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Analytic and numerical implementations of the correlation integral and the Badii-Politi multifractal
analysis algorithms are described and applied to machine precision and imprecise model multifractal
data. The correlation integral technique yields good results for machine precision data and for data with

1% random errors. The standard numerical Badii-Politi algorithm did not yield satisfactory results for
data with 0.05% or larger random errors. However, the present results suggest that a natural generaliza-
tion for the Badii-Politi approach along the lines suggested by Kostelich and Swinney [Phys. Scr. 40, 436
(1989)]can be applied to the analysis of imprecise fractal data.

PACS number(s): 02.70.—c, 05.45.+b

I. INTRODUCxiQN

A number of algorithms have been devised for the
measurement of multifractal dimensions. A selection of
such algorithms are described in Refs. [1-11].The stan-
dard algorithms yield the Hentschell-Procaccia [1]fractal
dimension D(q), the f (a) spectrum, or other related
fractal measures for precise (i.e., machine precision) data.

The consequences of noise on the effectiveness of frac-
tal analysis algorithms has been addressed in Refs. [2]
and [3] but not in a systematic way. Reference [2]
demonstrated that a box-counting fractal analysis algo-
rithm converged near "true" values for a variety of Koch
constructions and mappings based on two- and three-
digit "pixel-value" data for q ~ 0. Reference [3] demon-
strated that a generalized Badii-Politi algorithm yielded
the correlation dimension D(2) within about 10% for a
2' point subset of points on the Mackey-Glass attractor
having 0.5% random perturbations.

This paper describes the results of applying two mul-

tifractal analysis techniques to imprecise fractal data.
The correlation integral method [4-6] and a generalized
Badii-Politi procedure are used to determine the conse-
quences of small errors in the coordinates of points
comprising subsets of standard fractal constructions
[12,13] in R . The correlation integral algorithm is of the
customary form, except that automated procedures for
selecting the scaling range are employed. The generalized
Badii-Politi algorithm is essentially equivalent to that ap-
plied by Kostelich and Swinney [3] in their determina-
tions of D (2); it reduces to the standard Badii-Politi algo-
rithm [7] as a special case.

II. BACKGROUND

A. The correlation integral algorithm

1. Analytic correlation integral algorithm

The correlation integral is defined as

1/(q —1)
q

—1

C(q, E}= f dx p(x) —f dy p(x+y)0 Uy -E
(la)

1/(q —1 }

f dx p(x) f dy p(y)H(E —lx —yl) (lb)

where 0 is the volume containing the fractal set, p(x ) is the density of the set at x, and H (x) is the Heaviside function.
For a discrete fractal set, the correlation integral Eq. (lb) takes the form

'
q —1 1/(q —1)

C(q, E)= lim —g gH(E —)xk x—j()—
N k Nk

(1c}

where x~ and xk run over ¹lement fractal subsets. It is shown that the Hentschell and Procaccia fractal dimension is

then given by

ln(C (q, E) )Dq=hm
E p+ ln(E)
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2. The numerical correlation integral method

The numerical correlation integral method is based on

ref
$ N

C(q, E)= g g—H (E —Ixk —x,.I)N„f k N
L

q
—1 ' 1/(q —1)

ED(q)
7 (3)

where j runs over the ¹lement fractal subset and k runs
over an N„felement randomly selected subset of the frac-
tal set in question. Equation (3) represents approxima-
tions to Eqs. (lc}and (2).

The correlation integrals C(q, E) are generally evalu-
ated for a set of q values of interest and a logarithmically
spaced set of E values chosen to cover the range of scales
in the fractal subset. The smallest E is chosen to be of
the order of the largest nearest neighbor spacings in the
data set. The largest E is chosen to be approximately a
diameter of the data set. The fractal dimension D(q) is
then obtained by least squares fitting to the linear portion
of ln[C(q, E)] vs ln[E].

An automated procedure was developed for the selec-
tion of ranges of ln[E] and the determination of D (q} for
fitting to Eq. {3). The limits on ln[E] and the values of
D (q) are obtained by averaging the lowest rms error fits
over ranges of consecutive ln[E]. The minimum number
of ln[E] values is made small enough to fit into the linear
range, yet large enough to avoid small straight runs of
points. This procedure is described in more detail in the
Appendix.

B. The Badii-Politi algorithm

(5r)—:M(y, n)—:f "5rP(5,n)d5-n
0

(4)

The dimension D (y), which Ref. [3] refers to as "the di-
mension function, " is given by

D(y)= lim
—y ln{n)

n ~ ln(M(y, n ))

The Badii-Politi approach is closely related to that
espoused by Halsey et al. [14]. For example, Ref. [7]
demonstrates how the analytic Badii-Politi algorithm can
be applied to determine the multifractal measures of
Koch constructions by analysis of their generators along
the lines described in Halsey et al. [14]. One can
translate the Badii-Politi expressions into "standard nota-
tion, " i.e., the notation of Renyi [15] or Halsey et al.
[14],by the replacements

1. Analytic Badii-Politi algorithm

The Badii-Politi algorithm is designed for application
to discrete fractal data. The technique focuses on the
probability distribution P(5,n) of the nearest neighbor
distances 5 among n-point subsets. The moments of the
distribution of nearest neighbor distances are shown to
vary asymptotically as n r~ 'r', where D(y) is a "di-
mension" which can be related simply to D (q). Explicit-
ly,

y ~ r—and D(y )~D (q)

which imply that
—y/D (y)~q —1

since ~{q)=(q —1)D (q). Thus Eq. (4) becomes

{5 ') —=M(r, n)—:f 5 'P(5, n)d5-nt
0

(4')

L(y, n)—=nM(y, n)= +5~r. (n}-n' r~D'"'=n~, (7)

where 5 is taken as the third nearest neighbor distance,
and compute D(y) from the scaling of L(y, n), with the
number n of randomly chosen points in the subsets in
which the third nearest neighbor distances are found.
For each n, a subset of n points is taken as a "reference
set." [For example, the average, defining L(y, 8} or
M(y, 8), is based on eight randomly selected points. ]

3. A generalized numerical Badii-Politi algorithm

A generalized form of the numerical Badii-Politi algo-
rithm, similar to that employed by Kostelich and Swin-
ney [7] to determine the correlation dimension, is used.
It is based on Eq. (4') rather than Eq. (5). The principal
differences frotn the numerical algorithm of Ref. [3] are
the following.

(1) A fixed, relatively large reference set is employed
for all values of n. The use of a larger reference set, espe-
cially at small n, substantially reduces the variability of
M(r, n) under different random point selections. A sub-
stantially larger reference set (which essentially eliminat-
ed the dependence of results on the random point selec-
tion procedure) than that employed in Ref. [3] was em-
ployed in the present studies.

(2) The neighbor number rl is allowed to vary. That is,
the scaling of nearest neighbor number distances for a
variety of neighbor numbers {q) are considered. Stan-
dard numerical Badii-Politi algorithm results are ob-
tained for the special case of third nearest neighbor
(g=3) distances.

Thus, translating into the notation of Halsey et al.
[14], the generalized Badii-Politi algorithm takes the
form

2. The standard numerical Badii-Politi algorithm

Badii and Politi approximate the integral expression
for M(y, n), etc. as

M(y, n)= —g5&(n)-n-&' '&'1 "
g)

n,
define the "y volume" L (y, n) as
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where 5 can be the distance to an arbitrary q, and X„fis
independent of n.

III. RESULTS AND DISCUSSION

The Badii-Politi and correlation integral numerical al-

gorithms were tested on a variety of constructions in 8
for which analytic D(q} values are known. The algo-
rithms were applied to Euclidean point sets, Koch asym-

metric snowflake fractals based on a four element genera-
tor having two 0.4 and two 0.2 length elements, sym-

metric triadic snowffakes [12], split snowfiake halls [12],
and the 13 element generator Koch construction [12].
The attractor of the sixfold (D6) symmetric chaotic map-

ping described by Field and Golubitsky [13] was also
studied. Imprecise data were produced by perturbing the
x and y coordinates of the fractal points by random"
values.

The results of extensive analysis of 1.97X10' point
subsets of the asymmetric snowflake fractal are present-
ed. Similar results were obtained for all the fractal cases
studied. Reference [16] demonstrates that 10 point sub-

sets of the asymmetric snowflake are large enough to en-

sure 1% convergence of the correlation integral method
over the range —25 q &25. Although we are aware of
no systematic study of convergence for the Badii-Politi
procedure, the analysis of Broggi and co-workers [17]
suggests that 1.97 X 10 points are sufficient for D (0)=2.
The results of Kostelich and Swinney [3] suggest that
substantially smaller point sets may be sufflcient. Also,
Ref. [2] established that 10 points are sufficient for 1%
convergence of a box-counting algorithm for the asym-

metric snowflake in the range 0 ~ q ~ 25.
Figure 1 shows 1.23X10 point subsets of the asym-

metric snowfiake fractal with 0.0, 0.5, 1.0, and 2.5% ran-

dom errors on each axis. Perturbations of the order of
0.5% are easily perceived.

Figure 2 shows ln[C( —12,E) vs ln[E] for 1.97X10
point subsets of the asymmetric snowflake fractal with

0.0, 0.05, and 0.5% random errors. The correlation in-

tegral values were computed with N„f=Nj5 for 40 log

spaced E values, and were indistinguishable from those
computed for X„f=¹

The vertical lines show the averaged upper and lower
limits of the range of ln[E] that were selected by the au-

tomated procedure using the 20 lowest rms error Sts with
runs of a minimum of 20 consecutive ln[E] values. It is

apparent that they are near "breaks" in the curves, and
closely approximate the linear boundaries. Essentially
the same results were obtained using the ten lowest rms
error fits and a minimum of ten consecutive ln[E] values.

These results suggest that the 0.5% random errors in-

troduced into the Mackey-Glass attractor by Kostelich
and Swinney [3] (which are of the order of the uncertain-
ties in their experimental Couette-Taylor data) were not
su%ciently large to elect the correlation integral analysis
for the range of hypersphere radii (viz.
—6(log2(s }(—1 } employed in their analysis. One

0K%i
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FIG. 1. 1.23 X 10 point subsets of the asymmetric snowflake

fractal with (a) 0.0, (b) 0.5, (c) 1.0, and (d) 2.5' random errors.

would expect to find "breaks" and tangible effects
in the correlation integral analysis for logz(s)
=log2(0. 005)= —7.6, which is substantially to the left of
the range of log2(s) employed in their analyses.

Note that the linear portion for the 0.5% data in Fig. 2
comprises about one order of magnitude variation in the
correlation integral hypersphere radii, and that this re-
stricted range of ln[E] is still sufftciently large to yield

0

9

0
1n

FICk 2. In[C( —12,E}]vs ln[E] for 1.97X 10' point subsets

of the asymmetric snowflake fractal with 0.0 (solid line), 0.05
(@lied circles), and 0.5% ( X 's) random errors. The vertical lines

are the averaged upper and averaged lower limits automatically
selected for the range of ln[E]. The limits for the precise data

are unmarked, for 0.05% data are marked with a 511ed circle,
and those for 0.5% data are marked with an X.
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1% agreement between the measured and analytic D(q)
values [see Fig. 4(b)].

Figure 3 shows ln[M(n, y)] vs ln[n] based on the stan-
dard Badii-Politi numerical algorithm (g =3 ) for

yl—D(y)+l=rlD(q)+1=q, for q= —12, 0, and 12
for 1.97 10 point subsets of the asymmetric snowflake
fractal with 0.0, 0.05, and 0.5% random errors. The
Badii-Politi M(n, y} values were computed for 20 log
spaced n values. The M (n, y }values shown were comput-
ed with N„r=N/5. Unlike the data in Fig. 2 (where
breaks are apparent}, there is no indication that the
curves obtained from the imprecise fractal data should be
treated dHFerently or that analysis of the imprecise data
will yield unreliable results.

Figure 4 presents D(q) vs q curves determined by
means of the standard numerical Badii-Politi algorithm
for 1.97X105 point subsets of the asymmetric snowflake
fractal with 0.0, 0.05, and 0.5% random errors. The solid
line is the analytic D(q) vs q result. The dense set of
points near q =0 plus the point near q =5 span the range
of the Table in Ref. [7]. The standard Badii-Politi tech-
nique returns D( —1&q &5) within 1% of the analytic
values and D( —5&q &25) values within 5% for precise
fractal data. However, the results are poor for q outside
this range, and small random errors of the order 0.05%
push the results up near D (q}=2.0 (the random point set
value).

Figure 5 shows D(q) vs q curves determined by the
correlation integral algorithm for the same data and on
the same scale as Fig. 4. The solid line is the analytic
D(q) vs q result. The correlation integral results are
within 1% of the analytic values of D(q} except for a
small range near q =—5.

Figure 6 shows correlation integral algorithm results
for D(q) vs q for 1.97X10 point subsets of the asym-
metric snowflake fractal with 0.0, 0.5, 1.0, and 2.5% ran-
dom errors. The solid line is the analytic D(q) vs q re-
sult. Although satisfactory results were obtained for 1%
fractal data, substantial errors in the measured D (q) ap-

KX X X

-25 0 25

FIG. 4. D(q) vs q results using the standard numerical
Badii-Politi algorithm for 1.97X 10' point subsets of the asym-
metric snow8ake fractal with 0.0 (open circles), 0.05 (filled cir-
cles), and 0.5% ( X's) random errors. The solid line is the ana-
lytic solution.

pear for 2.5% random errors.
Figure 7 presents D (q) vs q results determined by the

generalized Badii-Politi numerical algorithm using 0.05%
data for 1.97X10 point subsets of the asymmetric
snowflake fractal. The numbers to the left of the curves
designate the neighbor number used in the generalized
Badii-Politi numerical algorithm. D(q &0) were within
2% of analytic values for 81&q& 130, and D(q &0) were
within 5% for 81 & g & 180 for the asymmetric snowflake.
Similar efFects were observed for the other 0.05% con-
structions studied here.

Since the averaged 81st nearest neighbor distances are
larger than the 0.05% uncertainty in the fractal data set,
and the averaged third nearest neighbor distances are of
the order of the 0.05% uncertainty in the fractal data set,
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FIG. 3. ln[M(n, y)] vs 1n[n] for q= —12, 0, and 12 for
1.97X10 point subsets of the asymmetric snowfiake fractal
with 0.0 (open circles), 0.05 (filled circles), and 0.5% ( X's) ran-
dom errors.

FIG. 5. D(q) vs q results using the numerical correlation in-
tegral algorithm for 1.97X10 point subsets of the asymmetric
snowfiake fractal with 0.0 (open circles), 0.05 (filled circles), and
0.5% ( X's) random errors. The solid line is the analytic solu-
tion.
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errors, often yield poor D (q). Kostelich and Swinney [3]
made essentially the same comment with respect to their
generahzed Badii-Politi algorithm determinations of the
correlation dimension.

IV. CONCLUSIONS

0 25

FIG. 6. D {q) vs q results using the numerical correlation in-
tegral algorithm for 1.97X 10 point subsets of the asymmetric
snow8ake fractal with 0.0 {open circles), 0.5 {filled circles), 1.0
( X's), and 2.S~o {open square) random errors. The solid line is
the analytic solution.
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FIG. 7. D(q) vs q results using the generalized numerical
Badii-Politi algorithm for 1.97X 10 point subsets of the asym-
metric snowSake fractal with 0.05 lo random errors. The neigh-
bor number appears to the left of the corresponding result. The
solid line is the analytic solution.

it is not surprising that the scaling for g ~ 81 gives a
better representation than that of the third neighbors for
0.05% data. (This efFect of increasing g is the motivating
idea for the generalized Badii-Politi algorithm. )

Equivalent generalized Badii-Politi results were report-
ed in Ref. [3] for the correlation dimension D(2) mea-
sured in Couette-Taylor Bows for a range of Reynolds

. numbers, and in numerical realizations of the Mackey-
Glass attractor. [The monatonic decreasing D(q ~0}
with increasing q evident in Fig. 7, and for the correla-
tion dimension in Ref. [3] is not the general case in the
present study or in the results reported in Ref. [17].]

The ln[M(n, y)] vs 1n[n] curves do not reveal the
range of g which yield "best results. " For example,
ln[M(n, y) ] vs ln[n] curves that fit Eq. (8) with small rms

The correlation integral method yielded better values
of D (q) than the generalized Badii-Politi technique in all
cases of noisy fractal data studied here. The numerical
correlation integral method calculations reported here
yielded D(q) values within 1% of analytic values for
0.5% (and machine precision) representations of the mul-
tifractal point sets studied except for a small range near
q = —5. [D(q) values having errors of the order of one
percent are also obtained for one percent representa-
tions. ]

The correlation integral method succeeded in extract-
ing D (q} from the noisy fractal data because longer range
fractal scaling is not substantially effected by the impre-
cision of the data. Restricting the fitting to the linear
portion of the ln[C(q, E)] vs ln[E] curves excludes the
small "hypersphere" correlation integrals from the
analysis. The range of ln[E] to exclude in the determina-
tion of D(q) is apparent in the ln[C(q, E)] vs ln[E] plots
and does not require a priori knowledge of the uncertain-
ties in the data. The correlation integral method breaks
down when the uncertainty in the location of the points
becomes so large that the linear range in the ln[C(q, E)]
vs ln[E] plots is inadequate.

The standard numerical Badii-Politi algorithm gave
D( —1&q &5) values within 1% of the analytic values
and D( —5&q &25) values within 5% for machine pre-
cision data. On the other hand, the standard Badii-Politi
algorithm failed at all q when errors on the order of
0.05% were introduced.

The generalized numerical Badii-Politi algorithm is less
sensitive to noise than the standard approach. However,
we were unable to determine "optimal" parameters by ex-
amining ln[M(w, n )] vs ln[n] curves. Kostelich and
Swinney [3] and Broggi and co-workers [17]discussed the
selection of parameters in the Badii-Politi procedure, but
were also unable to establish criteria for optimal parame-
ter selection. Our results and those in Ref. [3] imply that
the nearest neighbor number used in the generalized
Badii-Politi algorithm must be suSciently large that the
weighted average distances exceed the uncertainty in the
positions of the fractal set.

D (q &0) for 81 g & 180 were within 5% for the
asymmetric snow6ake and within 7~o for the other con-
structions. D(q ~0) for 81&q&130 were within 2% for
the asymmetric snow6ake and were generally about 5%
low for the other constructions studied here. This obser-
vation is comparable with the results reported in Kostel-
ich and Swinney [3], where 300th neighbor Badii-Politi
results for D(2) for the Mackey-Glass attractor is about
10% lower than the analytic value (i.e., 6.8).

%'e believe that both the generalized Badii-Politi and
correlation integral algorithms can be successfu11y ap-
plied to imprecise data in high D cases. However, prob-
lems such as restricted linear scaling ranges and lack of
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convergence remain unresolved.
A final point in regard to analysis of imprecise fractal

data is in order. If the fractal point set in question is the
result of invariant embedding of a chaotic time series,
then preprocessing of the data along the lines described
by Kostelich and co-workers [18] may effect significant
noise reduction.

APPENDIX

The automated procedure for correlation integral com-
putation of D (q) is the following:

(1) Specify two numbers.
(a) A minimum number of consecutive logarithmically

spaced ln[E] values to be contained in an allowable

"linear range. " This number should be large enough to
avoid local straight runs of points and small enough to fit
into the "linear range. "

(b) The number of ranges to include in determining
D(q) S.ince the ln[C(q, E)] vs ln[E] points tend to oscil-
late around a straight line, "best" results are obtained by
averaging over sets of consecutive ln[E] values that ter-
minate at high and low ln[C (q, E)] values.

(2) Make least square fits to Eq. (3) for all ranges of
ln[E] consistent with (la}.

(3) Sort the results on rms errors in slope.
(4) Average values over the lowest rms error cases up

to the number specified in (lb) and return the averaged
smallest ln[E] value, the averaged largest ln[E] value,
and the averaged D (q) value.
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