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We numerically reexamine the scaling behavior of period doublings in four-dimensional volume-

preserving maps in order to resolve a discrepancy between numerical results on scaling of the coupling
parameter and the approximate renormaiization results reported by Mao and Greene [Phys. Rev.
A $5, 3911 (1987)]. In order to see the Sne structure of period doubiings, we extend the simple
one-term scaling law to a two-term scaling law. Thus we Snd a new scaling factor associated with
coupling and conSrm the approximate renormalization results.

PACS number(s): 05.45.+b, 03.20.+i, 05.70.Jk

Universal scaling behavior of period doubling has been
found in area-preserving maps [1—7]. As a nonlinearity
parameter is varied, an initially stable periodic orbit may
lose its stability and give rise to the birth of a stable
period-doubled orbit. An infinite sequence of such bi-
furcations acc»emulates at a finite parameter value and
exhibits a universal limiting behavior. However, these
limiting scaling behaviors are different from those for the
one-dimensional dissipative case [8].

An interesting question is whether the scaling results
of area-preserving maps carry over higher-dimensional
volume-preserving maps. Thus period doubling in four-
dimensional (4D) volume-preserving maps has been much
studied in recent years [7,9—13]. It has been found in
Refs. [11—13] that the critical scaling behaviors of period
doublings for two symmetrically coupled area-preserving
maps are much richer than those for the uncoupled area-
preserving case. There exist an infinite number of critical
points in the space of the nonlinearity and coupling pa-
rameters. It has been numerically found in [11,12] that
the critical behaviors at those critical points are char-
acterized by two scaling factors, 6q and 62. The value
of 6q associated with scaling of the nonlinearity param-
eter is always the same as that of the scaling factor b

(= 8.721. . .) for the area-preserving maps. However, the
values of 6z associated with scaling of the coupling pa-
rameter vary depending on the type of bifurcation routes
to the critical points.

The numerical results [11,12] agree well with the ap-
proximate analytic renormalization results obtained by
Mao and Greene [13], except for the zero-coupling case
in which the two area-preserving maps become uncou-
pled. Using an approximate renormalization method in-
cluding truncation, they found three relevant eigenvalues,
6q ——8.9474, 6z ———4.4510, and 6s ——1.8762 for the zero-
coupling case [14]. However, they believed that the third
one, 83, is an artifact of the truncation, because only two
relevant eigenvalues b~ and b2 could be identified with
the scaling factors n~~~ericaHy found.
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(t+I) =-y (t)+f(* (t))+g(* (t)»(t))
y(t+I) =*(t)
zz(t+ I) = yz(t) + f(zz(t)) + g(zz(t)~zl(t))

, y2(t+ 1) = zz(t),

where t denotes a discrete time, f is the nonlinear func-
tion of the uncoupled Henon quadratic map [15], i.e.,

f(z) = 1 —ax2, (2)

and g(zq, x2) is a coupling function obeying a condition

g(z, z) = 0 for any z.

The two-coupled map (1) is called a symmetric map
[11,12] because it is invariant under an exchange of coor-
dinates such that xq ~ xq and yq ~ y2. The set of all
points, which are invariant under the exchange of coor-
dinates, forms a symmetry plane on which 2:q ——x2 and

yq ——y2. An orbit is called an in-phase orbit if it lies on
the symmetry plane, i.e., it satisfies

In this Brief Report we numerically study the critical
behavior at the zero-coupling point in two symmetrically
coupled area-preserving maps and resolve the discrep-
ancy between the numerical results on the scaling of the
coupling parameter and the approximate renormalization
results for the zero-coupling case. In order to see the fine
structure of period doublings, we extend the simple one-
term scaling law to a two-term scaling law. Thus we
find a new scaling factor 6s ——1.8505. . . associated with
coupling, in addition to the previously known coupling
scaling factor 6z ———4.4038. . . . The numerical values of
b2 and 6s are close to the renormalization results of the
relevant coupling eigenvalues 62 and 6s. Consequently
the fixed map governing the critical behavior at the zero-
coupling point has two relevant coupling eigenvalues 6z
and 6s associated with coupling perturbations, unlike the
cases of other critical points.

Consider a 4D vob~me-preserving map T consisting of
two symmetrically coupled area-preserving Henon maps
[11,12],
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xi(t) = X2(t) = x(t), yi(t) = y2(t) = y(t) for all t. (4)

Otherwise it is called an out-of-phase orbit. Here we
study only in-phase orbits. They can be easily found &om
the uncoupled Henon map because the coupling function
g satisfies the condition (3).

Stability analysis of an in-phase orbit can be conve-
niently carried out [11,12] in a set of new coordinates
(Xi, Yi) X2, Y2) defined by

(xi + z2)
1

2
)

&1 &22=
2

(ui + u2)
2

(ui —F2)2=
2

(5b)

Note that the in-phase orbit of the map (1) becomes the
orbit of the new map (expressed in terms of new coordi-
nates) with X2 ——Y2 ——0. Moreover the new coordinates
Xi and Yi of the in-phase orbit also satisfy the uncoupled
Henon map.

Linearizing the new map at an in-phase orbit point,
we obtain the Sacobian matrix J which decomposes into
two 2 x 2 matrices [11,12]:

(6)

Here 0 is the 2 x 2 null matrix, and

t' f'(Xi) —1 )
1 0 ) '

& f'(Xi) —2G(Xi) —1 )
J2 ——

~ (8)

where f'(X) = ~ and G(X) —=

Hereafter the function G(X) will be called the "reduced"
coupling function of g(Xi, X2). Note also that the de-
terminant of each 2 x 2 matrix J; (i = 1, 2) is one, i.e.,
Det(J;) = 1. Hence they are area-preserving maps.

Stability of an in-phase orbit with period q is then
determined &om the q product M; of the 2 x 2 matrix
J;:

q —1

~ ~ ~

t=o
J~(Xi(t)), i = 1, 2. (9)

Since Det(M;) = 1, each matrix M; has a reciprocal pair
of eigenvalues, A; and A,:. Associate with a pair of eigen-
values (A;, A, ) a stability index [16],

p; =A;+A,. , i=1,2

which is just the trace of M;, i.e., p; = Tr(M;). Since
M; is a real matrix, p; is always real. Note that the 6rst
stabi1ity index p1 is just that for the case of the uncoupled
Henon map and hence coupling afFects only the second
stability index p2.

An in-phase orbit is stable only when the moduli of its
stability indices are less than or equal to two, i.e., ~ p; ~

& 2
for i = 1 and 2. A period-doubling (tangent) bifurcation
occurs when each stability index p; decreases (increases)

through —2 (2). Hence the stable region of the in-phase
orbit in the parameter plane is bounded by four bifur-
cation lines associated with tangent and period-doubling
bifurcations (i.e., those curves deterinined by the equa-
tions p; = +2 for i = 0, 1). When the stability index pi
decreases through —2, the in-phase orbit loses its stabil-
ity via in-phase period-doubling bifurcation and gives rise
to the birth of the period-doubled in-phase orbit. Here
we are interested in scaling behaviors of such in-phase
period-doubling bifurcations.

As an example we consider a linearly coupled case in
which the coupling function is

g(~i, 2) = -(*2-*i)
2

Here c is a coupling parameter. As previously observed
in Refs. [11,12], each "mother" stability region bifurcates
into two "daughter"stability regions successively in the
parameter plane. Thus the stable regions of in.-phase
orbits of period 2" (n = 0, 1, 2, . . .) form a "bifurcation"
tree in the parameter plane [17].

An infinite sequence of connected stability branches
(with increasing period) in the bifurcation tree is called
a bifurcation "route" [11,12]. Each bifurcation route can
be represented by its address, which is an ininite se-
quence of two symbols (e.g. , L and R). A "self-similar"
bifurcation "path" in a bifurcation route is formed by
following a sequence of parameters (a„,c„),at which the
in-phase orbit of level n (period 2") has some given sta-
bility indices (pi, p2) (e.g. , pi ———2 and p2 ——2) [11,12].
All bifurcation paths within a bifurcation route converge
to an accumulation point (a', c'), where the value of a*
is always the same as that of the accumulation point for
the area-preserving case (i.e., a* = 4.136 166803904. . .),
but the value of c' varies depending on the bifurcation
routes. Thus each bifurcation route ends at a critical
point (a', c') in the parameter plane.

It has been numerically found that scaling behaviors
near a critical point are characterized by two scaling fac-
tors, bi and b2 [11,12]. The value of hi associated with
scaling of the nonlinearity parameter is always the same
as that of the scaling factor b (= 8.721. . .) for the area-
preserving case. However, the values of b2 associated
with scaling of the coupling parameter vary depending on
the type of bifurcation routes. These numerical results
agree well with analytic renormalization results [13],ex-
cept for the case of one specific bifurcation route, called
the E route. The address of the E route is [(L,R, ) ]
(= [L,R, L, R, . . .]) and it ends at the zero-coupling crit-
ical point (a', 0).

Using an approx~mate renorm~&~~ation method includ-
ing truncation, Mao and Greene [13] obtained three rel-
evant eigenvalues, b1 ——8.9474, b2 —— —4.45M, and
b3 —1.8762 for the zero-coupling case; hereafter the two
eigenvalues b2 and b3 associated with coupling wi11 be
called the coupling eigenvalues (CE's). The two eigen-
values b1 and b2 are close to the numerical results of the
nonlinearity-parameter scaling factor hi (= 8.721. . .) and
the coupling-parameter scaling factor b2(= —4.403. . .)
for the E route. However, they believed that the second
relevant CE b3 is an artifact of the truncation, because
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where Cl l and Cl'l are some constants, 6 = 8.721. . .,
and p = —4.403. . . . The values of b and p, are close to
the renormalization results of the first and second rele-
vant eigenvalues 6q and b2, respectively.

In order to take into account the eHect of the second
relevant CE 6's on the scaling of the sequence (b,c },we
extend the simple one-term scaling law (12) to a two-term
scaling law:

Ac„= C1p,1"+ C2p, 2" for large n, (13)

where )p,q( ) (pz). This is a kind of multiple scaling law

[18]. Equation (13) gives

AC„= t1LC +1 —t2LC +2, (14)

where t1 ——@1+p2 and t2 ——p1IJ2. Then p1 and p2 are
solutions of the following quadratic equation:

it could not be identified with anything obtained by a
direct numerical method.

In order to resolve the discrepancy between the nu-
merical results and the renormalization results for the
zero-coupling case, we numerically reexamine the scaling
behavior associated with coupling. Extending the simple
one-term scaling law to a two-term scaling law, we find
a new scaling factor b3 ——1.8505. . . associated with cou-
pling in addition to the previously found coupling scaling
factor b2 ———4.4038. . ., as will be seen below. The val-
ues of these two coupling scaling factors are close to the
renormalization results of the relevant CE's b2 and 6s.

We follow the in-phase orbits of period 2" up to level
n = 14 in the E route and obtain a self-similar se-
quence of parameters (a, c ), at which the pair of stabil-
ity indices, (po „,pq „), of the orbit of level n is (—2, 2).
The scalar sequences (a„}and (c„}converge geomet-
rically to their limit values, a and 0, respectively. In
order to see their convergence, define 6„=—b,a„~q/b, a„
and p,„—:Ec„+q/b, c„, where Ea„= a„—a„q and
Ac„= c„—c„1. Then they converge to their limit
values b and p, as n ~ oo, respectively. Hence the two
sequences (b,a„}and (b,c„}obey one-term scaling laws
asymptotically:

Ea = Cl l6, b,c = Cl lp for large n, (12)

TABLE I. Scaling factors pq and p,2, in the two-term
scaling for the coupling parameter are shown in the sec-
ond and third columns, respectively. A product of them,
p~ „/p2, „, is shown in the fourth column.

5
6
7
8
9
10
11
12

—4.403 908 128
—4.403 899 694
—4.403 898 736
—4.403 897 867
—4.403 897 847
—4.403 897 806
—4.403 897 807
—4.403 897 805

P2,n

10.4374
10.465 9
10.458 2
10.474 8
10.473 9
10.478 4
10.478 6
10.479 7

2
Pl, n

P2,n
1.858 17
1.853 09
1.854 46
1.851 52
1.851 68
1.850 89
1.850 85
1.850 65

Three sequences (pq „},(p2„}, and (y, ~ „/p2„} are
shown in Table I. The second column shows rapid con-
vergence of pq „to its limit values y, q (= —4.403 897 805),
which is close to the renormalization result of the first rel-
evant CE (i.e., b2 ———4.4510). From the third and fourth
columns, we also find that the second scaling factor p,2 is
given by a product of two relevant CE's 6z and 6s,

62
P2 =

b3'

where 6z ——p, q and 6s ——1.850 65 . It has been known that
every scaling factor in the multiple-scaling expansion of
a parameter is expressed by a product of the eigenvalues
of a linearized renormalization operator [18]. Note that
the value of b3 is close to the renormalization result of
the second relevant CE (i.e., 6s ——1.8762).

We now study the coupling eff'ect on the second stabil-
ity index p2 „ofthe in-phase orbit of period 2 near the
zero-coupling critical point (a', 0). Figure 1 shows three
plots of pz „(a',c) versus c for n = 4, 5, and 6. For c = 0,
p2 „converges to a constant pz (= —2.54351020. . .),
called the critical stability index [12], as n -+ oo. How-
ever, when c is nonzero p2 diverges as n -+ oo, i.e.,

P'-t, I +t2=0.

To evaluate p1 and p2, we first obtain t1 and t2 &om
b,c„'s using Eq. (14):

t2=

A~LCn+1 —ACn —1ZL,Cn+ 2

EC„+1—AC„AC„+2
AC2 —LC„+14C„

AC~+1 ACn ACn+2

(16-)

(16b)

O
-2

CU
cL -3

Note that Eqs. (13)—(16b) hold only for large n. In fact
the values of t s and y, s (i = 1,2) depend on the level
n. Therefore we explicitly denote t s and p s by t; 's
and p; 's, respectively. Then each of them converges to
a constant as n —+ oo:

-0.0003 0.0000
C

I

0.0003

lim t;,„=t;,n-+oo (17)
FIG. 1. Plots of the second stability index p2 „(a',c) versus

c for n = 4, 5, 6.



4240

its slope S„(= '
) at the zero-coupling criticalP2,n

( s P)
point diverges as n —+ oo.

The sequence (S„jobeys a two-term scaling law,

S = Dgvq + D2v2 for large n,

~h~~~ I»I ) I»l. This equate» gives

Sn+2 = riS„+g —r2S

(19)

(2o)

where rq ——vq + vq and r2 ——vqvq. As in the scaling for
the coupling parameter, we first obtain rq and r2 of level
n from S„'s:

S~+~S~ —S~+2S~—i
Tl,n S„' —Sn+x Sn-i

S„+~ —S„S„+2
'j 2)fL

(21)

Then the scaling factors v~ and v2 „oflevel n are given
by the roots of the quadratic equation, v2 —rq „v„+r~„——
0. They are listed in Table II aad converge to constants
vi (= —4.40389780509) and v2 (= 1.850535) as n -+ oo,
whose accuracies are higher than those of the coupling-
parameter scaling factors. Note that the values of vq and
v2 are also close to the renormalization results of the two
relevant CE's b2 and hs.

TABLE II. Scaling factors v~, aad vq, „ ia the taro-term
sealing for the slope of the. second stability index are showa.

5
6
7
8
9
10
11
12

—4.403 898 453 59
—4.403 897 730 29
—4.403 897813S5
—4.403 S97804 07
—4.403 897 805 21
—4.403 S97805 07
—4.403 897 S05 09
—4.403 897 805 09

1.851 433 5
1.850 782 6
1.850 603 6
1.850 553 8
1.850 540 0
1.850 536 1
1.850 535 0
1.850 534 9

We have also studied several other coupliag cases with

the coupling function, g(zi, x2) = —(xz —zi) (n is a
2

positive integer). In all cases studied (n = 2, 3, 4, 5), the
scaling factors of both the coupling parameter c and the
slope of the second stability index p2 are found to be the
same as those for the above linearly coupled case (n = 1)
within numerical accuracy. Hence universality also seems
to be well obeyed.
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