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Crisis control: Preventing chaos-induced capsizing of a ship
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Responses of many man-made systems, such as ships or oil-drilling platforms, when subject to irregu-
larly time varying environments, can be described by irregularly driven dynamical systems. Consequent-

ly, failures of such systems (e.g., capsize of a ship or collapse of a platform), under increasingly severe en-
vironmental conditions, come about when the system state escapes from a destroyed chaotic attractor lo-
cated in some favorable region of the phase space. In this paper we propose a control strategy, based on
a previous method of chaos control, which can prevent such failures from taking place. The key feature
of our strategy is the incorporation of prediction of the evolution of the environment. This makes possi-
ble effective operation of the control even when the temporal behavior of the environment has substan-
tial irregularity. We illustrate the ideas using ship capsizing as an example.

PACS number(s): 05.45.+b

W(t) =f (t)[1+E,g (t) ]sing(t) =F(t)sing(t), (2)

where F(t) is the amplitude, with f (t) it slowly varying
component and g(t) a fast irregularly varying com-
ponent; the phase P(t} is determined by

P(t)=Q+e, h(t) . (3)

Here again h (t) is an irregular function of time. In what
follows, we (somewhat arbitrarily) model the temporally
irregular functions g(t) and h(t) as outputs of well-
known chaotic systems. Specifically, we use

Imagine a ship rolling in lateral ocean waves. Its dy-
namics can be modeled by the following nonlinear oscilla-
tor,

x+vx+to (x —ax )= W(t),

where x is a variable characterizing the angle from the
ship mast to the vertical direction, v is the friction
coefficient, m is the eigenfrequency of small vibrations
around the origin, a denotes the strength of nonlinearity,
and W(t) represents the effect of the ocean waves imping-
ing on the ship. In particular, we shall be interested in
the case where the ocean waves have substantial temporal
irregularity and drift superposed on their mean periodic
time dependence.

In the absence of waves, i.e., W(t) =0, for a small dis-
placement in x, the subsequent motion damps out and the
ship reverts back to its upright position. For large dis-
placements in x, gravity overcomes buoyancy and x tends
to the attractor at ~x ~

= ~. When this occurs we say the
ship has capsized. Models of similar type have been used
in other studies of ship dynamics [1—3].

We assume that the irregular ocean waves have the fol-
lowing form:

g(t)= y(t) —(y(t) }
&([y(t)—(y(t) ) ]')

where y ( t } is a solution of the following driven Dufftng
system:

y'+0. 05y+y =7.5 cost,

and

zi(t) —(zi(t) )
h(t)= /( [z, (t)—(z, (t) ) ]'l

with z, (t) taken from the Rossler system,

Z] Z2 Z3

z2 —z, +0.398z2,

i3=2+z3(z) —4) .

The symbol ( } denotes temporal average. Since g(t)
and h (t} are normalized, e, and e measure the relative
strength of amplitude irregularity and that of phase irre-
gularity, respectively. (We emphasize that our use of
low-dimensional chaotic systems to produce the irregu-
larly varying g (t) and h (t) is merely a convenience, and
there should be no essential difference in what follows if
these functions are stochastic or are produced by some
high-dimensional chaotic processes. }

For 6 =ey =0 and f (t)=fo, where fo is a constant,
we have purely sinusoidal waves, and the dynamics in
this case will be used as the basis for control later when
irregularities are introduced into the system. The evolu-
tion of Eq. (1) with increasing wave atnplitude fo and
E' E'p 0 is shown in the bifurcation diagram in Fig. 1

(The values of the system parameters used in the numeri-
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FIG. 1. Bifurcation diagram of Eq. (1}.The dashed line indi-
cates the unstable period one orbit after the period doubling bi-
furcation.

cal computations are quoted in the caption of Fig. 3.}
The surface of section here is taken every time W(t}
crosses zero with dW(t)ldt &0 (i.e., Qt„=2nm). For
0 &fo &0.7 the oscillation of the ship is periodic with the
period equal to that of the wave. We henceforth call this
orbit the period one orbit. Following a period doubling
cascade the ship response becomes chaotic. At
fo=0.726 a crisis takes place in which the bounded
chaotic attractor is destroyed by colliding with its basin
boundary. As the wave amplitude increases past this
crisis value, since no bounded attractor exists in the sys-
tem, almost all initial conditions tend to the attractor at
!x!= ~ (i.e., the ship capsizes). Also shown in Fig. 1 as a
dashed curve is the period one orbit after it loses stability.
Now suppose that f (t) is a gradually increasing function
of time starting from f{t}=0.We anticipate that in the
absence of control the ship will capsize some time after
f (t} exceeds the crisis value. To prevent this, one starts
to apply control to stabilize the period one orbit in Fig. 1

when the wave is still small and continues to do so as the
wave increases. As a result, we show that the ship sur-
vives waves whose amplitude significantly exceeds the
crisis value. More importantly, by incorporating a pre-
diction feature to be detailed below, and suitably modify-
ing the control procedure of [4,5], we are able to prevent
capsizing in the presence of substantial wave irregulari-
ties.

The equation of motion for the variable x, when con-
trol is applied, is again Eq. (1), but with the right-hand
side replaced by W(t)+C(t), where C(t) is the control.
We take C(t) to be a constant between successive cross-
ings of the surface of section. In practical terms, C(t)
can be thought of as the balancing force provided by tem-
porally shifting ballast on the ship, and the value of C (t)
is assumed to be bounded between Co and Co i.e.,—Co C(t) Co. In fact, we are interested in the case
where Co is small compared to the force exerted by the
waves. We take the surface of section to specify the sys-
tem state at times t =t„such that W(t) =0 and

dW(t)ldt &0. Assuming that f(t)&0 and that the
right-hand side of Eq. (3} is positive this corresponds to
P(t„)=2nm [see Eq. (2)]. Figure 2 illustrates the predic-
tion and control method. A fixed point of the Poincare
map and its stable and unstable directions are construct-
ed for e =Ep =0 and f (t)=f(t„).Here we imagine that
f (t) can be treated as a constant in the interval
t„&t & t„+,. {Note that due to the slow variation off (t)
the fixed point location at t =t„changes with n [6].} By
letting e,+0 and e %0, we introduce irregularity into
the wave. The task now is to stabilize the motion around
the fixed point. Suppose that at t =t„,the system state is
denoted by z„,where z = (x,y =x ). From observation of
waves propagating toward the ship, we assume that we
can make an accurate prediction of W(t) for
t„&t & t„+,. Integrating Eq. (1) with this predicted
W(t), and with various values of C(t) =C, where C' is a
constant in the interval [ —Co, Co], we obtain images of
the system state on the next surface of section at t =t„+

„

which form a curve as shown in Fig. 2. The value C'= C„
of the control that we actually apply to the ship is chosen
so that the system state falls on the stable direction of the
fixed point.

Figure 3(a) shows part of the wave for e, =0.15,
e~ =0.1, and f (t} a linearly increasing function of t As.
shown in Fig. 3(b), in the absence of control, the ship cap-
sizes in several cycles of the ocean waves. Using control
with prediction the capsizing is prevented in Fig. 3(b}. A
more extended controlled orbit is shown in Fig. 3(c). Fig-
ure 3(d) shows C(t) as a function of t. Comparing with
Fig. 3(a) we see that C(t) is much smaller than the wave
amplitude W(t).

In the example above we have tacitly assumed that the
wave W(t) can be observed and predicted with certainty
in the short term (i.e., from t„to t„+,). In practice, a
more likely situation is that the prediction is imperfect.
We now attempt to assess the efFect of imperfect predic-
tion. For specificity, we consider only amplitude irregu-
larity in Eq. (2), which we assume to be

(1 y}g.(t)+y—g„(t)g(t)=
+(1—y) +y

where g, (t) and g„(t)are two difFerent normalized trajec-
tory realizations (originating from two different initial

Cn)

FIG. 2. Schematic of the control method.
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FIG. 3(a) Segment of the irregular increasing wave with e, =0.15, e~ =0.1, and f{t)a linearly increasing function of t, (b) con-
trolled together with uncontrolled orbit, (c) more extended plot of controlled orbit, and (d) C(t) versus t. The following parameter
values are chosen for numerical computations: v=0. 5, co=0=1.0, a=1.0, and integration step size =2~/2

conditions} from the same Dufling chaotic attractor, with

g, (t) being the "observed" and g„(t)the "unobserved"
components of g (t), and y measures the relative strength
of these two components. The imperfect prediction of
W(t) is assumed to be given by replacing the true g (t)
defined in Eq. (4) by g, (t). To design a control we in-
tegrate the equation of motion assuming g(t)=g, (t).
The actual trajectory however is obtained by including
g„(t)in the integration after C(t) has been chosen. Let
( T,„;„,&) denote the average survival time in wave cy-
cles calculated for ten difl'erent realizations of g, (t) and
g„(t}.Our results for f (t)=f0=0.9 and e, =0. 1 are as
follows. For y ~0.06 we have (T,„;„„)~400. That is,
the control method is robust with respect to less than or
equal to 6% of uncertainty. The effectiveness of control

deteriorates rapidly as y increases past 0.06. In particu-
lar, we find that (T, „;„z)=100 for y=0.07,
( T,„;„,1 ) =30 for y =0.08, ( T,„;„,1 ) =2D for y =0. 1,

To conclude we remark that, although ship capsizing
has been used here to illustrate the ideas of the control
strategy, other situations are also candidates for the ap-
proach in this paper. In particular, our method is poten-
tiaHy important in applications where a momentary loss
of control due to environmental irregularity can result in
a catastrophic failure of the system.
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