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Self-consistent solution of phase separation with competing interactions
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We present a solution of a modified time-dependent Ginzburg-Landau equation in the limit of
in6nite order-parameter dimension N. The scalar (N = 1) model is believed to describe phase sepa-
ration in chemically reactive binary mixtures, block copolymers, and other systems where competing
short-range and long-range interactions give rise to steady-state, spatially periodic structures. We
present exact analytical expressions for the time dependence of the dynamic structure factor S(k, t)
and the peak position h (t). We compare the scaling behavior for N = oo with that observed in
the scalar model.
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Understanding the various mechanisms that give rise
to both equilibrium and nonequilibrium pattern forma-
tion in complex systems is a problem of long-standing
interest [1]. Nonequilibrium pattern formation occurs,
e.g. , in incompatible binary mixtures undergoing phase
separation by spinodal decomposition [2]. During spin-
odal decomposition, a mixture of two species of molecules
A and B will become unstable with respect to long-
wavelength concentration Suctuations when the mixture
is quenched into the ~~stable region. This process ul-

timately leads to macroscopic phase separation via an
interconnected morphology which coarsens self-similarly
with time. In many situations, however, competing phe-
nomena may interfere with phase separation, producing
stable, periodic patterns (cf. Fig. 1). For example, -mag-
netic systems and dipolar Quids ordering in the pres-
ence of long-range, Coulombic interactions often exhibit
striped, lamellar domain patterns [3]. In phase separat-
ing mixtures of block copolymers, the finite block length
competes with the thermodynamic demixing of the con-
stituent monomers, resulting in eq~nbbrium, microphase-
separated lamellar, hexagonal, and micellar structures,
depending on the constituent concentrations [4—6]. Con-
ventional phase separation in binary mixtures and poly-
mer blends can also be altered by chemical reactions [7,8].
For example, a reaction such as A B tends to spa-
tially mix the two species, and when this reaction occurs
simultaneously with spinodal decomposition, the phase
separation process evolves into a steady-state pattern in
which the demixing thermodynamic and mixing reactive
processes balance [7].

The theoretical understanding of spinodal decomposi-
tion in binary mixtures is based mainly on the Cahn-
Hilliard theory [2,9,10]. Consider the following, modified
Cahn-Hilliard equation:

Eh)(x, t)) = f dx f(Q)+ 21&4(x, t)l' (2)

where f(Q), the local, coarse-grained bulk free energy
of mixing, has a double-well structure below the critical
point, and ~ is related to the interaction range. When
W = 0, Eq. (1) reduces to the usual Cahn-Hilliard equa-
tion, describing phase separation in an immiscible binary
(A B) m-ixture. When W P 0, (1) has been proposed
to describe phase separation in both symmetric diblock
copolymers [5] and chemically reactive binary mixtures
[7]. In diblock (AB) copolymers, W is assumed to be
inversely proportional to the square of the block length,
while in a chemically reactive mixture (e.g. , A = B), W
is identi6ed with the reaction rate I'~~. Interestingly,
Eq. (1) can be rewritten as [11]

(9@(»,t),bF(@(»,t))
Bt
™

bg(», t)

where g(», t) is the scalar order-parameter Beld, given,
e.g. , by the concentration difFerence P~ —Ptr, I is related
to the mobility, and F(vP(», t)} is the standard Cahn-
Hilliard &ee energy functional [2,9],

FIG. 1. Example of lamellar domain pattern observed in
a variety of systems. This figure is from a numerical simula-
tion of Eq. (1), and shows the equilibrium domain morphol-

ogy of the concentration field for a system quenched into the
two-phase region [7].
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where

8$(x, t) 2 b&(g(», t))
Bt hg(x t)

(3)

n@(x t)}= +8'(» t))

G x, x' x, t x', t dxdx',

and G(x, x') is the Green's function for Laplace's equa-
tion, )k)'2G(x, x') = —b(» —x'), with appropriate bound-
ary conditions, so that, for d=3, G(x, x') = (4z~»—
»'~) ~. Thus, the system described by Eq. (1) has a
Lyapunov functional [11],given by Eq. (4), that contains
both a short-range, attractive interaction whose strength
is controlled by ~, and a long-range, repulsive interaction
whose strength is controlled by W. Consequently, the
modified Cahn-Hilliard equation that we consider here
describes phase separation in systems with competing in-
teractions. Experimental, numerical, and computational
studies have shown that this competition gives rise to sta-
ble, periodic, microphase-separated structures that may
exhibit novel scaling behavior [3,5—7].

We consider then the following modified, scalar time-
dependent Ginzburg-Landau (TDGL) equation with a
conserved order parameter. By taking the local &ee en-

ergy to be of the Landau form, f(Q) = rg /2+ gg /4,
Eq. (1) becomes

Btp(», t) = V rQ(x, t) + gg (x, t) —KV' g(x, t)
—Wg(», t), (5)

which for TV = 0 gives the usual TDGL equation. Here
r, g, and tc are phenomenological parameters related to
the quench depth and interfacial energy, respectively. We
seek an exact analytical solution for the evolution of the
time-dependent structure factor S(k, t) of the system de-
scribed by Eq. 5 following a quench from high temper-
ature into the unstable region. Such a solution is, at
present, intractable in the scalar (N = 1) case. However,
the immodified TDGL equation has been solved exactly
for an N-component order parameter in the N = oo limit
for both conserved and nonconserved order parameter
[12]. This solution can also be viewed as a self-consistent
appro»irnation of the scalar model [Eq. (5)] in which the
term g is substituted with (@ )@, where () represents
an average over all initial configurations.

Here we present an exact analytical solution of Eq. (5)
for an infinite-component order parameter, after an in-
stantaneous quench from a high temperature to r & 0
(T ( T ), following the approach taken in Ref. [12].
Specifically, we derive an exact analytical expression for
the time dependence of the dynamic structure factor
S(k, t) and the peak position k (t) in the spherical model
approximation. Vfe show that for values of TV less than
a critical value R'„the structure factor asymptotically
approaches a b function peaked around a constant in-
verse domain size k q which depends on the mobilityI, the interfacial square gradient coeKcient ~, and R'
as It,~ = (W//rM), where ct = 1/4 is the exponent

characterizing domain growth in the u~modified, large-
N TDGL model [12]. For W & W, we show that the
peak position of S(k, t) approaches an asymptotic value
lt = (—r/2 tt)~~2, while the amplitude of S(k, t) goes to
zero. As we mill see, the behavior predicted by the so-
lution of the model in the limit of an infinite-component
order parameter is consistent in some respects with be-
havior observed in numerical simulations of the scalar
model.

We begin by generalizing Eq. (5) to a system

with an N-component order parameter Q(x, t)
(Q"j(», t), . . . , Q~(x, t)). For each component ct, we have
an equation of motion of the form

N
Bt/)~(x, t) 2 2 1

Ot
—1+ —) Qp(x, t) @ (x, t)S P=1

—W@ (», t), (6)

where we have substituted the dimensionless variables
x' = xQ r/tt, t' = —tMr2/tt, Q' = QQg/ r, and—W' =
W' = Wtc/Mr2, so that W' is the only dimensionless
parameter, and for simplicity we drop the prime every-
where. We consider an instantaneous quench to r & 0
(T ( T,), and assume the initial condition (Q (x, t)) = 0.
In the limit N = oo, we recover the spherical model

and replace ~ g& z vP&~(», t) by (g (x, t)) in Eq. (6)
[13]. Here () represents an ensemble average over the
initial configurations. Moreover, by assuming transla-
tional invariance so that the pair correlation function

g(», x';t) =— (Q (x, t)@ (x', t)) = g(x —x', t), the quan-
tity (Q (x, t)) = g(0, t):—S(t) is independent of position
x. Thus, dropping the label o. and Fourier transforming
over space, it is straightforward to obtain the equation
of motion of the structure factor S(k, t):

= —2I ' k' —1+S(t) S(k, t) —2WS(k, t),
04

where k is a dimensionless wave vector and S(k, t) is the
spatial Fourier transform of (@ (x, t)Q (x', t)). The total
integrated scattering intensity S(t) must be determined
self-consistently:

sjt) = j s(k, t)
dk

(2z.)~ '

where d is the spatial dimension of the system.

By replacing ~ P& ~ g&~(x, t) by S(t), we have, in ef-

fect, enabled a linearization of Eq. (6) in Fourier space by
self-consistently "preaveraging" the nonlinear term in the
equation [14]. Consequently, Eq. (7) can be integrated to
obtain

S(k t) S(k 0)
—2k [s t+Q(t)] 2wt—

where we have defined Q(t) = J [S(t') —1]dt' To com-.
plete the solution, S(t) must be computed explicitly by
integrating Eq. (9) over k. To do so, we note that S(k, t)
has a maximum at a wave vector k (t) given by
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k2 (,)
&(t) (10)

which gives an expression for Q(t) in terms of the peak
position k (t). The solution for S(k, t) can then be writ-
ten as

where

[» (t) w]L (-t) P[k (t)]2
—dL2(t) (12)

P= ——2k'(t)+1 —4tk (t)
dk (t)

dt

Here B = Kgs(k, O)~m/4, with Kg = [2" in'+21'(d/

2)] i. Inserting the right-hand side of Eq. (12) into
Eq. (11) allows us to rewrite S(k, t) in the final form:

S(k, t) S(k, o)P[k (t)) "[k (t)L(t))

(i4)

where the peak position k (t) is given by the solu-
tion of Eq. (12), and the width of the peak is given

by Ek:—([k —k (t)) )i~2 k /[k (t)I(t)] . Taking
the logaritbm of both sides of Eq. (12) and dividing by
L4(t)—:2t gives an expression for k (t) that is readily
analyzed in the limit t + oo.

Careful analysis shows that there are two distinct so-
lutions depending on the value of W. If W & 1/4, then
Eq. (12) shows that the peak position reaches a nonzero
steady-state value in the limit t ~ oo,

S., = W'~'.

For earlier times such that t is large and W « k4 (t) [and
thus Wt « (d/8) lnt], we find

S(k t) S(k 0)e[k (t)—W]L (t) —[S —S* (t)] L (t) (11)

where we have defined L(t):—(2t)i~4. However, we still
require the solution for k (t). Using the method of steep-
est descent to solve for Q(t), and relating Q(t) to k (t)
through Eq. (10), we obtain the following equation when
k4 (t)L'(t) » 1:

P = (1—2Wi~2)/B, and S(k, t) can be approximated by
a Gaussian centered about k~ = W /', with width Ak
W~~4/[2Wt] ~ and amplitude 4 k ~[k,~L(t)]2
W ~4[2Wt]i~2, which in the limit t -+ oo tends to a
8 function centered about k z ——W' /' . For earlier times,
where, kom Eq. (16), [k (t)I,(t)]2 (lnt)i~2, the width
of the peak scales with an inverse length emaller than
k by a logarithmic factor, and S(k, t) displays multi-
scaling behavior as in the unmodified TDGL model in
the N = oo limit [12], since the exponent in Eq. (14) is
a function of k/k

The second distinct solution occurs for W & 1/4. In
this case we find from Eq. (12) that k (t) asymptotically
approaches the limiting value k = 1/v 2 exponentially,
[»]

~
—2(W —W )t

k (t) k + const x
t3/2 (18)

Consequently P and S(k, t), given in Eq. (1.4), asymp-
toticaUy vanish in an exponential fashion. Thus an equi-
librium, microphase-separated state is only predicted for
values of W less than the critical value W, = Mt 2/4', in
dimensional ~~its. For W & W„phase separation is pre-
vented, and S(k, t) vanishes as k approaches a limiting
value given by k = ( t'/2tt) ~—, resulting in a periodic
pattern which fades in time.

We nom summarize the results of the scalar model
and compare with the results found here. Studies of
the modified, scalar TDGL equation [Eq. (5)] have sug-
gested the existence of a critical value of W above which
the homogeneous @ = 0 state is no longer unstable for
T & T,. Linearization of that equation gives a cutoH'
value W, = 1/4 above which phase separation is pre-
vented [7]. The same value was obtained from a linear
stability analysis of the free energy functional of Eq. (4)
in d = 1 by Liu and Goldenfeld [ll]. Not surprisingly, the
same cutoff value is found in the N = oo model. Below
W„two limiting regimes are found in the scalar model,
characterized by small and large W, respectively. In both
regimes, it is found that

k (t, W) =W F(Wt),

where F(z) ~ const for z -+ oo and F(z) ~ z for
x (g oo, and

k (t)-
l

-»t
I [L(t)) '(d

) S(k, t, W) = [k (t)] f(k/k (t), Wt), (20)

where a = 1/4, and thus, apart from logarithmic factors,
k (t) t i~4 Note that th. is is the large-N solution
to the unmodified (W = 0) TDGL equation in the limit
t ~ oo [12]. The solution for k (t) is consistent with the
scaling form

k (t, W) = W'i'F(Wt),

with F(z) i const for z -+ oo and F(z) ~ z i~4 for
x gg oo.

Inserting Eq. (17) into Eq. (14) gives the exact solu-
tion for S(k, t). At late times, where [k~(t)I (t)]4 = 2Wt,

where, for Wt « 1 and t large, f(z, tl) f(z, 0), while
for Wt » 1, k (t) = k ~ = W and f(z, y) f(z, oo).
Note that, in the scalar model, the position of the peak
and the width of the peak instead scale together in the
same way.

For small W, n was found to be consistent with a value
1/3 in the scalar case [5,7,11]. In this regime, the interfa-
cial thickness is small compared to the domain size, and
the composition profile is well approximated by a square-
wave-like function [5,11]. For large W, a was found to
be roughly 1/4 [5,6,11]. In this regime, the interfacial
thickness is comparable to the domain size, and the com-
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position profile is approximately sinusoidal [11].In prin-
ciple, one expects to find a = 1/3 as the true asymptotic
exponent of the scalar model, and a = 1/4 as an effec-
tive exponent observed simply because the domain size
saturates for large R' before the true asymptotic growth
regime is reached. However, it has been suggested [5,6,11]
that the scalar model applies to diblock copolymer melts,
in which W oc 1/n, where n is the chain length, and
that the two limiting regimes of this model, small W
(cr = 1/3) and large W (a = 1/4), correspond to the
strong and weak segregation limits, respectively, in di-
block copolymers [4]. The scalar model also describes
chemically reacting binary mixtures, in which A = B
and the forward and backward reaction rates are equal
and proportional to W [7], and is expected to describe
phase separation in other systems characterized by the
Lyapunov functional in Eq. (4).

In the N = oo limit, we find that k obeys a scaling
law for W ( 1/4 given by Eq. (17), similar to Eq. (19)
with o. = 1/4, as in the large-W limit of the scalar model.

Moreover, the structure factor in Eq. (14), in the limit
t ~ oo, is given by a scaling relation similar to Eq. (20)
with f(x, y) approximated by a Gaussian centered at
x = 1, which in the limit y ~ oo tends to a b function
centered at x = 1. That is, while the position of the peak
of the structure factor tends to a constant, in agreement
with the scalar case, the width of the peak continues to
shrink to zero. This b function scaling form suggests a
sinusoidally varying composition profile in d = l. Such
a profile has been used to describe the diffuse lamellar
structures seen in the large-W limit of the scalar model.
Indeed, diffuse interfaces are expected for large N due to
the continuous symmetry of the order parameter. Thus,
the N = oo TDGL model studied here seems to approx-
imate the scalar model in the large-W limit.
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