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Entropy, pattern entropy, and related methods for the analysis of data on the time intervals
between heartbeats from 24-h electrocardiograms
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Sequences of the time intervals between heartbeats —medically termed RR intervals —extracted from
24-h electrocardiogram recordings are examined as three-dimensional return map images. The record-
ings were made in humans by means of the medically widely used portable electrocardiograph (Holter
system). A time window measured in the number of heartbeats is used and different types of behavior
are classified. Bifurcations between the types of dynamics of the heart are noted and a form of intermit-

tency is found. An alternative quantitative measure —a form pattern entropy of the return map
image —is defined that characterizes the dynamics of the RR interval sequence. It is shown that this is a
measure of the degree of ordering of the RR interval sequence and as such it is a good novel medical di-

agnostic tool for analyzing heart rate variability which distinguishes between illness and health where
other diagnostics fail.

PACS number(s): 87.10.+e, 05.45.+b, 87.80.+s

I. INrRODUc:crON

Over the past decade strong evidence has been found
that the dynamics of the heart has at least a dominantly
deterministic nature [1-3]. The complexity of the
behavior of the heart as seen through surface electrocar-
diograms (ECG) in humans is now attributed to the non-
linearity of the nervous system regulating the heart [3].
Simultaneously, many questions have been posed (and not
all have been answered) whether the well established
methods of nonlinear dynamics are able to cope with the
analysis of the ECG signal in general and with heart rate
variability in particular. There seems to be a consensus
that phase trajectory portraits and return maps are sensi-
tive tools [4,5] which do give insight into the subtle
changes in the dyna~~cs of the heart such as bifurcations
[4,6). On the other hand, standard nonlinear dynamical
tools such as correlation dimensions [4] and f(a) curves
[7,8] may cause problems. These methods require a rath-
er large number of data points on input, but also they as-
sume stationarity of the data. This may be in conflict
with the inherent nonstationarity of the ECG, which is
often made during exercise stress tests or simply spans a
long time, e.g., 24 h. In this context, methods which cal-
culate pointwise correlation dimensions [9,10] should be
considered an important advance in the analysis of ECG
data.

The analysis of ECG data may be divided into two
basic areas. In morphological analysis the shape of elec-
trical pulses measured is examined and information on
the processes which occur mainly within the heart during
each beat is sought. On the other hand, in the compli-
mentary type of ECG analysis the time distance between
heartbeats —the RR intervals —is measured and infor-
mation on the processes which control heart action is
sought.

In the studies performed using various analytical

methods of RR interval analysis [11,12] two opposite ap-
proaches are often assumed. Either a short recording of
the data in speciSc medically controlled conditions is
made (short term recording) or the whole 24-h data set is
analyzed (Holter method). In the latter case, the one
studied here, the patient wears a miniature recording de-
vice which enables him to perform all actions the state of
his health permits. Many attempts have been made to try
to assess the health of the patient by looking at global,
statistical time domain characteristics of the whole 24-h
period of data [11]. Medically interesting short stretches
of the recordhng are often singled out for additional
power spectral analysis or for short time domain (statisti-
cal) analysis. Similarly, attempts have been made of non-
linear dynamical analysis of RR intervals, e.g., the shape
of two-dimensional images of the RR intervals maps
compiled from the whole 24-h recording has been associ-
ated with the state of health [5], and quantitative mea-
sures such as the correlation dimension [4,6] and f(a)
curves [8] have been calculated for RR interval se-
quences. Since the dynamics of the heart rate variability
is a re6ection of neurohumora1 activity, bifurcation
analysis of three-dimensional images of RR interval re-
turn maps and a quantitative measure called approximate
entropy [13]of RR intervals has been used to monitor the
behavior of both the patients and the therapists during
psychotherapy [14,15].

The purpose of this paper is to discuss ways to analyze
the dynamics of RR intervals in 24-h Holter ECG record-
ings. Three-dimensional images, formed by way of the
theorem of Takens [16],of medicaHy representative cases
of such recordings are presented. A time window is used
to scan through the 24-h recording and bifurcations in
the data are discussed. Entropy of the RR sequence is
calculated and a new quantitative measure of the com-
plexity of three-dimensional images of the RR
sequences —a form of pattern entropy-is defined. This
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measure is shown to distinguish between diferent cases of
pathology and health in medical circnnistances such that
the frequency and time domain analysis of the RR inter-
vals often fails.

II. DATA

Holter ECG 24-h tapes of both healthy individuals and
cases of heart disease with the highest risk of sudden
death were analyzed by commercial software (Del Mar
Avionics 563 Strata Scan). The data were sampled at 128
Hz and the time distance between consecutive R peaks
(the RR intervals) was extracted. No special filtering was
used, but RR intervals larger than 2000 ms were treated
as artifacts and ignored. Each 24-h sequence of RR inter-
vals studied was 80000—125 000 data points long.

The main body of the patient population of which the
data are quoted here consisted of 15 persons (14 male and
1 female}, 41+8 yr of age, who belonged to the highest
cardiolagical risk group and who had experienced cardi-
ac arrest due to ventricular fibrillation (14 patients} or
asystole (1 patient}. Ventricular fibrillation was a compli-
cating factor in the coronary disease of 11 patients from
this group, one person had valvular heart disease, and
one had arrhythmogenic right ventricular disease. For
twa cases in this group, na apparent heart disease was
found, except for recurrent ventricular fibrillation. Three
patents had their arrhythmic event occur while wearing
the Halter device; one of them died. Two other patients
subsequently died suddenly, while one has recurrence of
ventricular arrhythmia. Following standard medical
practice, each of the 15 persons from the high risk group
had an age, sex, and disease status matched pair serving
as the control. Only due to such meticulous one to one
matching of pairs could the statistical carrelation be-
tween the two groups be meaningful. For statistical com-
parisons the paired t-student test was used.

III. IMAGING

In most problems analyzed by nonlinear dynamical
methods not all the variables needed to construct the
phase space trajectory of the system are available. In-
stead the Takens delay-coordinated reconstruction of the
phase space trajectory [16] is made using only a single
time series of a single variable of the system. If the full
QRS complexes of the ECG signal are treated as the raw
data, then extracting the RR intervals amounts to taking
the time differences between points on a Poincare section
of the full trajectory in the phase space of the system.

Three-dimensional images of the return map
hzz(i +2r} versus b,zz(i +r) and hz„(i), where i is the
index of the RR interval, ~ is the delay, and h&z is the
RR interval length, were formed from the RR interval
data. As usual, the choice of the time delay is dificult.
Often rather sophisticated methods —the first mini~urn
of mutual information or of the autocorrelation [17]—
are used for this purpose. Calculating mutual informa-
tion is a problem in itself, especially since it is expected
that 24-h Holter ECG data may be nonstationary. The
same applies to the autocorrelation or the autocovariance
function. When calculated from the usual basic

de8nition, the autocorrelation function of RE interval
data, except for rare cases, was found to be a nonmono-
tonically decreasing positive function. We found that the
Takens delay for the data presented here should be in the
range fram 1 to 9 beats as determined by the first
minimum of the autocorrelation function. The first
minimum of the autocovariance function was situated at
1 —20 beats and the first zero crossing was situated at
20—150 beats depending on the medical case and on the
length of the series taken for the calculation. The longer
the series used in the calculation the less visible the local
minima occurring before the first zero. Since the features
of both the autocorrelation function and the autocovari-
ance function depended strongly on the length of the time
window for which they were calculated, we found it a
very imprecise criterion to determine the delay for phase
space reconstruction on the basis of these functions.
Also, the purpose of attempting to develop the methods
described in this paper is to avoid the calculation of the
Fourier spectrum of the RR intervals (through which the
autocorrelation function may also be found) as this
creates well known severe problems [12]. As a rule of
thumb, the delay time should not be too large so that
valuable characteristics of the phase space trajectory are
not lost in the stretching and folding process which
occurs during the time evolution of the system. Because
the R peaks in the PQRST sequence of the ECG signal are
a full cycle of heart action away, there is a tendency to
use v= 1 [5]. On the other hand, the larger the value of r
the more independent the variables hzs (i +n ~), with
n =0, 1,2, . . . and i the RR interval index, become. Fur-
thermore, visualization of characteristic features of the
reconstructed trajectory is enhanced with larger v. since
the image is stretched further away from the diagonal of
the figure. In three dimensions, we found that an integer
delay ~=2 was adequate, but fixed time delays as large as
12 s (equivalent to an integer delay from 12 to 30 beats)
have also been used by other groups [3,18].

Several examples of 24-h recording of Holter ECG
data in the three-dimensional return map image are
shown in Figs. 1 —3. Case H.R.N. [Fig. 1(a)] and case
C.H.M. [Fig. 1(b)] were considered healthy by standard
medical practice. Patient G.D.S. [Fig. 2(a)] had symp-
toms of ventricular arrhythmia due to dilated cardiomyo-
pathy, while F.A. [Fig. 2(b)] is a good example of atrial
fibrillation which is characterized by a completely irregu-
lar RR sequence. Note that even though each image in
Figs. 1 and 2 consists of over 10 points, small islands ex-
ist at the fringes of the images which the system does not
visit. Figure 3 depicts two recordings of the same patient
D.W.D.: (a) 18 h before cardiac arrest due to ventricular
fibrillation and (b) 1 yr after cardiac arrest and subse-
quent medication. It can be seen that it is possible to im-
mediately distinguish between the dynamics of RR inter-
vals of healthy individuals (Fig. 1) and that of the severe-
ly ill patients seen in Figs. 2 and 3(a). But, in this the 24-
h picture, distinguishing between, e.g., ventricular ar-
rhythmia [Fig. 2(a)] and atrial fibrillation [Fig. 2(b)] is
diScult. Note that, medically, these are completely
different conditions. Furthermore, one would want to be
able to assess whether patient D.W.D. remains in danger
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of a repeat of cardiac arrest, i.e., whether there is a
measurable difference between the data of Figs. 1 and
3(b).

From the medical point of view, there are obvious
reasons by the Holter ECG data recorded during the day
are diferent from those taken during the night's rest. It
has also been noticed in the past that heart action under-
goes various bifurcations [18,4]. These bifurcations can
be made visible when not too many points are plotted on
the RR return maps, i.e., when the maps are viewed
through a time window. Because the heart rate changes
substantially and rapidly, we found it convenient to
define such a window in the number of beats (integer
time) rather than in a fixed number of seconds. To be
able to study bifurcations occurring during heart action,
the computer program had the capability to connect, on
demand, subsequent points on the map by a line. Such an
imaging of the dynamics of the RR intervals has been
used in the past [14,15,18].

We classified the principal types of behavior found in
our Holter data according to the motion of consecutive
points on the computer screen. Figure 4(a) is an example
of what we called. radial behavior where there is an alter-
nation of short and long RR sequences. Figure 4(b) de-
picts the opposite type, i.e., spiral behavior. Each of the
types may be the sole type of behavior for a given indivi-
dual. For example, spiral behavior is most often seen in
healthy individuals, while radial behavior is typical for
arrhythmias, but it is not identified uniquely with this
pathology and may occur in other ailments. Bifurcations
may occur from one type of behavior to the other. An
example of such behavior is depicted in Fig. 5. Prior to
the image seen in this figure a long sequence of spiral
behavior occurred. In the sequence of 200 heart beats (3
min, 2 s) in Fig. 5, spiral behavior was still dominant
(mostly small spirals, forming the core of the figure), but
the occasional bursts of radial behavior created the
characteristic crosslike shape. This behavior seems to be
some form of intermittency. The whole 24-h recording
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FIG. 1. Three-dimensional images of RR interval return
maps with ~=2 calculated from 24-h Holter ECG recordings of
two iridividuals considered healthy: (a) patient H.R.N. and (b)
patient C.H.M.

FIG. 2. Three-dimensional images of RR interval return
maps with ~=2 calculated from 24-h Holter ECG recordings of
a case of (a) ventricular arrhythmia G.D.S and (b) atrial fibrilla-
tion F.A.
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for this case of hypertrophic cardiomyopathy consists of
bifurcations and reverse bifurcations between sequences
of radial and spiral behavior. We stress that term "bifur-
cation" is used here on the basis of the rather weak argu-
ment that the changes in dynamic behavior occur sharply
in time and that they show some geometrical similarity to
bifurcations of low-dimensional map theory. If one ac-
cepts that the sharp transitions in the dynamics of the
RR intervals series are true bifurcations, then one may
conclude that a hitherto unknown control parameter ex-
ists which changes as the RR interval series progresses.
In any case this term has been applied to RR interval
data before [4,18] in similar circumstances.

The three-dimensional images of RR intervals dis-
cussed here are, by construction, return maps. Obvious-

ly, these maps are much more complex than the quadra-
tic or circle maps most often analyzed in the literature.
However, there are cases when the usually complex re-

turn map of RR intervals bifurcates to a much simpler
state. The initial 30 min of the RR intervals recorded
from patient C.G.N. were dominated by spiral behavior.
Then a bifurcation occurred to an extremely periodic
state (Fig. 6), which lasted for about 50 min with slight
changes in the number of points in a given island. After
returning to a more normal looking, spiral dominated
trajectory shape, 10 min later this patient died suddenly
due to asystole. Note that the analysis of heart rate vari-
ability based on standard methods including power spec-
trum analysis showed no substantial abnormalities in this
case. Bifurcations to such complex periodic behavior are
not uncommon and do not necessarily signify an immedi-
ate cardiac arrest. Note also that the island structure of
the map in Fig. 6 is in reality a limiting case of an in-
stance of radial behavior which is, however, extremely
stable in time and especially well ordered.
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FIG. 3. Three-dimensional images of RR interval return
maps with v =2 calculated from 24-h Bolter ECG recordings of
the same patient (a) before cardiac arrest and (b} 1 y after.

FIG. 4. Types of RR interval sequences: (a) radial behavior
and (b) spiral behavior.
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tively the differences between such histograms we calcu-
lated the entropy of such an RR sequence by using

N
S=—g p„lnp„, (1)

k=1

800

FIG. 5. Intermittent bursts of radial behavior during a
predominantly spiral RR interval sequence.

IV. ENTROPY OF RR INTERVALS

RR intervals have been analyzed in the past by tech-
niques based on the use of histograms [11].Pincus, Glad-
stone, and Ehrenkranz [13] used approximate entropy (a
form of the Kolmogorov Ez entropy} to measure the
diff'erences between RR sequences (cf. [14,15]). Figure 7
depicts typical histograms of 400-beat-long RR sequences
taken from 24-h Holter recordings. To assess quantita-

+
~W

800

FIG. 6. Image of a highly ordered state (patient C.G.N.)
which lasted for about 50 min and was succeeded by an asystole.

where N is the number of bins of the histogram and pk is
the probability of obtaining the RR interval length hzz
corresponding to the kth bin of the histogram. The prob-
ability pk is simply the value of the histogram at the kth
bin when the histogram is normalized by the total num-
ber of beats in the given RR sequence. Since the se-
quence of QRS complexes was digitized with a 7.5-ms
sampling time, to construct the histograms with optimal
computing time we used a bin size of 25 ms, somewhat
larger than the sampling error.

When the values of S measured for different cases of
24-h RR interval sequences were compared, the results
were rather discouraging. The values of S were very
close (from 2.7 to 3.5 in arbitrary units) for cases which
were evidently vastly different when viewed as the three-
dimensional return map. For example, a healthy indivi-
dual may have the entropy of the 24-h RR interval se-
quence 2.95, while a bad case of cardiomyopathy would
yield 2.96 and another gave 2.98. The entropy of the full
24-h RR interval sequence of another healthy individual
H.R.N. [Fig. 1(a)] was found to be 3.36, which could easi-
ly be confused with the results found for cases of arrhyth-
mia (3.08—3.83) or cardiomyopathy (2.65—3.38).

An important improvement was obtained when a time
window of length N scanning through the whole 24-h se-
quence was introduced into the procedure and Eq. (1) was
used to calculate the entropy for the window. The resul-
tant window entropy S was compared with cumulative
entropy S calculated using (1} and counting N as the
number of RR intervals from the beginning of the se-
quence to the local time value. Note that there does not
seem to be a clear-cut way of establishing the length of
the time window to use. On the one hand, such a window
may not be too short (e.g., less than 30—50 beats) so as to
maintain good statistical properties of the normalized
histogram used in (1). On the other hand, for a time win-
dow which is overly long (e.g., over 5000 heartbeats long)
the patient wearing a Holter apparatus may undergo
many vastly different physical actions rendering such
long time averaging meaningless. Moreover, the values
of the window entropy S and of cumulative entropy S
converge for large window sizes. For the purpose of this
study, the window length was assumed to be 400 beats,
which, depending on the situation and on the patient
studied, corresponds to 3—6 min of real time. Windows
of the order of 100 beats in length have also been studied,
showing promising characteristics of the details of the
RR sequences, and will be reported on in the future.

Examples of the first 4 h of the one-dimensional entro-
pies as functions of time are shown in Fig. 8 for the
healthy individual C.H.M. and in Fig. 9 for patient
B.H.D., who has undergone several cardiac arrests over
the past 5 yr (he is now equipped with a defibrillator) and
in whom no symptoms of organic heart disease have been
found by any means including cardiac catheterization
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and biopsy. C.H.M. is a healthy individual and a medical-
ly matched control for B.H.D. The smooth curve in
these Sgures and all similar Sgures below depicts the cu-
mulative entropy, while the strongly oscillating curve de-
picts the window entropy. The large dip seen in Fig. 8(a)
in window entropy occurred when the patient C.H.M.
went through an exercise stress test. Although the details
of the curves dier, it should be stressed that the overall
characteristics of the two cases are remarkably similar:
the minimum of cumulative entropy for C.H.M. (2.64) is
slightly larger than for B.H.D. (1.52). The average and
the maximum in both cases correspond well (2.7 versus
3.11 and 3.06 versus 3.03, respectively). The same holds
true for window entropy in both these cases.

A second example is given in Fig. 10, which depicts the
Srst 4 h of the window and cumulative entropies of the
case of D.W.D.1, and in Fig. 11, where the same is
presented for D.W.D.3. These Sgures depict the Srst 4 h

TABLE I. Entropy of RR intervals for cardiac arrest and for
sex, age, and disease matched controls.

Cardiac arrest

Controls

Average

Cumulative
2.48+0.62

p =0.1

2.72+0.25

Maximum

entropy
2.94+0.31

p =0.2
3.05+0.25

Minimum

1.79+0.47

p =0.08
2.01+0.42

Cardiac arrest

Controls

Windom entropy
1.94+0.42 3.14+0.4

p =0.3 p =0.14
2.02+0.28 2.9620.28

0.867%0.34

p =0.15
1.00%0.22

of entropy curves for the same patient 18 h before and 1

yr after cardiac arrest. Thus D.W.D.3 is the control for
D.W.D.1. Although the 24-h return maps for these two
examples differ greatly (Fig. 3), one-dimensional entropy
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Eq. (1) seems to be as poor a tool to distinguish between
medically different situations as is the total entropy of the
whole 24-h RR sequence. The maximum of S for
D.W.D.1 was 2.659, its average in the 24 h was 2.236,

and its minimum was equal to 1.256. For D.W.D.3, the
respective values were 3.012, 2.730, and 1.832. D.W.D.
was, however, perhaps one of the most extreme cases we
have studied so far. Table I gives the following data for
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all ten cardiac arrest cases and sex, age, and disease
status matched controls: the 24-h average value and the
maxi~urn and the minimum for each recording averaged
over the whole group are given with their standard devia-
tion. p denotes the paired t-student test correlation

coellcient. For the correlation to be significant p should
be less than 0.05. From the data in Table I and Figs.
8-11 it is clear that, on the basis of one-dimensional
entropy —cumulative and window alike —it would be
difBcult to be sure which type of case one is analyzing.
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V. PA1 IKRN ENTROPY

A. DeSnition aad properties

To have the advantage of using two- and three-
dimensional images of RR intervals a pattern entropy

eras de5ned,
N

Sj,= —g pklnpk~
k=1

with pk dered for two dimensions as
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FIG. 10. The first 4 h of the window entropy (oscillating curve) and the cumulative entropy (smooth curve} as functions of time for
the patient D.W.D. before cardiac arrest.
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pk =p I ~RR Ip. I ~RR I

and for three dimensions as

pk p I ~RR IpvI ~RR ~p2& I ~RR I

where ~ is the integer time delay in beats and p denotes
the probability of Sndiag a given length hzz in the se-
quence of RR intervals ending at some interval index i, as
described for Eq. (1). p, and p2, are found similarly, but
for difFerent sequences of RR intervals, namely, those
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which end at the interval indices i +v and i +2~, respec-
tively. pk is thus obtained by multiplying the simple
probabilities calculated for each delay coordinate sepa-
rately. Because the joint probability pk is a very small
quantity, for ease of use, we multiplied all pattern entro-
pies by 10 .

The main idea in defining entropy in this way was to
find a quantitative measure to distinguish between the dy-
namics of ordered heart action such that the probability
distributions obtained from the data without a time shift
and those for the data shifted in the time by ~ and 2r
would differ very little [then the joint probability of Eq.
(2) would be large] and such that the probability distribu-
tion of the RR interval lengths changes rapidly with the
time so that the joint probability is small. Note that be-
cause joint probability is used here, pattern entropy will
have the peculiar pmperty that it mill be large for processes
mhich are mell ordered and stationary in the time, mhile
small othermise.

Figure 12 depicts the cumulative (flat curve) and the
window pattern entropy (wavy curve) as functions of the
time for the first hour of the recording for a healthy indi-
vidual [C.H.M. , cf. Fig. 1(b)] for different values of the
delay ~. It can be seen that, for the first 9 min, the two
quantities have practically the same value as the
difference between the time window length and the
current time value is small. The window pattern entropy
curve as a function of the time undulates slowly. The
sharp rise in the value of this entropy between 32 and 42
min is due to an exercise stress test—an effect due to an
ordering of the dynamics of the system at that time. It
should be stressed at this point that pattern entropy is
not a simple function of the standard deviation of the RR
intervals within the given time window. We noted
numerous instances, during stress tests and at other mo-
ments in time for unknown reasons, when the three-
dimensional map time window image was contracted to a
small island and yet, instead of increasing sharply, the
value of the window pattern entropy dropped suddenly,
indicating a disordering of the RR interval sequence.

Consecutive points in the RR interval sequence are one
whole cycle of the system away on the time scale; thus a
delay of one heartbeat (~=1) may be considered rather
long when measured in real time. As mentioned above,
for optimal imaging effect three-dimensional RR interval
return maps were observed here with r=2. This does not
mean, however, that the same delay time has to be the
best for pattern entropy calculations. The effect of the
change of the length of the delay r from 25 [Fig. 12(a)] to
200 heartbeats [Fig. 12{d}]with the length of the time
window held constant at 400 beats (equivalent for this
recording to between 3.5 and 5.2 min of real time) is very
weak. It can be seen that only when the delay time
exceeds 50% of this rather long time window does the
shape of the window pattern entropy as a function of the
time change significantly. Even then the main features of
the curve as seen in Fig. 12{a)are still well recognizable
in Fig. 12(d). This indicates that the RR interval histo-
grams contain highly persistent features (RR interval
lengths which are much more probable than others).
This may be taken as strong evidence of the deterministic

nature of the system. Long range correlations were also
found in the ECG signal by Peng et al. [2] by completely
different means.

The same behavior of pattern entropy as a function of
the time was obtained when the length of the time win-
dow was changed from 50 to 200 beats and the delay ~
held constant at 2 (Fig. 13). A further change of the win-
dow length from 200 to 400, except for some further
averaging, did not introduce a significant change into the
shape of the curves. It can be seen that for the shortest
time window one may sensibly use (50 beats), the pattern
entropy curve contains many details which are missing
from the 100-beat-long window calculation. The analysis
of these fine details is a painstakingly long process and
the results will be presented separately when a good com-
parison with the respective three-dimensional RR inter-
val map images has been concluded. Both the observa-
tion of three-dimensional images of RR interval maps
within the 50-beat time window and the form of the
definition Eq. (2) indicate that the rapid changes of the
window pattern entropy seen in Fig. 13(a) are due most of
all to recurrent changes in the degree of the ordering of
the RR interval sequence. Note that if this effect were
predominately due to the changes in the value of the
standard deviation of RR intervals, then the one-
dimensional entropy (1} would a have proven to be a
much better analysis tool. Increasing the window length
averages out some of the detailed features of the window
pattern entropy as a function of the time. The main
features of the curves in Fig. 13(b) (time window length
100) are seen in Fig. 13(c) for a window which is twice as
long [cf. also Fig. 16(a)]. This is again a manifestation of
the persistent features of the RR interval histograms:
some interval lengths are much more probable than oth-
ers. In fact, inspection of the probability distribution of
RR intervals (i.e., their histogram) and of the distribution
squared and then cubed shows that the calculation of a
momentlike quantity such as that used in Eq. (2} has the
effect of enhancing the size of the peaks in the distribu-
tion with respect to the rest of the distribution (Fig. 14;
all histograms shown have been renormalized to 1 for
ease of comparison).

We note here, but do not elaborate, that the same main
results were obtained when the time window was set to 50
and the delay was changed from 2 to 50. Again, only
after the delay exceeded 50% of the window length did
the shape of the curves as a function of the time change
significantly, but the main features of the curves were re-
tained.

B. Application to medical diagnosis

Figure 15 depicts the first 4 h of the dependence of cu-
mulative (smooth curve} and window pattern entropy
(jagged curve) on the time for the patient B.H.D., who
has undergone several cardiac arrests, but whose heart
condition examined by all means {including frequency
domain analysis, catheterization, and biopsy) seems oth-
erwise completely normal. These same quantities for the
sex, age, and disease matched control pair of B.H.D.—
patient C.H.M.—are shown in Fig. 16. The one-
dimensional entropy as a function of the time for these
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two cases was discussed above (Figs. 8 and 9). In Fig. 15
it can be seen that cumulative pattern entropy is a slowly
decreasing function of time while window pattern entro-
py osciHates between 700 and 2200 (arbitrary units). In

Fig. 16 it can be seen that the cumulative entropy for the
healthy matched control C.H.M. is practically a constant
on the level of about 400 (except for the Srst 35 min when
the statistics are still poor). It should be stressed at this
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point that, in sharp contrast to the oneMimensional en-

tropies, viewed in the pattern entropy picture, the two
members of the matched pair ddfer greatly. Apart from
the period of time between 32 and 42 min [Fig. 16(a}]
when the C.H.M. went through an exercise text (cf. also
Figs. 8 and 13), window pattern entropy for this case has
a lower amplitude of oscillations and a lower average
than for the severely ill member of the matched pair
B.H.D. (Fig. 15}. Cumulative entropy for B.H.D. ap-
pears to be significantly higher than for C.H.M.: the 24-h
average is equal to 601 versus 295, respectively. The
most striking dN'erence between members of a given
matched pair is seen when the value of the maximum
within the 24-h recording of the cumulative pattern en-

tropy is compared. For the pair B.H.D. and C.H.M. the
values were 3259 versus 561, respectively. All these
differences noted in the curves in Figs. 15 and 16 indicate

that, in a healthy individual, the degree of ordering is
lower than for the cases of pathology studied here. In
general, in the latter case the degree of ordering (window
pattern entropy) has a much larger amplitude of change.
Such differences were typical for other sex, age, and
disease matched pairs examined. Another good example
of this is shown in Figs. 17 and 18 where the Srst 4 h of
two Holter recordings of the same patient D.W.D. taken
18 h before cardiac arrest and 1 y after it, respectively,
are examined by means of pattern entropy. The same
data are also presented in Figs. 10 and 11 in the one-
dimensional entropy image and in Fig. 3 in a global, 24-h
form. It can be seen that the average and the amplitude
of window pattern entropy for the case before cardiac
arrest (Fig. 17) are much larger than when this patient
has been brought back to a more normal state of health
(Fig. 18}. Also, cumulative pattern entropy is much
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ized to 1 for ease of comparison.

TABLE II. Pattern entropy of RR intervals for cardiac arrest
cases and matched controls.

Cardiac arrest

Controls

Average

Cumulative pattern entropy
814+468 2332+952

p=0.05 p=0.003
568+199 1389+560

Minimum

419+231
p=0.07

299+101

Cardiac arrest

Controls

Window pattern entropy
2012+832 4429+648

p=0.1 p=0.03
1692%484 3986+432

307+141
p=0.3

337+129

lower in the latter case. The 24-h averages of the window
pattern entropy and cumulative pattern entropy for the
cardiac arrest cases examined here versus sex, age, and
disease matched controls are presented in Table II. It
can be seen that the paired t-test correlation coeScient p
is much lower than 0.05 for the average and for the max-
imum cumulative pattern entropy as well as for the max-
imum of window pattern entropy. Thus these quantities
differentiate well between the cardiac arrest cases and
their matched controls.

Pattern entropy seems to differentiate also between
groups with a high and a low risk of cardiac arrest. It is
extremely large for patients who subsequently died, ex-
perienced recurrency of cardiac arrest, or had their ar-
rhythmic events when wearing the Holter device (1253
versus 608 24-h average cumulative pattern entropy).
When confirmed by future extensive studies the finding

presented here should be of real importance as an alterna-
tive measure of the cardiological risk factor.

VI. SUMMARY AND CONCLUSIONS

RR interval sequences extracted from 24-h Bolter
ECG recordings were examined in the framework of non-
linear dynamics. Using the theorem of Takens on phase
space trajectory reconstruction in embedding space,
three-dimensional images of the return maps Etre (i +2~)
versus EJr„(i +v ) and lian (i ) were formed for data taken
both from healthy subjects and from members of the
highest cardiological risk group. It was found that, when
viewed with a time window and with a judiciously chosen
delay time ~, sequences of RR intervals form characteris-
tic shapes in phase space. These shapes generally fall into
two basic groups dubbed by us radial and spiral behavior.
Although spiral behavior was found to dominate in
healthy individuals and radial behavior occurs often in
cases of various pathology (e.g., arrhythmia), both types
of RR sequence dynamics may occur in recordings of any
individual. Bifurcations are then often observed between
the two types of RR sequences. Intermittency may also
occur. In some cases of severely ill persons a bifurcation
occurs to a state with well defined frequencies which ap-
pears in the three-dimensional return map image as iso-
lated islands of points.

As the basic goal of this research was to find a physical
tool for medical diagnostics of the heart rate dynamics
and that goal was not to be attained by inspection of the
RR interval return maps alone, a quantitative measure
was sought which would be su&ciently local in the time
not to be sensitive to the inherent nonstationarity of the
ECG signaL A simple calculation of the entropy of the
RR sequences [Eq. (1)] based on the measured probability
distribution of the intervals —whether as cumulative en-
tropy calculated from the beginning of the recording to
the given moment in time or as window entropy calculat-
ed within a time window —failed to differentiate in any
way between healthy and ill individuah. This was true
both for individual medically matched pairs and for the
whole group of cardiac arrest cases and their sex, age,
and disease matched controls.

As an alternative quantitative measure, pattern entro-
py [Eq. (2)] of the three~imensional return maps con-
structed from the 24-h RR sequence was defined using a
joint probability that the same RR interval length occurs
in the original ZE&&(i) interval sequence and in both se-
quences iLtrtr ( t +r) and d a„(t +2v ), which were shifted
by an appropriate multiple of the Takens delay r. Pat
tern entropy was defined in two forms as the curn@&ative
and the window pattern entropies.

In general, pattern entropies of both types as functions
of time are extremely robust both against the choice of
window length and against the choice of the exact delay
~. This is seen as a strong indication that some RR inter-
val lengths are much more probable than others (per-
sistent, so to speak) and that this is a clear indication of
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the determinism of the system or systems controlling
heart action.

In the limit of large time window length (400 beats)
and small delay time (v=2), it was found that the max-

imum of the window pattern entropy and the maximum
of the cumulative pattern entropy as well as their time
averages within the 24-h recording are quantities which
correlate surprisingly well with the state of health of the
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person studied. The statistical data presented here per-
tain to cases of a high risk of cardiac arrest and their age,
sex, and disease matched controls. As an aside, we men-
tion that the levels of pattern entropy measured in the

RR sequences of cardiomyopathic patients has been
shown —in a much more medically oriented study to be
presented separately —to correlate very well with levels of
a cardiacally critical hormone noradrenaline.
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To conclude, a simple to calculate, robust and insensi-
tive to both nonstationarity and artifacts, nonlinear
dynamical tool—pattern entropy —has been found which
is able to differentiate between different types of cardio-

logical dynamics. In particular, pattern entropy is able to
discern between illness and health also in those cases
where other cardiological diagnostics of heart rate varia-
bility fail.
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FIG. 1S. The first 4 h of the window pattern entropy (jagged curve) and the cumulative pattern entropy (smooth curve) as func-

tions of time for the patient D.W.D. 1 y after cardiac arrest.
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