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It is well known that Hopfield neural networks without delays exhibit no oscillations and possess glo-
bal stability {i.e., all trajectories tend to some equilibrium). In the present paper we show that if the
bound rPi~T2~~ (1 is satisfied, then a corresponding Hopfield neural network with delays ~)0, intercon-
nection matrix Tt associated with delays, and gain of the neurons given by P, will exhibit similar qualita-
tive properties as the original Hopfield neural network without delays (

~~ Tz ~i
denotes the matrix norm in-

duced by the Euclidean vector norm). Specifically, we show that if the above bound is satisfied, then a
Hopfield neural network without delays and a corresponding Hopfield neural network with delays will

have identical asymptotically stable equilibria, and both networks are globally stable. In addition to the
above, we provide in the present paper an efFective method of determining the asymptotic stability of an

equilibrium of a Hopfield neural network with delays, assuming that the above bound is satisfied. Our
results are consistent with the results reported by Marcus and Westervelt [Phys. Rev. A 39, 347 (1989)].
Specifically, the present results, all of which are obtained by rigorous proof, give support to these results,
which are based on linearization arguments, numerical simulations, and experimental results.

PACS number{s): 87.10.+e, 85.40.Ls

I. INTRODUCTION

Hopfield neural networks, which constitute a class of
artificial neural networks, are of great common interest
(see, e.g., [1—8]} and can be described by a system of
differential equations of the form

x = —Cx + TS (x ) +b,
where x ER" denotes the state variables associated with
the neurons, b is a real n-vector representing bias terms,
C is a real n Xn diagonal matrix representing self-
feedback terms, T= T is a real symmetric n Xn matrix
representing neuron interconnections, and S (x )
= [s, (x &

), . . . , s„(x„)] is a real n-vector valued function
whose components are sigmoidal nonlinearities represent-
ing the neurons. One of the reasons why Hopfield neural
networks have received a great deal of attention is be-
cause these networks possess global stability (see [3]), i.e.,
the outputs of the neurons will always converge to some
equilibrium, and no oscillations will be present. Since
Hopfield neural networks have the potential of perform-
ing parallel computation, some electronic implementa-
tions of Hopfield neural networks in VLSI technology
have already been realized (see, e.g., [9—11]). However,
in the implementation of artificial neural networks, time
delays are unavoidably encountered, and it is known that
time delays can cause systems to oscillate (see, e.g.,
[12,13] and [14]). Therefore, it is crucial to take time de-
lays into consideration and to investigate the qualitative
properties of Hopfield neural networks with delays. A
class of such networks can be described by systems of
equations of the form

x(t)= —Cx (t)+ T,S{x(t)}+TzS{x (t r) }+b, (1.—2)

where x, b, C,S, T are the same as in (1.1), and T, + T2 = T

(i.e., T, denotes the part of the interconnections associat-
ed with no delays while T2 denotes the part of the inter-
connections associated with delays). We note that T„Tz
need not be symmetric; however, we will assume that T is
symmetric.

Hopfield neural networks with delays (1.2) have also re-
ceived attention (see, e.g. , [15—17]). Most of these works
consider only the local stability of system (1.2). Existing
results concerning global stability are applicable to a spe-
cial class of system (1.2) [for example, the components of
S(x) are piecewise linear functions instead of general sig-
moidal functions (see, e.g., [16])]. For the general
Hopfield neural networks with delays given by Eq. (1.2),
there are no existing results which provide explicit
answers to the question whether system (1.2} is globally
stable when the delay is sufficiently small. The above
question was studied extensively in [14],and it is suggest-
ed in [14] that the answer to this question is affirmative.
The neural network model considered in [14] is a special
case of system (1.2), where C is the identity matrix, T, is
the null matrix, and all the components of S(x) are iden-
tical functions. It is asserted in [14] that this special class
of Hopfield neural networks with delays has the global
stability property when the delays are smaller than some
bound which can be determined explicitly. However, this
assertion lacks proof. (In the words of the authors, "our
results are based on local rather than global stability
analysis and therefore do not provide a rigorous guaran-
tee of stability. Rather, we support our results with nu-
merical and experimenta1 evidence suggesting that stabili-

ty criteria presented here are valid under the conditions
investigated. ")

In the present paper, we provide a bound for the delay
r of system (1.2), which depends on the interconnection
matrix and on the neuron gains. %e prove rigorously
that when the delay is smaller than this bound, system
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(1.2) will have the same global stability and also the same
local stability properties as systein (1.1). As a conse-
quence of this, it can be concluded that the system (1.2)
will be globally stable for sufBciently small delays when
the corresponding system (1.1} is globally stable. In our
proof, we make use of an energy functional for system
(1.2} and we show that this energy functional decreases
along the solutions of (1.2), ultimately converging to
some equilibrium of system (1.2). Some of our results are
consistent with existing results (small gain results) report-
ed in [14] and therefore offer theoretical support of these
results. We also show that any (asymptotically) stable
equilibrium of (1.2) corresponds to a local minimum of
the energy functional. When delays are smaller than the
bound mentioned above, we prove that the set of all
(asymptotically) stable equilibria of (1.2) is identical to
the set of all the (asymptotically) stable equilibria of (1.1).
In other words, not only the global stability of system
(1.2), but also the local (asymptotic) stability of each equi-
librium of (1.2) will be unaffected by small delays. More-
over, we establish an effective criterion for the (asymptot-
ic) stability of each single equilibrium of (1.2).

Before proceeding further, it is important to point out
that system (1.2) constitutes a special case of neural net-
works with delays described by equations of the form

x;(t)= c;x;(t)—+ g t; sj(xj(t rj))+b;—,
j=l

i = 1, . . . , n (1.2')

where C=diag[ci, . . . , c„j, T=[t; ]„„„, S(x)
=[s,(x, },. . . , s„(x„)],b =[b„.. . , b„],and where C,
T, S (x), and b are defined as in (1.2). Equation (1.2') pro-
vides a generalization which admits different time delays

0 for different interconnections. Work by the
present authors is in progress to extend the present re-
sults to neural networks described by (1.2').

In the next section, we provide the necessary notation
used throughout this paper. In Sec. III, we establish our
main result for the global stability of Hopfield neural net-
works with delays. In Sec. IV we investigate the local
stability of equilibria of neural networks (1.2). A specific
example is given in Sec. V to demonstrate the applicabili-
ty of some of our results. Concluding remarks are given
in the final section (Sec. VI).

II. NOTATION

Let E denote the set of real numbers and let E"denote
real n space. If x&E", then x =(x„.. . , x„) denotes
the transpose of x. Let E" denote the set of n X m real
matrices. If B =[b; ]„x ER"",then B denotes the
transpose of B, and det{B) denotes the determinant of B.
For x EE", let ~)x~) denote the Euclidean vector norm,
([x[(={xx)', and for A EE""",let [[ A [] denote the
norm of A induced by the Euclidean vector norm, i.e.,
)(A)(=[A, ,„(A A}]' . I denotes the identity n Xn ma-
trix.

Let E+ denote the set of non-negative real numbers,
i.e., E+= [0,+ a& ). Let Xbe a subset of E"and let Ybe a
subset of R . We denote by C[X,Y] the set of all con-

tinuous functions from X to F, and we denote by
C [X,Y] the set of all functions from X to Y which have
continuous derivatives up to order k. Let r)0,
x 6C[[ r—, + ~ ),R"], and t &0. We define
x, &C[[—v, O],R"] as x,{s}=x(t+s) for sE[—r, O].
For any PGC[[ —r, O],R"], the norm of P, denoted by
I&I is defined as I&I =max[ //P(t)/[:t E [—r, O] j.

The system (1.2) is said to be globally stable if for any
solution x (t), lim, „x(t) exists. The definitions of sta-
bility and asymptotic stability of any equilibrium of (1.2)
are contained in standard texts (see, e.g. , [18]).

III. GLOBAL STABILITY
OF HOPFIELD NEURAL NETWORKS WITH DELAYS

In the present section, we consider the Hopfield neural
networks with delays described by the retarded type
differential-difference equation (1.2), given by
x(t)= —Cx (t)+ TiS(x(t))+ T2S(x (t r) }+—b, where
C=diag[c„. . . , c„j with c, &0 for i =1, . . . , n,
T = T~ + T2 is a symmetric matrix, b ER", ~ & 0, and
S(x}=[s,(x, ), . . . ,s„(x„)] is a sigmoidal vector func-
tion such that s;( ~ )EC'(R, E), s,'(p):=ds, /dp(p)&0,
limz „s;(p)=1, lim „s;(p)= —1, and
lim~

~

„s (p)=0 for i =1, . . . , n In o.rder to establish
our main results, we need to present some existing prop-
erties for system (1.2).

Lemma l. Any solution of system (1.2} is bounded.
Remark 1. The proof of Lemma 1 is identical to the

proof when v=0 (see, e.g., [2]), noticing that the c s are
positive and the s;(x; )'s are bounded, i = 1, . . . , n.

Assumption A. For any equilibrium x, of system (1.2)
[i e., —Cx, + TS (x, )+b =0 with T =Ti + T2 ], the ma-
trix J(x, ) is a nonsingular matrix, where

J(x)= —T+diag[c, {s',(x, )) ', . . . , c„(s„'(x„))

(3.1}

Lemma 2. For almost all b ER" (except a set with Le-
besgue measure 0},system (1.2) satisfies Assumption A.

Remark 2 L mrna 2 can easily be proved by using
Sard's Theorem (see Lemma 3.3 of [6,19]}.

Lemma 3. When system (1.2) satisfies Assumption A,
the set of equilibria of system (1.2) is a discrete set.

Remark 3. Lemma 3 can be proved by the inverse func-
tion theorem (see Remark 3.4 of [6]).

Remark 4. Throughout this paper, we will assume that
system (1.2) satisfies Assumption A. We note that this as-
sumption is also required in global stability studies of
artificial neural networks without delays (see, e.g., [6,2]).
In fact, Assumption A is very mild, since by Lemma 2
this assumption is satisfied for almost all 6 E.lR".

We are now in a position to establish the following re-
sult.

Theorem 1. Suppose that Assumption A is satisfied for
system (1.2},and suppose that
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~PIJTz/I &1, (3.2)

where P=max „„()D(x))), and

D ( x):=di ag[s', ( x& ), . . . , s„'( x„)] . Then, system (1.2) is

globally stable.
Proof. Let y =S(x), and suppose x, is a function in

C([—~,0],R"). Theny, =S(x, ) is also in C([ —~,0],R").
We define an energy functional E(x, ) associated with
(1.2) by

n (y (0)). 0
E(x, )= —y, (0)Ty, (0)+2 g f c;s, '(a)der —2y, (0)b+ f [y, (8)—y, (0)] Tzf(8)Tz[y, (8)—y, (0)]d8,

i=1 T
(3.3)

where f (8)GC'([ —r, 0],R ) which will be specified later. After changing integration variables, (3.3) can be represent-
ed by

n y, (f)
E(x, )= y(t—)Ty(t)+2 g f c,s, '(o)do —2y (t)b+ f [y(w) y(t)]—Tzf(w t)Tz—[y(w) —y(t)]dw .

f —r

The derivative of E(x, ) with respect to t along any solution of (1.2) can be calculated as

(3 4)

dE(x, ) = —2y (t)TD(x (t))[—Cx (t)+ T&y (t)+ Tzy (t —r)+b]

+2x (t}CD(x (t) }[—Cx (t)+ T&y (t)+ Tzy (t r)+b]—
—2[ —Cx (t)+ T,y (t)+ Tzy (t ~)+b] —D(x (t) }

—[y (t —~)—y (t)] Tzf ( ~)Tz [y (—t —r) —y (t) ]
—f [y(w) —y(t)] Tzf'(w t)Tz[y—(w) —y(t)]dw

—f [ —Cx(t)+ T,y (t)+ Tzy (t v)+b] —D(x (t) }Tzf (w t)Tz[y (w—) —y(t)]dw
f —T

—f [y(w) —y (t)] Tzf (w t)T,D(x—(t))[—Cx (t)+ T,y (t)+ T,y(t ~)+b]d—w
T

= —2[ —Cx (t)+ T,y (t)+ Tzy (t r)+b] D—(x (t))[—Cx (t)+ T~y (t)+ Tzy (t r)+b]—
+2[—Cx (t}+T~y (t)+ Tzy (t ~)+b] D—(x (t))Tz[y (t r) y(t)—]—
—[y(t r) y(t)] Tzf (—~)—Tz[y(t ~) y(t)]- —
—f [y(w) —y(t)] Tzf'(w t)Tz[y(w) ——y(t))dw

—f [—Cx (t)+ T&y (t)+Tzy(t ~)+b] D(» (t—))Tzf (w t)Tz[y (w) ——y(t)]dw

—f [y (w) —y (t)] Tzf (w —t) TzD(x (t) )[—Cx (t)+ T&y (t)+ Tzy (t —z)+b]dw
T

0= —f a(x, 8) M(x„8)a(x„8)d8,

where f'(8)=dfld8(8) and a(x„8)=[a&,az, a3] such that

a, = —Cx (t)+ T,y (t)+ Tzy (t r)+b, —

az= Tz[y (t —~) —y (t)],
a3= Tz[y (t +8)—y (t}],

and

(3.5)

(3.6}

(3.7)

(3.8)

M(x„8}=

2D(x (t))

D(x (t))

f(8)TzD(» (t) )

f( —&)

D(x (t))Tzf(8)

f'(8)I

(3.9)

where Idenotes the n Xn identity matrix. To obtain the last equation in (3.5), we changed the integration variables from
w back to 8. We will show that if the hypotheses of Theorem 1 are satisfied, then M(x„8) is positive definite for all
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0 0
I 0IU= ——I 0 U=

1 2

8& [ —~,0] and all x, which satisfy Eq. (1.2}. In doing so, we let U = U3 U2 U, , where

0 0

and

0 I ——f(8)T 0 I
2

U3= 0 0

0 ' f(8—)T—~D(x (r}) I

It is not difficult to verify that M = UM(x„8)Ur is a diagonal matrix. In fact,

M =diag[Mi, M2, M3],
where

2D(x (t))
1

7

f( r) I D—(x(t))
2~

and

f (8)T2D(x (t))
M =f'(8)I—3 2

f( r) D—(x{t)) i D(x(t})T2f(8)I — +2' '(x (t))
27

(3.10)

(3.11)

(3.12}

(3.13)
I

It follows that M(x„8) is positive definite if and only if M is positive definite, and if and only if M„Mz, and M3 are all
positive definite.

We now show that if the conditions rp~~ T2~~ & 1 is satisfied, where p=max„~z~~D(x) ~~, then we can always find a suit-
able f (8)GC([ —~,0],R+) such that Mi, M2, and M3 are positive definite for all x, which satisfy Eq. (1.2) and for all
8. From this it follows that M(x„8) is positive definite and, therefore, dE(x, )Idt 0 along any solution x, of (1.2).

By the assumption that s (p) &0 for all pER, the matrix M, is automatically positive definite. The matrix M2 will

always be positive definite if condition

2f ( —r) —P&0

is satisfied. For M3, it is easily shown that if
~ ~

(3.14)

f'(8)&-,'f'(8)((T, ()' D(x(r)) f ( —r) I D(x(r))
2. +2' '(x(r)) D(x(r)) (3.15)

is true, then M3 is also positive definite. Notice that the matrix

H:= D(x (t)) f ( —r}I D(x(t))
2~

+2' '(x(t)) D(x(t))

is a diagonal matrix, i.e., Hdiagjh , .i. . , h„]. It is
easy to show that

4f ( r)s (x;(t))~—
h;=

2f ( —~)—s (x;(r))

for i =1, . . . , n Since s (.x;{t))&p by the definition of p,
we have, in view of (3.14), that

~ ( 4f { r)P~-
2f ( r} P——

Therefore, we obtain

{3.16)f'(8) &-'f'(8)((T )]' 2f ( ~) P——
is satisfied.

2f ( r) P'——
and furthermore, condition (3.15}will be satisfied if (3.14)
is satisfied and
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Next, we need to show that there is anfHC'([ —r, O],R) such that conditions (3.14) and (3.16)
are satisfied. %e choose

(3.17)

Condition (3.14) is satisfied by the choice (3.17). Further-
more,

1 1

[18]),that the limit set of x, as t ~ oo is a connected sub-
set of the set of all equilibria of system (1.2). By Assump-
tion A, this set is a discrete set (Lemma 3). Thus we have
proved that x, approaches some equilibrium of system
(1.2) as r ~ ~ . Specifically, we have shown that
lim, x (i) exists.

Remarks 5. (i) A global stability condition for a special
case of system (1.2) appeared in [16] where all com-
ponents of S(x) are assumed to be saturation functions
instead of general sigmoidal functions. The results in [16]
are more restrictive than Theorem l. (ii) In [14] a special
case of system (1.2) is considered, given by the equation

x(t}=—x(t}+TS(x(r —r)), (3.24)

is true because Pr~~ T2 (~
& l. It follows that

kf ( ~)r&—1,
where

(3.18)

(3.19)

Since kf ( r)r&—1, we can always find an I, such that
0&l &1 and kf( ~)r&l. Therefore, we will always
have y & 0 where y is given by

Iy=
kf ( r)— (3.20)

We now choose f (8) on [—~,0] as

II'"= k(y-8) (3.21)

It is easily verified that this choice is consistent with
(3.17). Clearly, fGC([ —~,0],R+) since y) 0. The
derivative off (8) is given by

f'(8) =
k(y —8)

=—f'(8) & kf 2(8),k
(3.22)

dE(x, ) (0 (3.23)

along any solution x, of Eq. (1.2), where E (x, ) is the en-

ergy functional given by (3.3).
We know that if dE(x, }/dr =0 for some x, satisfying

Eq. (1.2), then ai =0, a2=0, and a3=0 for all
8& [—r, O], where the a s are given by (3.6)—(3.8).

Since for any x, satisfying Eq. (1.2), x, is bounded (see
Lemma 1), and since dE(x, }/dt &0, it follows from the
invariance theory (see Chap. 4, Lemmas 1.4 and 2.1 of

since l &1. Combining (3.19) and (3.22), we can verify
that f (8) satisfies condition (3.16).

Therefore, we have shown that if Pr)~T2(~ &1, then
there exists an f (8) [given by (3.21), where y, k, and

f ( —~) are given by (3.20), (3.19), and (3.17), respectively]
such that conditions (3.14) and (3.16) are satisfied. Thus
M(x„8) is positive definite for all x, satisfying Eq. (1.2)
and all 8G[ —r, O]. Therefore, we have in fact shown
that

where x and T are the same as in (1.2), and the com-
ponents of S(x) are identical sigmoidal functions. By
linearization of (3.24) about an equilibrium, the authors
of [14] obtain the bound re, ;„(T)& n /2 for the asymp-
totic stability of the equilibrium of (3.24). This local
asymptotic stability criterion for an equilibrium is conjec-
tured to be also a bound for the global stability of (3.24)
in [14].

When applying Theorem 1 to (3.24), we obtain the
bound rP(~ T(~ & 1 for the global stability of system (3.24).
Although this bound is more conservative than the bound
given in the preceding paragraph, the present result is ob-
tained by proof and involves no conjectures. Experimen-
tal results obtained in [14] suggest that both of the
bounds given above may be conservative.

IV. LOCAL STABILITY
OF HOPFIELD NEURAL NETWORKS WITH DELAYS

x(r) = Ax (r)+Bx (t —r}, (4.1)

there are no known general results which constitute
necessary and sufBcient conditions for the asymptotic sta-
bility of the equilibrium x =0. [In (4.1), A E-R""",

In the preceding section we showed that when

~P~~Tz(( &1, Hopfield neural networks with delays de-
scribed by Eq. (1.2) are globally stable, i.e., any solution
of (1.2) will converge to some equilibrium of (1.2). Since
in the implementation of Hopfield neural networks as as-
sociative memories, information is stored in specific
asymptotically stable equilibria (called stable memories},
good criteria which ensure the asymptotic stability of an
equilibrium of (1.2) are of great interest. We address this
issue in the present section.

At the present time, there are no known general results
which provide necessary and sufhcient conditions for the
asymptotic stability of an equilibrium for Hopfield neural
networks with delays [given by (1.2)]. However, several
results have been reported which provide sufhcient condi-
tions for the asymptotic stability of an equilibrium for
(1.2). These results are frequently obtained by linearizing
(1.2) about an equilibrium of interest (see, e.g., [14]). Oth-
er results, which make use of sector conditions for non-
linearities, have been obtained by Lyapunov's Second
Method (see, e.g., [17]). It should be emphasized that in
the case of delay equations, even for linear systems given
by
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BCR""",r&0, and xER".] However, many su%cient
conditions for the asymptotic stability of the equilibrium
x =0 of (4.1}have been established (see, e.g., [20-23]). In
the present section we will show that if the conditions of
Theorem 1 are satis5ed, then the asymptotic stability of
any equilibrium of system (1.2) can be deduced from the
asymptotic stability of the same equilibrium of system
(1.1). In other words, if ~P([ Tz )( & 1 then (as shown in the
preceding section), Hopfield neural networks (1.1) and
Hopfield neural networks with delays (1.2} are both glo-
bally stable, and furthermore (as will be shown in the
present section), both have the same local stability prop-
erties at any equilibrium. This enables us to verify the
asymptotic stability of the equilibria of system (1.2) by
ascertaining the asymptotic stability of corresponding
equilibria of system (1.1).

In order to proceed further, we require the following.
Dejinition. An element P EC ( [—~,0],R") is called a lo

cal minimum of the energy functional E defined by (3.3)
if there exists a 5 & 0, such that for any

PF C([—~,0],R"),E($)&E($) whenever ~P P~ &5—.
We are now able to establish the following results.
Theorem 2. Suppose that the conditions of Theorem 1

are satisfied. If x, is an equilibrium of (1.2), then the fol-

lowing statements are equivalent: (i) x, is a stable equi-
librium of {1.2); {ii)x, is an asymptotically stable equilib-

rium of (1.2); (iii) P, is a local minimum of the energyX

functional E given by (3.3), where P, EC([—r, O],R")

such that P„—:x, ; (iv) J(x, ) is positive definite, wherex

J(x) is given in Eq. (3.1).

(a) (i) = {ii}. Since Assumption A is satisfied, the set
of equilibria of system (1.2) is a discrete set by Lemma 3.
Therefore, when e & 0 is suSciently small, there is no oth-
er equilibrium in U(x„e), a neighborhood of x„given by

U(x„e):=[«GR":i'm« —x, ii&e] . (4.2)

Since x, is a stable equilibrium of (1.2), there exists an
q&0 such that for any PEC([—r, 0],R") satisfying

(P—x, ( & g, (x, —x, ( & e for all t & 0, where x, is the solu-

tion of (1.2) with initial condition P. Thus
x, EC([—r, O], U(x„e)) for all t. In view of Theorem 1,
x, will converge to some equilibrium of system (1.2).
Since x, is the only equilibrium of (1.2) in U(x„e), it fol-
lows that x, converges to x, . Thus, we have shown that
x, is an attractive equilibrium of system (1.2}. Therefore
the stable equilibrium x, of (1.2) is an asymptotically
stable equilibrium of system (1.2}.

(b) (ii) =- (iii). Since x, is an asymptotically stable
equilibrium of system (1.2), there exists an q & 0 such that
for any PHC([ —~,0],R") satisfying ~P

—x, ~ &g, x, con-
verges to x„where x, is the solution of (1.2) with initial
condition P. Therefore E(P )&E(x,}&E($) for any

PHC([ —r, 0],R"} satisfying ~P
—», ~ &g. Therefore P„

is a local minimum of the energy functional E.
(c) (iii) =- (iv). Let E be a function from R" to R

defined by

E(x):= y—Ty+2 g jt c;s; '(tr)da —2yrb, (4.3)

This contradicts the fact that P„ is a local minima~ of
e

E. Therefore, x, is a local minimum of E. Hence, J{x,}
is positive semidefinite (see, e.g., Theorem 3.6 of [24]),
where J(x}is the Hessian matrix of E given by

J(x}= BE
B«B«J

It can be shown that

(4.4)

J(x)=2D (x)J(x)D (x),
where D(x)=diag[s', (x, ), . . . , s„'(x„)], and J(x} is

given by Eq. (3.1). Therefore, J(x, ) is also positive
semidefinite. By Assumption A, J(x, } is a nonsingular
matrix. Thus we have shown that J(x, ) is positive
definite.

(d) (iv) =- (i). We need to prove that x, is a stable
equilibrium of system (1.2), i.e., for any e & 0, there exists
a 5 & 0, such that for any p EC ( [—r, O],R"), if
14

—«, I &5, then I», —«, ( &e where x, is the solution of
(1.2) with initial condition P.

Since J(x, ) is positive definite, then J(x, ) must also be
positive definite where J(x) is the Hessian matrix of E
given by (4.4). Furthermore,

V„E(x)=2( Ty +Cx b)—D (x), —

where D(x) is given in part (b). Therefore, V,E(x, )=0
since x, is an equilibrium of (1.2). It follows (by Theorem
3.6 of [24]}that x, is a local minimum of E, i.e., there ex-
ists a 5, & 0,5& & e, such that whenever 0 & ~~x

—x, ~(
& 5„

E(x, ) &E(x}. Let r =min[E(x}:([x—x J(=5,}. Then it
is true that r &E(x, ). Since E($, )=E(x, ), it followsX

that r & E($„). Note that E is a continuous functional.
e

Therefore, there exists a 5& 0, 5 &5, such that whenever

~P
—x, ~

&5, where PEC([—r, O],R"), we have E(P) &r
Suppose x, is any solution of (1.2) with the initial condi-
tion P such that

~ P —x, ~
&5. We will show that

~x, —x, ~ &5&&e. Otherwise, there would exist a to&0
such that ((x, (0)—x, ()=5„i.e., ([x(to)—x, [(=5,. By the

definition of E and E, we have E(x, ) E&( (xt ))0r&.
0

Therefore, we obtain E(x, )&E(f) which contradicts
0

the fact that E is monotonically decreasing along any
solution of (1.2). Thus, we have shown that x, is an
asymptotically stable equilibrium of system (1.2). 0

where y =S{x). Comparing E with E, we note that E is
a function deSned on R" while E is a functional defined
on C([—r, O],R"}. Since P is a local minimum of E, x,

e

must be a local minimum of E. For otherwise, there
would exist a sequence [x„JCR" such that x„~», as
n~~ and E(x„)&E(x, ). Let P denote the constant

tt

function P =—x„ in C([—r, O],R"). Then ~P
—$„~~0

as n~co, and

E(P, )=E(x„)&E(x,)=E(P„) .
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V. AN EXAMPLE

To illustrate the applicability of some of the preceding
results, we consider the system

x(t)= —Cx (t)+ TS(x (t —~)),
where x GR, C =diag) 1.1, 1.2),
S(x)=[s,(x, ),s2(x2}] such that

2 ) 14m
s, (x, )=—tan

' x,

(5.1)

and

and
T

2 ) 15m
s2(x2) =—tan

'
x2

Remark 6. We note that statement (iv) in Theorem 2 is
independent of the delay r .Therefore, if system (1.2}
satisfies Assumption A, and if the condition ~P)) T2)) & 1 is
satisfied, then the locations of the (asymptotically} stable
equilibria of system (1.2} will not depend on the delay r.
This is true if in particular ~=0. Therefore, if
rPIITi)I &1, then system (1.2) and system (1.1) [obtained
by letting ~=0 in (1.2)] will have identical (asymptotical-
ly} stable equilibria. We state this in the form of a corol-
lary.

Corollary l. Under the conditions of Theorem 1, x, is
an (asymptotically) stable equilibrium of system (1.2) if
and only if x, is an (asymptotically) stable equilibrium of
system (1.1). This is true if and only if J(x, ) is positive
definite, where J(x) is given in Eq. (3.1). 0

Remark 7. Corollary 1 provides an efFective criterion
for testing the (asymptotic) stability of any equilibrium of
Hopfield neural networks with delays described by (1.2).
This criterion constitutes necessary and suf6cient condi-
tions, as long as rP)) T2)) & 1.

[14] cannot be applied in the present case, since system
(5.2) cannot be decomposed into two one-dimensional
subsystems which is essential to the derivation of the re-
sults in [14].

Although there exist in the literature some sui5cient
conditions for the asymptotic stability of linear time-
delay systems given by

x (t)= Ax (t)+Bx (t r)—, (5.3)

where A, B are constant n Xn matrices, these results are
in general very restrictive when applied to system (5.2).
For example, the results of [23] yield

(P)
2«ll ~ I)+ I)BI) }

~min P)
(5 4)

as a condition for the asymptotic stability of the equilibri-
um x =0 of system (5.3), where P is the positive-definite
matrix such that (A +B) P+P(A+8)= I, and—I is
the identity matrix. When the bound given in (5.4) is ap-
plied to system (5.2), we obtain that the equilibrium y =0
(or x =x, ) is asymptotically stable if the delay r &0 014.

1

Thus, by the classical method of linearization, we know
that the equilibrium x, of system (5.1) is asymptotically

1

stable if v&0.014.
If we apply Corollary 1 to systein (5.1}, it is easily

shown that J(x, } and J(x, ) are positive definite, and
1 2

J(x, ) is not positive definite, where J(x) is defined by
0

Eq. (3.1). Thus, we know by Corollary 1 that when
~ & 0.579, x, and x, are (asymptotically) stable equili-

1 2

bria of system (5.1) while x, is not (asymptotically)
0

stable. Therefore, for the present example, Corollary 1

provides stability conditions which are significantly less
restrictive than existing results. Additionally, Theorem 1

shows that system (5.1) is globally stable when v &0.579.

where T is a symmetric matrix given by

—0.2
—0. 1

y (t)= Cy (t)+ TS~ (t ——~), (5.2)

where y =x —x, , C and T are the same as in (5.1), and
1

System (5.1} has three equilibria given by x, =(0,0),
x, =(0.2140,0.2091), and x, =(—0.2140, —0.2091) .'2
The classical method of analyzing the stability of (5.1) is
to linearize (S.l} about each of its equilibria. For exam-
ple, the linearization of (5.1) at the equilibrium x, is

1

given by

VI. CONCLUDING REMARKS

In this paper, we considered the local stability as well
as the global stability of Hopfield neural networks with
delays given by system (1.2). We showed that if the con-
dition ~P))T2)) & 1 is satisfied, then Hopfield neural net-
works with delays and corresponding Hopfl. eld neural
networks without delays given by system (1.1) have iden-
tical asymptotically stable equilibria, and both networks
are globally stable [i.e., any trajectory of system (1.2} ap-
proaches some equilibrium of (1.2)]. In addition, we
proved that if the same bound is satis6ed, then any equi-
librium x, of system (1.2) is asymptotically stable if and
only if J(x, } is positive definite. A specific example was

given to demonstrate the applicability of some of our re-
sults.

So=
l. 1462 0
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