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Irreversible thermodynamic analysis of taro-layer systems
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A thermodynamic study of two-layer systems is developed. The generalized entropy, entropy Qux,
and entropy production for these systems are evaluated exactly as functionals of the concentration
P(z, t) and the particle Hux J(z, t). In contrast to what happens in local-equilibrium irreversible
thermodynamics, the entropy production is shown to be positive de6nite for plausible stochastic
models of particle exchange between layers. A nonequilibrium temperature is also introduced in this
context, and its physical interpretation is discussed.
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The two-layer model is a simple model for diffusion
processes which has been rediscover~d in several con-
texts of the physical sciences. In its most intuitive form,
it consists of a system whose particles jump at random
times between two states, say 1 and 2, each of them hav-
ing associated a velocity along the z axis (vq and vs).
Denoting with P;(z, t), i = 1, 2, the probability den-
sity of finding a particle in the i state at position x and
time t, the general problem is to obtain the solute dis-
tribution P(z, t) = Pq + P2, and the net particle Hux,
J(z, t) = Pqvq +P2v2 for given initial and boundary con-
ditions.

There exists a wide variety of situations where this
model applies. Among them, maybe the most direct one
is chromatography, where one can distinguish a mobile
state (vq ——v), and an adsorbed state (v = 0) [1, 2].
It has also been studied as the simplest model for Taylor
dispersion, i.e., the study of the longitudinal dispersion of
a solute dropped in a solvent which Bows through a tube
[3]; the essence of this problem resides in the coupling
between transverse molecular diffusion and the velocity
profile inside the tube; obviously, the two-layer model
captures its basic ingredients: the velocity field is reduced
to its simplest form, two layers, and molecular diffusion
is modelized through the random jumps between them.
Aside &om its fundamental interest in Taylor dispersion,
the model has been used in the study of solute dispersion
in rivers [4].

The two-layer model is also in the heart of the so-called
persistent random walk [5,6]; this is a random walk where
a particle jumps &om a site to the contiguous one of a
discrete imidimensional lattice with the feature that the
next jump is more probable to be in the sense of the last
one; that is to say, if the last step of the random walker
was to the right, the next one is more likely to be to the
right also. Then one can talk of two diferent functions,
the probability for a particle to move to the right at x and
t, Pq(z, t), or to the left, P2(z, t). This random process
has been employed as a stochastic model for quant»m
difFusion in one-dimension (1D) to recover the Landauer
equation for the difFusion of electrons at 0 K [7].

There exist other systems where the model applies,

such as electrophoresis [8] or nuclear magnetic resonance
[9], for a review of them see Ref. [1]. In all these cases,
however, the interest is focused on the knowledge of the
total probability (or concentration) P(z, t), i.e., in the
dynamics of the two-layer systems. The purpose of this
work is to analyze its thermodynamic aspects, a point of
view that has not been dealt with in the past. We will see
that, similarly as this model provides a very useful sim-
plification of the dynamics of the physical problems while
keeping its essence, it also serves as a clarifying illustra-
tion of the thermodynamic description in nonequilibrium
situations.

The existence of an entropy function for nonequilib-
rium states is a question open to discussion. The so-
called extended irreversible thermodynamics (EIT) pro-
poses a generalization of the local-equilibrium entropy,
only depending on the equilibrium variables, through the
inclusion of the dissipative Buxes as independent vari-
ables in a generalized entropy. This theory has been con-
firmed by the kinetic theory of ideal and real gases, of
polymeric solutions, by projector operator methods or
information theory [10]. Nevertheless, in all the cases,
the confirmation is limited to the second order in the
Buxes. In this example, in contrast, we will obtain the
exact dependence of these functionals with the Hux and
concentration, and show that the dynamics of the Buxes
obtained &om the theory of stochastic processes leads to
a positive entropy production beyond the second order
in the Buxes.

The paper is organized as follows. We first find the
equations governing the time evolution of the solute dis-
tribution, P(z, t), and the net particle Hux, J(z, &), from
the stochastic nature of the model. Second, after show-
ing that the constitutive equations for J thus obtained
do not satisfy the positiveness of the local-equilibria|~
entropy production, the generalized entropy, entropy Bux
and entropy production are evaluated and the positive-
ness of the latter is proved for the Bux dynamics found
at the stochastic level of description. Later on, we intro-
duce a nonequilibri»m temperature in this context and
discuss its interpretation. We end with some concluding
remarks.
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Let us first write the equations for the probability
densities, P;(z, t) (for the sake of simplicity, it is taken
vq ——v, v2 ———v). One has

OPg
Pg+ v

bility densities, P, (z, t), the standard expression for the
entropy density is

s (z, t) = k—P, ln Pq —k P2 ln P2, (7)

k being the Boltzmann constant. On the other hand,
&om the definitions of P and J it is immediate to write

i9P2
P2 —v

|9x
m) (2)

where the dot indicates partial time differentiation, and
m the rate of particle exchange between both states.

By adding (1) and (2) one obtains the particle conser-
vation equation

P+ =0,BJ
t9x

(3)

and subtracting (2) from (1) the equation for the particle
flux, J(z, t) = (Pi —P2)v,

PJ+ v = —2mv. (4)

In the simplest situation) it is ass»med that the rate at
which particles leave state i is proportional to P;, so
that m takes the form m = r(P& —P2), with r dt the
probability for a particle to go from one state to the
other during the time interval dt; this is the so-called
Goldstein-McKean model, whose connection with kinetic
theory and generalized hydrodynamics has been exten-
sively studied since it supplies the simplest example of
a nonhomogeneus transport equation [11]. Equation (4)
then adopts a Maxwell-Cattaneo form

BP~J+ J= —D (5)

r:—1/2r and D—:v2r being positive constant param-
eters. The combination of (3) and (5) yields the well-
known telegrapher's equation

~ B2P
~ j +P=D Z2'

Other cases, however, could be considered for rn, such
as a quadratic rate, rn = r(pg —P22), or cubic, m =
r(P& —P2). In all of them the resulting equation for
J(z, t) has the form (5) but with nonconstant param-
eters, so that the dynamics of J—and of P(z, t)—also
becomes nonlinear. For instance, it is easy to obtain for
the quadratic dynamics, ~ ~ = 2rP, and for the cubic,r-' = r(3P'+ J')/2.

Let us note that the constitutive equation (5) is not
compatible with the positiveness of the local-equilibrium
entropy production. Indeed, in classical irreversible ther-
modynamics [12], the entropy production is proportional
to JBP/Bz If we —substitute . (5) in this expression we
find two terms, one proportional to (BP/Bz)2, which is

always positive, and another in JBP/Bz, with no defi-
nite sign, so that the positivity of o is not guaranteed,
contrary to the local version of the second law of ther-
xIlodyxlaIIDcs.

Extended thermodynamics, however, overcomes this
difficulty. First, we are evaluating the entropy function
s(p, J) for a two-layer system. In terms of the proba-

.(p J) = ——
~
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~
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~

2 . (8)
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In contrast to what is usually found in extended thermo-
dynamics, this expression gives the entropy functional
for any value of J, and not only for small ones. Let us
also notice that, &om its definition, J & Pv, i.e., there
exists a maximum value for the particle Bux, for which
the entropy tends to —kP ln P, corresponding to the case
where all the particles are in the same layer; the existence
of a maximum fiux is a prediction of EIT from stability
arg»ments in nonequilibri»m steady states [10] as well as
a suitable condition to preserve the positiveness of the
solutions of the telegrapher's equation [13].

For J « Pv, Eq. (8) gives

k J2
s = kP ln(P/—2) ——

2 Pv2 (9)

The first term describes the local-equilibrium part, and
the second one provides the first correction in purely
noneq»ibbrium contributions. this term turns to be
quadratic in the Buxes as usual in KIT. An expression
like (9), with a coefficient of J2 in P ~ has already been
found in the past as an extension of the Boltzmann H
function in order to establish a H theorem for general-
ized telegrapher type equations [14], and also in Taylor
dispersion [15].

Similarly, for the entropy Bux one has

J'(z, t) = (—Pq ln Pq + P2 ln P2) kv

kv r J)= ——
~

P+ —~ln P+ — 2

+—
I
P ——[» I

P ——
I
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In the limit J « Pv, expression (10) yields

(J' = —k
~

ln ——1
~

J = IJ,OT
' J, —

2 )
where poT = (Ba/BP) g 0 is the local-eq—»ilibrium
chemical potential computed with (9). Thus we see that,
close to equilibri»m, the entropy Bux has the form of a
typical dissipative fiux (something similar occurs in Tay-
lor dispersion [15]).

Introducing (8) and (10) into the entropy balance equa-
tion the entropy production 0. is obtained. W'ith the help
of the particle conservation equation (3), one easily gets

BJ' k . 2BP P+ J/v

(12)
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Again, we stress Chat, contrary to what is usually done
in EIT, this entropy production is valid for all J, and not
only for small Buxes. In this limit, the logarithm can be
expanded to give

k . 20Po. = — J J+v (13)

which has the standard form in extended thermodynam-
ics as a bilinear expression of Buxes and forces, the latter
not only containing the concentration gradients but also
the time derivative of the Buxes.

The question that we must now study is whether the
evolution equations for J(x, t) found from particular dy-
namics for the exchange between states lead to a positive
value of 0.. In order to prove so, let us realize that Eq.
(4) contains the term inside brackets of (12), and that
for jump dynamics supplying a source rate of the type
m = r(P&' —Pz~), with l an integer —as in the three cases
considered above —,m can be writen as m = AJ, with

A = r P,. ~ Pz 'P2 a positive quantity; then we have

kA P+ J/v
(14)

2v P —J/v

Finally, using the mathematic property

(x-~)»(x/~) & o

for any z and y, it is concluded that 0 keeps always
positive values, except at equilibrium, where J = 0 and
0=0.

Conversely, we could use the condition of positive en-

tropy production to obtain the possible evolution equa-
tions for J(x, t). Bearing in mind (15), this implies

J+v = f(P, J)J-,28P
Bx

f(P, J) being a positive function, in agreement with (5).
We may stress that, until now the positiveness of

the generalized entropy production of EIT for Maxwell-
Cattaneo dynamics for the Buxes had been proved keep-
ing in the entropy production only up to second order
terms [Eq. ( 13)]. This is quite reasonable since the
Maxwell —Cattaneo (MC) equation (or the telegrapher's
equation) is expected to work for small values of J, while
for higher J's one expects a nonlinear behavior. In the
present example, however, for the case m = r(Pq —P2),
we obtain that the MC equation describes the evolution
of J even for high values of J, so that the demonstra-
tion of positivity of the exact entropy production was in
order. In this work, furthermore, the positiveness of the
entropy production has been proved not only for linear
dynamics for the jumps between layers, but also for some
nonlinear cases.

Let us remark that up to now most of the analyses of
a Bux-dependent nonequilibrium entropy were based on
kinetic theory and limited to second-order terms in the
Quxes. Only a few number of papers had been devoted
to a general analysis of the thermodynamic quantities:
on the basis of information theoretical analyses of energy
transport in a closed ring formed by a harmonic chain
[16], in which case the entropy per particle is

s = k [1 + ln e + ln (1 —x')],

e being the energy per particle and x = q/ve, with q the
heat Bux and v the speed of phonons; or in the study
of energy transport in electromagnetic radiation, which
yields [17)

- 1/4
g4 —3x' —1

S = au'/'4 - -, , X, (17)
2 —g4 —3x']

with a = —[
s

&,",]~~4 and x = q/cu, c being the speed

of light and u the energy density.
Therefore, our expression (8) adds to the very reduced

number of papers about a nonequilibrium entropy depen-
dent on the Bux, but not limited to the quadratic terms
in the Buxes. Besides this, our analysis has the advan-
tage of providing a very simple and direct approach to
such a generalized entropy.

Our purpose now is the introduction of thermal effects
in the context of two-layer systems. One way to do it
would be to consider two layers with different energies,
let us say e and 0, in which particles can move with veloc-
ities kv. In this case, the stochastic description contains
four probability densities, namely, P~, Pz, correspond-
ing to particles of energy e moving to the right or to the
left, respectively, and P2+, P2 standing for particles of
0 energy; in order to simplify notation, in some cases
we will denote these densities simply by Pi, i = 1, 2, 3, 4,
respectively.

Instead of them, one can describe the system using
the hydrodynamic quantities P, J, u, and q (u being the
internal energy and q the heat Hux), related to the latter
ones through

P = P~+ + P~ + P2+ + P2,

u = (P~+ + P, )e, (18)

q = (Py —Py )ve.
The equations for these magnitudes depend, of course,
on the speci6c dynamics chosen for the jumps of the
particles. For a simple dynamics, it is direct to obtain
Maxwell-Cattaneo like equations for both Huxes, J and
q, by following the procedure of the previous example.
Nevertheless, the point that deserves special attention
in the present analysis is the thermodynamic tempera-
ture. The physical interpretation of a nonequilibrium
temperature is a question open to debate; for an update
discussion of the subject see Ref. [18] and the references
therein. In the present example, we are seeing below that
the nonequilibrinm temperature of extended irreversible
thermodynamics can be interpreted as an extension of
the equilibrium statistical-mechanic concept of tempera-
ture.

Similarly to Eqs. (7) and (8), we can write a general-
ized entropy density depending not only in the classical
variables P and u but also in the Buxes J and q:

4

s(P, J, u, q) = —k ) P; ln P;, (i9)
i=1

where P; = P;(P, u, J, q) are the expressions for P; in
terms of the hydrodynamic quantities as obtained &om
(18). On the other hand, the generalized temperature
is introduced in extended thermodynamics as a direct



4236 BRIEF REPORTS

P+P,= —ln (20)

generalization of the equilibrium temperature, namely,

Bs OP;T = — = —h) (lnP;+1)
P,Jp ~ y P,J,p

The last equality coming from the relations BPi+/Bu =
I/2e and BP2+/Bu = —1/2e, as can be easily seen from
(18). Finally, by substituting the expressions for P;, one
obtains the generalized temperature as a function of the
state variables:

kT (P, u, J, q) =-
26

P —J/v) e —(u —q/v)]
/v)

l
[(P+ J/v)~ —(u+q/v)][(

(u+ q/v)(u

(22)

Let us emphasize once again that, in constrast to the
local-equilibrium temperature, only dependent on the
local-equilibrium variables P and u, expression (21) also
contains the mass and heat Quxes.

On the other hand, from Eq. (20), we have

rP+P;i"
Pi+Pi j

This expression provides an interpretation of the gener-
alized temperature as a quantity that basically supplies
the quotient between the populations of two microscopic
states that difFer an energy e in nonequilibrium situa-
tions, similarly to the interpretation of the absolute tem-
perature in equilibrium statistical mechanics. More pre-
cisely, the exponential term gives the ratio between the
geometric averages of the number of particles moving to
the right and to the left in both states. In equilibrium,
the fluxes J and q vanish, so that P+ = P from (18),
T = T,s and expression (22) reduces to the result of equi-
librium statistical mechanics. Therefore, we have seen
that, for this simple example, the generalized nonequi-
librium temperature of extended thermodynamics has a
statistic counterpart as a generalization of the equilib-
rium statistical mechanic concept of temperature.

Finally, some comments on the relation of this work
with a previous one by Jiu-li et al. are in order [19].
In the latter paper, mainly devoted to the analysis of
the role of Buctuations in macroscopic stability, the au-
thors develop a thermodynamic treatment of Markovian
processes by studying the master equation. An entropy
production is obtained with a form analogous to the clas-

I

sical entropy production for a set of chemical reactions,
amenities, and reaction rates being some functions of the
transition rates between states, R'~. The present work,
in contrast, focuses on the study of transport processes.
Furthermore, instead of writing the thermodynamic func-
tions, such as the entropy, the entropy aux or the en-
tropy production, in terms of stochastic quantities —the
transition rates, R"~, and the probabilities P;—,we ex-
press the thermodynamic functions in terms only of ther-
modynamic state variables in the scheme of extended
thermodynamics, namely the total concentration and en-
ergy, P and u, and the mass and heat Buxes, J and
q. Thus, contrary to the previous work, our treatment
is completely thermodynamic; this allows us to intro-
duce other thermodynamic variables which are absent
in Ref. [19], like the chemical potential and the tem-
perature. Furthermore, we have seen that there exists
a complete agreement between our macroscopic descrip-
tion and the stochastic one. For instance, the dynamics
for the dissipative fluxes obtained at the stochastic level
satisfy the positivity of the entropy production or, con-
versely, they have the form predicted from this thermo-
dynamic requirement both in the linear and the nonlinear
case. In paper [19],on the contrary, the stochastic model
is compared with local-equilibrium thermodynamics and
the agreement only takes place in the linear regime.
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