eq. (16d). U is less
than ah+, where a ' is the thermal relaxation time in-
troduced by the coupling with the thermal bath. When
taking the continuous limit (b,x —+0) leading to Eqs. (16),
we have to look for very slowly propagating cracks such
that the limit hx ~0 is taken while keeping the condition
U &aha. When this condition holds, the relaxation of
the temperature is sufBciently fast such that at a11 times
one can neglect the term UBT/Bx in Eq. (16d) compared
to the first term on the right hand side of Eq. (16d).

It is interesting to note that we would recover exactly
the Saffman-Taylor solution, for U~O, if Eq. (16d} is re-
placed by

UB—T/Bx =G" 'I B-e/By I- aT—, (22)

i.e., by replacing ~V4~ by B4/By in Eq. (16d). In the
discrete-continuum correspondence, Eq. (22) corresponds
to heating only the vertical bonds along the Oy axis,
which are parallel to the globally applied voltage gra-
dient. This condition could perhaps find a physical inter-
pretation within an extension of the present scalar rup-
ture model to a tensorial formulation. In any case, this
formulation (22) simplifies the analysis considerably,
since with the quasistatic assumption, it leads to replac-
ing Eq. (21) by

B4/By =aG' —= V' . (23)

This gives exactly the SaSman-Taylor solution, since
upon integration we get 4= V'y on the crack border (see
Appendix A). Note that the half-width A, of a crack is
given by A, = V/V' because the potential 4 reaches its
limit V for x~ —~ and y=A, . Therefore V' must be
larger than or equal to V in order for a solution to exist.
However, contrary to the Saffman-Taylor finger problem,
V' does not give the velocity of the front, which is in our
case infinitely small. This is where the duality of the two
problems makes them difFerent.

Putting aside the technical aspects of the analytical
treatment and the various limits, the important result is
that the solution of the set of Eqs. (16), defining the con-
tinuous limit of the crack front propagation in a strip un-
der constant voltages (displacements) applied at the bor-
ders, is not unique but rather corresponds to a continuum
of solutions of di8'erent shapes parametrized by their cor-
responding velocity U. This result is completely analo-
gous to the problem of the penetration of a single finger
of light fluid penetrating in a denser fluid in a channel, in
the limit of vanishing surface tension. It is also similar to
the problem of the growth of a dendrite in a capillary also
in the absence of surface tension and to the propagation
of a retrocombustion front in a plate of wood in which an
oxygen flow is injected at one extremity and combustion
is initiated at the other [6]. In all cases, the existence of
the continuum family of solutions can be traced back to
the fact that the front boundary is coinciding with the
isovalue of the relevant field. In the SaSman-Taylor
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finger, the border is an isopressure line, and therefore an
isopotential taking into account Darcy's law. In the den-
drite problem, the border is an isotherm line and in the
retrocombustion it is again an oxygen isopressure line. In
our electrical thermal fuse (mechanical damage) problem,
the crack border corresponds to an isotherm (isodamage)
line.

The existence of a small surface tension in the
Saffman-Taylor finger, the dendrite, or the retrocombus-
tion problems leads to the selection of one shape among
all of the continuous family of solutions [16]. The surface
tension implies physically that the fronts are no longer
isovalues of the relevant field. A similar effect should
hold for the rupture problem. A possible effect would be
to consider both damage and plasticity such that the de-
formation is no longer purely elastic and the crack border
is defined by combining plastic deformation and damage
in a rupture criterion. We leave this problem for future
investigations.

V. DISCUSSION

The thermal fuse model of dynamical rupture has been
shown to possess many properties in common with other
general surface growth phenomena. In ordered or in
slightly disordered lattices under constant applied density
current, dendritic patterns have been obtained which cor-
respond to a selective amplification of very small noisy
fluctuations on the side of the cracks. We would like to
point out that the crack patterns, grown from a nu-
cleation center in the presence of quenched disorder
which are observed in our computations, are reminiscent
of recent high velocity Quid-displacement experiments in
Hele-Shaw cells filled with a viscoelastic fluid [18]. In
these experiments, the role of the nucleation center is
played by the injection hole through which the fluid is
pushed in and the quenched disorder accounts for the
heterogeneities of the system. Even if the physics may be
more complicated in the experiments, the existence of
viscoelasticity entails delay and relaxation effects as in
the thermal fuse model. More generally, the addition of a
dynamics with delay and relaxation effects creates a very
rich phenomenology similar and sometimes close to real-
life observations of rupture patterns. The present model
constitutes one of the simplest realizations of dynamical
systems exemplifying the importance of viscoelastic, duc-
tile, or plastic behavior coupled with the usual linear elas-
ticity on rupture phenomena.

We speculate that the existence of the continuum of
solutions (Sec. IV) found in the continuous version of the
thermal fuse model, of a crack front propagating at a
constant velocity in a strip on whose borders constant
displacements are applied, could be related to the accu-
mulation of instabilities which have been observed nu-
merically in Sec. III when m approaches 1 for the prob-
lem of crack growth from a central nucleus under con-
stant applied stress. The idea is that the continuum set of
solutions provides a large set of almost equivalent shapes
which can compete in the rupture dynamics. We do not
understand precisely the status of the apparently special
value m =1, but note that integration of Eq. (1) (for

m =1 and a =0 or a%0 but for large applied currents)
yields that rupture occurs on a given element after a time
such that the integrated current over this time reaches a
constant, characteristic of this element. Since the in-
tegrated current is simply proportional to the electric
charge accumulated over this time, the rupture criterion
boils down to a threshold criterion on the electric charge
having passed through that element. The special value
m = 1 then stems from the fact that rupture criterion is
expressed in terms of a conserved quantity of the driving
field, namely, the electric charge. It can then be shown
[9] that the average time to failure is proportional to the
length (in a certain metric) of the shortest path cutting
the system into two pieces. In this case, there is a clear
geometrical interpretation to the fractal and scaling
behaviors close to rupture: it is related to the geometrical
structure of minimal paths in a certain metric.

%'e have attempted to complement the theoretical
analysis developed in Sec. IV by performing extensive nu-
merical computations on large lattices (size up to 100 by
500). We were hoping that, for these large lattices, the
discreteness would not be too severe a perturbation and
that the cracks would present shapes close to the expect-
ed continuous solutions, at least for low velocities (and
possibly m ~0). In particular, we wanted to check our
prediction that the shape of the crack front could be
selected in a large family of possible solutions, by control-
ling the width and shape of the initial crack. %'e also
wanted to check the prediction that the shapes of these
crack fronts are close to those of the Saffman-Taylor
fingers in the vicinity of the tip, for low velocities. These
expectations have not been borne out by our numerical
simulations. In fact, we found our simulation not very
reliable for two reasons: (1) due to the finite length of the
strip, it is almost impossible to start the simulation with
the correct asymptotic temperature field. In other words,
the crack solution is sensitive to the initial temperature
field and the various structures of the cracks found nu-
merically reflect this fact. (2) The results were found to
be very sensitive to the initial set of bonds removed, i.e.,
to the initial shape of the crack. Using square lattices
tilted at 45' and square lattices not tilted with respect to
the long direction of the strip and a large variety of initial
shapes (sometimes forcing the shape close to the expected
continuous shape), we found that thin cracks were almost
always preferred, with possibly rather complicated trajec-
tories between the two strip edges. The main conclusion
of this numerical work is that discreteness is a relevant
singular perturbation whose effects are too important to
get access to the continuum solutions. This is basically
due to the preferred crack growth along the direction of
the largest current. The situation thus appears similar to
the case of dendritic growth where the underlying crystal
structure is very important [7]. Note that this is similar
to the viscous fingering problem in which rules mimick-
ing surface tension had to be added to the DLA walkers
to get appropriate continuum behavior. One could add
similar smoothing terms, such as a coupling between
damage and plasticity such that the deformation is no
longer purely elastic and the crack border is defined by
combining plastic deformation and damage in a rupture
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criterion. Another possibility would be to consider a
difFusion of damage (heat) to neighboring sites; however,
this has no physical basis and would destroy the simplici-
ty of the present model which couples the damage field to
the stress Seld only locally through Eq. (1).

Inspired by our results described in Sec. III for sma11
exponents m, we then attempted to get a Sa6man-
Taylor-like crack front in the regime of accelerating
cracks (regime [(1)ii] of Sec. IIC), by applying a large
voltage V at time zero to the bus bars of the strip. In
these simulations, the temperature of all bonds is zero at
the initial time. The results found are quite intriguing:
fixing first the exponent m to a small value, we find a
fingerlike solution for the crack front, with a rather
smooth tip. Its thickness A, is smaller than —,

' the strip
thickness, namely, A. (1, using the notation of Fig. 7.
However, k increases monotonously as the applied volt-

age increases to infinity and eventually saturates to a
value less than 1. Decreasing m to very small values
(down to 10 ) and applying very large voltage (up to
10', where 1 corresponds in these units to the rupture
threshold V,h defined in Sec. III C), we find that A, ~1,
i.e., the crack front has its width converging to half the
strip width, while its shape becomes close to the
Saffman-Taylor solution for this value (up to the resolu-
tion of the discrete lattice). Figure 8 illustrates these re-
sults, for m =10 and V=10', by showing a series of
snapshots of the crack front developing from an initia1
small crack into a well-defined finger of width equal to 24
lattice mesh (the entire width is 49), very close to the
asymptotic value. This selection of a well-defined width
converging to half the strip width for infinitesimal n's
and infinite Vs is quite intriguing since this is the solu-
tion of the Sa8man-Taylor problem in the presence of a

FIG. 8. For m=10 ', V=10', and period-
ic boundary conditions in the x variable, series
of snapshots showing the crack front develop-
ing from an initial small crack into a well-
defined finger of width equal to 24 lattice
meshes (the strip shown in the figure has a
length of 512 meshes and a width of 49
meshes}, very close to the asymptotic value of
half the strip width. Only half of the strip is
used in the calculation, due to symmetry with
respect to the Ox axis. The succession of
snapshots corresponds to the following num-
ber of broken bonds: 100, 300, 500, 1000, 1500,
2000, 3000, 5000, 6000, 8000, 9500.
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small surface tension [16]. In this last case, the shape and
corresponding velocity selection are due to a solvability
principle in the presence of the essential singularity pro-
vided by the presence of the small surface tension [16].
In the present case, however, the front crack is not a
steady-state solution since it is accelerating and a
mathematical correspondence, if any, is not clear to us.
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APPENDIX A: SOLUTION OF THE ELECTRIC
BOUNDARY PROBLEM [EQS. (16a)-(16c)]

The general method for solving the crack propagation
problem is the following. We use the change of variables
x,y~4, % formulated below. We use the form (A4)
below for y(4, %) which gives x(4, )II ), using the Cauchy
relations Bx/BC=By/B)II and Bx/B)p= —By/BC. This
change of variables x,y~4, % allows us to express Eq.
(19) on the crack boundary where T= 1, in terms of the
variables 4,%, which thus yields the equation of the
crack as a relation between 4 and %. Using it and the
transformation x,y~4, % allows us to compute the
current density B4/Bs along the crack boundary from
which one can extract the dependence of the electric po-
tential 4n(s) on the crack boundary and thus the relation
giving y as a function of 4 (which constitutes a way to
write the equation of the crack boundary, since 4=0 on
it}, y~(4), using the relation between y and the curvilin-
ear abscissa s. Then, Eq. (A5) below provides the un-

known Fourier coefBcients A„ from which all other
quantities are obtained. We expect a continuum of solu-
tions, each solution being parametrized by its corre-
sponding velocity U. What this means is that, fixing
0 & U ~ + 00 in Eqs. (16), one can always find a shape for
the crack boundary which is a solution of (16). We have
not been able to follow this program in order to find an
explicit analytical solution, similarly to the Saffman-
Taylor solution of Eqs. (17). The crack shape and its ve-

locity can only be solved numerically.
We now expose the procedure in more detail. The

method of resolution is similar to that used to solve the
Saffman-Taylor problem. One introduces first the
"stream function" 4 defined by

y(4=+V, V)=El

(imposed potential on the two bus bars), (A2a)

y(4=0, )II }=0

(symmetry with respect the Ox axis) . (A2b)

In the Saffman-Taylor problem (17), an additional condi-
tion is easily obtained from the local growth law condi-
tion (17d). In the crack context (16},this would read

y =4)/V' on the finger boundary for which 4=0 .

(A3)

This condition would hold if Be/Bs= V'cosP, which is
the dual of Eq. (17c) for the Saffman-Taylor problem,
where V' is the maximum current density at the crack
tip, for a conductivity equal to unity. Using
cosP=By/ds, this yields (A3) upon integration. Unfor-
tunately, the solution is not as easy in the case of Eqs.
(16), since B@/Bs is not in general proportional to cos)))).

A possible formulation is to replace the crack boundary
geometry by the function j(s) giving the current density
along its border. From j(s)=GB@/Bs, this yields 4s(s)
on the crack boundary and thus ys(4} using the relation
between y and the curvilinear abscissa s.

This is a general fact that y is a harmonic function of 4
and 4 which can thus be looked for under the form

y=4/V+ g A„sin(nm@/V)exp[ nn%/V] . (A—4)

The term 4/V ensures that we recover the solution
4=Vy for x~+00, i.e., %'~+ ~. Suppose that we
know ys(4) on the crack boundary on which )II=0.

@—-V

Be/Bx =Bq /By,

Be/By =—Bq /Bx .

(Ala)

(A lb)

Then the condition (16c), B@/Bn~y —+f( ) 0, becomes

~y
—+f( ) 0 using the fact that BC /Bn =Bq /Bs [from

the definition (Al)], where s is the curvilinear abscissa
along the crack boundary. The variable 4 is thus a con-
stant along the crack boundary, which can be taken zero
without loss of generality.

Instead of looking for a solution 4 and 4 as a function

FIG. 9. Plane (4,%). Corresponding points in the physical
and potential planes are marked with the same letter (see Fig.
7), the exterior of the crack transforms into the semi-infinite
strip %&0, —V&@&V, the surface of the crack transforms
into the @axis with —V &4 & V, and the walls of the strip cor-
respond to the semi-infinite lines 4=+V.
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Then, the equation

ys(4)=4/V+ g A„sin(nn@./V)
n=1

(A5)

marized in Appendix A and write the solution for the po-
tentials 4 and qt as follows, taking A, =O [6]:

x =—+—(ln2+ —,'ln[[1+e cos(m4/V)]
V m'

means that the coeScients A„are simply the Fourier
coefficient of the function ys(4) defined in the finite in-
terval —V&4~ V. This equation ensures that all the
boundary conditions are satisfied. Knowing the A„'s,we
then deduce x(4, '0) andy(4, %), from which we can ex-
tract V4 and report this value in the thermal equations
(16d) and (16f).

Note that if Eq. (A3) held (y=tp/V') on the finger
boundary for which %'=0, we would recover the
Saffman-Taylor solution [with, however, a permutation
between 4 and 4 coming from the dual boundary condi-
tion (16c) compared to (17c)]:

+ [e sin(n@/V)] I ), (Bl)

2 e " sin(m4/V)
~ 1+e ~ cos(n@/V)

(82)

Eliminating 4 between these two equations allows us to
obtain the potential 4 as a function of x and y.

In order to solve for the crack tip velocity, we need to
determine the current flowing on the line y=O, x ~0.
For symmetry reasons, this current is vertical and is
given by B4/By~ c=0. Since 4(y=0)=0, this allows
us to obtain %(x) from Eq. (Bl) on the line y =0:

A„=—(2/m )(1—V/V'}, (A6} x=—+—[ln2+ln(1+e ~ )] .
V m

(B3)

which would solve completely the problem [6], assuming
a conductivity equal to unity. The constant V' is such
that V V' is not fixed and this means that there is a con-
tinuum of solutions par ametrized by the ratio
0~ X= V/V' 1, where A, has a simple geometrical mean-
ing, being the half-width of the finger, as seen from Eq.
(A3) y =4/V', since 4 must reach its limit V for y = A, .

APPENDIX 8:INFINITELY THIN CRACK CASE

We want to solve the set of Eqs. (16) with the addition-
al assumption that the crack is given a priori and takes
the shape of a line equation y=O, —~ &x 0. Then,
condition (16c) becomes BC /By =0 since the normals to
the crack are always parallel to the Oy axis. The half-
width A, of the crack is vanishing. Since in the Saffman-
Taylor problem (see Appendix A) it is given as the ratio
I,= V/V' where V' is defined by the relationship linking
the potential 4 on the crack border to the variable y, this
gives V'~+ ao. Another way to put it is that 4 must go
to V for x ~ 00, y =0. We can thus use the method sum-

Using the Cauchy relation B4/By = —Bqi/Bx, we obtain
the current needed in Eq. (19) and setting T= 1, which
defines the frontier of the crack, we get the implicit equa-
tion

1+e
—7J+/v m —1

U —(GV)m
—1 1+e —a%'/UV

o 1—
—2a/eU

d%, (B4)

which gives the velocity U as a function of the applied
potential V. Note that U appears in the integrand of the
integral. The absolute value in the integral is B4/By, the
exponent m =1 coming from the correction brought by
the Jacobian of the transformation x~% and the two
other terms are the expression of e ' in terms of the
variable 0', using Eq. (B3). This solves formally the prob-
lem of the determination of the crack tip velocity.
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