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Mechanisms for determining the time scales in vesicle budding
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Approximate calculations shove that the dynamics of the shape transitions observed in vesicle budding

upon increasing the temperature as mell as during recooling cannot be explained based on friction alone.
Two additional mechanisms, (a) lateral segregation of lipid impurities and (b) van der %'aals attraction of
bud and mother vesicle, appear to be involved. Experiments are suggested to test the mechanism of la-

teral segregation.

PACS number(s): 87.22.Bt, 47.15.Gf

I. INTRODUCTION

An increase in surface area and a smooth change in
shape (from a sphere to a pear) was observed when the
temperature of monolamellar giant vesicles made of lec-
ithins with two saturated hydrocarbon chains [1] was
slowly increased. At a certain temperature the vesicle
was unstable in that the neck of the pear spontaneously
shrank to submicroscopic diameter connecting the moth-
er vesicle and a smaller bud. We call this spontaneous
process budding. Upon decrease of the temperature a
hysteresis was observed in that the shapes were different
from those at the same temperatures during heating.
When the recooling was performed slowly (on the order
of 10'C/h) the shape remained budded in most experi-
ments with the bud continuously shrinking in diameter
[2]. In a minority of these experiments an oscillation be-
tween an almost complete opening and a reformation of
the neck occurred [2]. This kind of oscillation was con-
sistently observed [1] upon "fast" recooling (about
1 'C/min).

A theoretical description of these effects should be
based on a model in which single-layer bending as well as
bilayer-couple bending [3] contribute to the elastic ener-

gy. Since the membrane is essentially symmetric its spon-
taneous curvature in single-layer bending may be approx-
imated by zero. Such a model, called here the elastic
bilayer-couple model, has been presented [4,5] and spon-
taneous transitions were predicted. Kas et al. [6], how-
ever, claimed that only a third-order term in bilayer-
couple bending could explain the experimental findings.
Further, van der Waals attraction of mother vesicle and
bud has been suggested to play a role [6,7]. As a third
mechanism a lateral segregation of lipid impurities was
invoked [8]. In all models the dynamics of the spontane-
ous closure of the neck as well as of its opening were not
considered.

This work was undertaken because it was felt that
these processes are slower than expected on the basis of
friction alone and that lateral diffusion may be responsi-
ble for the observed time scale. To support or reject
these contentions characteristic times of vesicle shape
changes are determined approximately and compared to

the observed values. It is then proposed that in addition
to the elastic bilayer-couple model both van der Waals in-

teraction and lateral segregation of lipids are needed to
explain the observations.

II. ESTIMATES

%'e account for three frictional contributions opposing
the shape changes: (i) shear deformation of the lipid bi-

layer, (ii) shear flow of the liquids adjacent to the bilayer,
and (iii) drag between the two lipid monolayers. In one
case bending of the lipid bilayer is also considered. For
an approximate determination of the respective power
dissipation simplified kinematics are chosen which resem-
ble the observed shape changes.

A. Spontaneous budding upon heating

1. Shape change

Figure l shows the geometry on which the estimate is
based. Two spherical surfaces (radius R for the mother
vesicle and radius Rb for the bud) are connected by a cir-
cular cylinder the radius (p) of which shrinks linearly
with time:

p(t) =R„ 1—
tNC

R„is the radius of the cylindrical neck at the beginning
of the spontaneous transition and t Nc is the time of neck
closure. By comparison with Fig. 3(5) of Kas and Sack-
mann [1] we take R =12 pm, Rb=5 pm, and R =4
pm. The length (H) of the cylinder is chosen so as to
make the total surface area of the vesicle equal to that of
two complete spheres of radii R and R& ..

H(r)=h (r)+h, (t},
where

R a (t)
h (r)=

p(&}
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cylinder axis. The positive direction is into the bud.
z =0 is chosen in such a way that the cylindrical surface
and the spherical surfaces meet at z =hb(t) and
z= —h (t), respectively. For later use we conceptually
divide the vesicle in two parts: the bud part (z )0) and
the mother part (z (0). The fiow velocity is split up in a
purely radial (v, ) and a purely axial (v, ) component. For
v, a parabolic velocity profile is assumed. We set v, =0 at
z =0 and obtain from continuity

(6)

and

pr

p
3

From the derivatives of these velocity components we get
after volume integration (in r direction from 0 to p and in
z direction from 0 to hb) the power dissipation (P, ) in
the bud part:

4 hb
3

P I
= nriwp —1'3hb+8 p'. (8)

FIG. 1. Simplified geometry assumed for the spontaneous
transition of a pear shaped vesicle to two buds connected by a
submicroscopic neck; (A) shape before transition; (B) budded

shape.

a (t)=R —QR' —p(t)'. (4)

h& and a& are obtained by replacing the index m by the

index b in Eqs. (3) and (4).

3. Shear flow of liquids

3D shear takes place practically everywhere inside and
outside of the vesicle. We subdivide the space into four
regions. In each we use rather crude approximations
which, however, preserve the typical character of the
flow. Because of this crudeness it does not matter that
our vesicle geometry does not preserve the vesicle
volume.

First we consider the flow within the cylinder. We in-
troduce cylindrical coordinates with the z axis along the

2. Shear of the bilayer

Two dimensional (2D) shear takes place in the cylindri-
cal part of the membrane only. The power dissipation
(P& ) due to shear of the lipid bilayer is a function of time.
From Evans and Skalak [9] we get

Pt =4rl&(p/p) 2rrpH .

gi is the surface viscosity for which we adopt from
Waugh [10]a value of 5 X 10 s dyn s/cm. The dissipated
energy (E& ) is obtained by integration of P& from zero to
tNc. We get E& =2. 1 X 10 "erg s/t Nc.

where g is the viscosity of water. The total dissipation
is obtained by adding the analogous contribution from
the mother part. Integrating the sum from zero to tNC
yields the dissipated energy E.l

——2.2X 10-il ergs/tNc
Second, we account for the flow in the body of the

mother or bud, respectively. We approximate it by the
flow of a point source in a wall. In spherical coordinates
with the z axis normal to the wall and the origin at the lo-
cation of the source, the radial velocity v„is obtained
from Happel and Brenner [11]:

3Qcos 8
27Tr

where 8 is the angle measured from the z axis and Q is
the flow emanating from the source. The other velocity
components are zero [11]. In calculating the power dissi-
pation (P z) the integration is carried from p to infinity.
We get

14 Q 'Vw

182 5 3
p

(10)

pp
r

the other velocity components being zero. To obtain the
power dissipation we integrate in r direction from p to

After integration versus time we obtain the dissipated en-

ergy. The contributions from bud and mother add up to
E 2=0.6X10 "ergs/tNc.

The flow within the spherical caps on both sides of the
cylinder is assumed to continue in axial direction in the
same fashion as it leaves the cylinder. We obtain for the
dissipated energy E 3=1.0X10 "erg s/tNc.

Outside of the vesicle we use the ffow of an infinitely
long line sink. From continuity we get in cylindrical
coordinates
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infinity and in z direction from 0 to H. Integration versus
time yields E 4=0.4X10 "erg s/tNc.

4. Interlayer drag

mate (upper bound) of the dissipated energy we choose 1

nm for the neck radius in the budded state, the sma11est
possible value. The equilibration of the imbalance in sur-
face area is assumed to occur with constant rate:

It is obvious that interlayer slip always lags the shape
change. We consider two extreme cases: (1) interlayer
slip is as fast as the shape change (quasistatic equilibri-
um), and (2) interlayer slip is much slower than the shape
change. We first treat quasistatic equilibrium. The direc-
tion of the z axis and the position z =0 are defined as in
the beginning of Sec. II A 3. We denote the difference in
actual surface area between the neutral surface of the bi-
layer and the neutral surface of the outer monolayer by
y. We call the distance of these surfaces 6 and obtain to
first order in 5 for the bud part

yb =2nS
Rb —2 ab+4Rb (12)

The value for the total vesicle is obtained by adding the
contribution y from the mother part. The time deriva-
tive (y ) of this sum turns out to be positive for t =0, and
to decrease almost linearly to a negative value at t = tN&.

The total surface area of the neutral surface of the bi-
layer is constant (Sec. II A 1). Therefore a negative value
of y corresponds to an increase in surface area of the
outer monolayer. %'e assume this increase to emanate
from a line source on the surface of the cylinder at z =0
and to Now to both sides in proportion to the appended
surface areas. We call the respective Qows j b and j'
Because of symmetry the Bow velocity is along the sur-
face generator on the cylindrical and along the meridians
on the spherical surface. To preserve global bending the
flow velocity at any value (z, ) of z must be proportional
to the surface area beyond that value ( ~z~ & ~z, ~

). This
condition determines v, on the cylindrical part and v on
the spherical part of the surface. We obtain in the bud
part

y
tis

Here, t,s is the characteristic time of interlayer slip. Sub-
stituting ( j ) for y' in Eqs. (13)—(15) we obtain the dissi-
pated energy: E&2=0.3 X 10 ' erg s/t, s. The numerical
part is much smaller than that of Ez&. For an explana-
tion remember that due to the zero passage of j its in-
tegrated square is much larger than that of ( j' ).

Characteristic times

To calculate characteristic times we need the elastic
energy set free during the transition. We call the
difference in energy between the (static) states before and
after the transition AE,b. The index t relates to "total" as
opposed to partial quantities considered below. The in-
dex b indicates that the released energy is mainly stored
in bending. Numerical results for bE,&

in the elastic
bilayer-couple model are not available. For this reason
we use EE,b=~k, as obtained from the spontaneous-
curvature model [14]. We also disregard an influence of
lateral segregation on AE,b. k, denotes the constant of
bending elasticity of the bilayer. A typical value for lec-
ithins with saturated hydrocarbon chains is 0.7X10
dyn cm [15]. It is in the middle of the wide range of pub-
lished values determined from shape fluctuations and
compares well with the values determined from tether
pulling [16].

The energy dissipated in the flows (2D in the lipid
phase and 3D in the water phase) is obtained by adding
up the respective contributions:

E,=E,+E,+E,+E,+E, .

'Vb zp
Vz 2' 2Rb2

(13)
In the first case (quasistatic equilibrium) tNc is obtained
from

in cylindrical coordinates and

1'b 1+cosO
U(9—

4~Rb sinO
(14)

in spherical coordinates (with z =0 at the center of the
spherical surfaces and 8=0 in the middle of the neck).
The power (P&) dissipated in hydrocarbon slip is obtained
by integration over the surface

P„=2b„fU2dA, (15)

where the interfacial drag coeScient b& =5 X 10
dyn s/cm is taken from Evans et al. [12]. v denotes the
velocity of the outer layer which is equal and opposite to
that of the inner layer. Integration versus tisane yields the
dissipated energy (for the first case): Ei„=0.1X10
erg s/tNC [13].

We now treat the case where shape change and inter-
layer slip are sequential events. For a conservative esti-

AEtb =E~+E~ I .

The friction due to bending of the lipid monolayers in
neglected in Eq. (18). This is motivated by the results in
Sec. IIB2. Substituting the numbers in Eq. (18) we ob-
tain tNc =29 s. This is the same order of magnitude as
the observed value of 50 s [6].

The second case (successive occurrence of shape
change and interlayer slip) requires that a spontaneous
transition to a budded shape occurs withoot interlayer
slip; i.e., the budded shape would be determined by a
minimum in elastic energy stored in single-layer bending
and local [3] bilayer-couple bending [17]. We denote the
drop in energy that drives this (hypothetical) shape
change by AEsc. Its characteristic time is obtained from

~Esc=Ey-

The rest of the energy (EE,s=b.E,i, —b,Esc) would be
dissipated in interlayer slip with the vesicle shape not
changing. Its characteristic time being much longer than
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that of the shape change is equivalent to

Eg2t)s EftNc

Ers ~Esc
(20)

According to our precondition hE,~ and EEsc have the
same sign. We therefore may rearrange and obtain

~Esc Ef tNc =200 .
~Ebs E~2tis

(21)

Using Ef /Ez, =60 and inequality (21) we can appreciate
that the relative error made by calculating t~c with Eq.
(18) instead of Eq. (19) is less than —'.

An estimate of the characteristic time of interlayer slip
cannot be given. This would require the knowledge of
b,Eis [3,18].

B. Neck opening upon recooling

1. Shape change

Two characteristic times, a fast and a slow phase of
neck opening, can be appreciated from the graph in Fig.
2. The microscopic pictures show that in the fast phase
the neck retains its wasp-waist shape and increases its di-
ameter to almost the maximum value. In the successive
slow phase, on the other hand, the neck becomes longer
and changes from the wasp-waist shape to a much
smoother, almost cylindrical shape.

The duration of the fast phase cannot be precisely mea-
sured since the neck is not perfectly in focus during the
opening. Watching the videotape [19] in slow motion
shows that most of the opening occurs within —,

' to 2
videoframes; i.e., within 60 to 80 ms. The time course of
the shape change in the slow phase is quantified in Fig. 3.
Its duration is between 2 and 3 s.

After the last opening the neck remains open. The fast
and slow phases are similar to those in the transitory
openings. It can be seen in Fig. 2 of Kas et al. [6] that
after completion of the slow phase the neck becomes
thicker and finally loses its constricted appearance. We
will refer to this shape change as "neck disappearance. "
Experimentally a duration of 50 s was reported for the
last opening phase [6].

p, =+R' —z', (22)

2. Energy dissipation

For the fast phase we first use the analysis of Sec. II A.
Qualitatively the initial and final shapes are as in Figs.
1(B) and 1(A), respectively. The values for the actual
geometrical quantities are taken from Fig. 5(3) of Kas
and Sackmann [1]: R„=2.3 pm, R& =5 pm, and R =12
pm, where R„is now the radius of the cylinder at the end
of the fast opening phase. Assuming that interlayer slip
is in quasistatic equilibrium with the shape change we ob-
tain EI+E„,=1.4X10 " ergs/t„o, where t„ois the
duration of the fast opening phase. For later use we note
that Ei=6.7X10 ' ergs/rFo

Actually, the geometry of the neck (wasp waist) is quite
different from the (cylindrical) shape used for this esti-
mate. Since we will argue in Sec. III A that the charac-
teristic times calculated based on friction alone are too
small, we have to take care that our estimates of the dissi-
pated energy are not too large. To this end we consider a
geometry that starts from the same initial to a more ap-
propriate final shape. In the following we describe the ki-
nematics of the mother part in a cylindrical coordinate
system as shown in Fig. 4. The initial (t 0) contour is
spherical:
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FIO. 2. Neck diameter vs time in a transitory opening of the neck [19]. The sphere enclosing the same volume has a diameter of
46 arbitrary umts. Typical diameters are 25—3p ym [1]. Open symbols indicate that the measurement is uncertain because the neck

was not in focus. The vesicle shape at selected times (indicated at the abscissa by a, b, c, d) is shown in micrographs.
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FIG. 3. Minimal meridional
radius of curvature in the neck
and length of the bud vs time in

the same transitory opening as
in Fig. 2 [19]. Open symbols in-

dicate that the measurement is

uncertain because the neck was

not in focus. The de6nition of
bud length is shown schemati-

cally.

time {sj

where the index e relates to the observation (see Sec.
IIB3} that the membrane is extended. For O~z &R
the final {at t =t„o)contour is given by

p, =p, +(R —p, )R„/R (23)

where the index s is derived from the observation (see
Sec. IIB3) that the membrane is slack. For z ~0 the
contour is not assumed to change; i.e., p, =p, . For
0&t &tpo the radial coordinate is assumed to change
with constant velocity from p, to p, :

p(t) =p, —(p, —p, )
tFO

(24)

This deformation is within a few percent area conserving.
With the origin of the coordinate system in the center of
the bud and the positive z direction toward the neck, the
description of the bud part is analogous. The contour of
the whole vesicle at t &0 and t=t„ois shown in Figs.
4(A) and 4(B), respectively. The power dissipation (P&)
due to shear deformation of the bilayer reads

R p
Pt =4gt f — 2nR dz . (25)

0 p

After adding the expression for the bud part and integra-
tion versus time we obtain for the dissipated energy
E&=10.8X10 ' ergs/tzo. Since this is appreciably
larger than the estimate based on the geometry of Fig. 1

no other frictional contribution was estimated.
The slow phase is characterized by an elongation of the

neck and a smoothing of the circular fold. For an ap-
proximate analysis of the 2D shear deformation we take
as the initial shape that shown in Fig. 4(B) and assume
the final shape of both bud and mother part to be com-
posed of a spherical segment and a tangent truncated
cone. The radii of the spherical segments are f R and

fbRb, and that of the neck is f„R„,where f, fb, and f„
are numerical factors. The altitude of the cones follows
from the condition of constant surface area. According
to the pictures in Fig. 2 we choose f =f„=1 and
fb=0. 89. The corresponding shape is shown in Fig.

4(C). Its radial coordinate is called p„asderived from
"unfolded. " Based on the condition of equal surface area
we express p„by the z coordinate of the corresponding
location on the spherical shape shown in Fig. 4(A}. The
power dissipation is then given by Eq. (25}. Since p„and
p, are not very different we use for simplicity

P (P +P }tso
(26)

where tsQ is the duration of the slow opening phase. Sub-

stituting the numbers we obtain: EI =4.3 X 10
erg s/tso

To account for the change in membrane curvature (in
the slow phase) we consider the lipid monolayers as slabs
(thickness d/2) of an isotropic material with a viscosity
gb=1 dyns/cm . This value is adopted from the so
called microviscosity of the hydrocarbon moiety as ob-
tained from spectroscopic measurements. To simplify the
actual geometry we assume that a folded piece of such a
slab becomes plane. The length of the fold is 2mR„and
the initial radius of curvature is y. The dissipated energy
is given by

48 gtso

where the indices m and b indicate "monolayer bending. "
For a conservative estimate we substitute for y the lowest
values possible; i.e., 1 nm for the outer and 3 nm for the
inner monolayer of vesicle membrane. We obtain for the
energy dissipated in the bilayer 4X 10 ' erg s/tso. This
is neglected against Et (of the slow opening phase).

For the neck disappearance we take the shapes shown
in Figs. 4(C) and 4(D} as the initial and final shapes, re-
spectively. The final shape is assumed to be composed of
spherical segments and cones as well, however,

fb =f =1 and f„=Rb/R„.The treatment is analogous
to that of the slow phase. We obtain E& =9.1X 10 ' erg

s/tND, where t~D is the duration of the neck disappear-
ance.
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3. Elastic energies

i&p

For most of the time during recooling, membrane un-
dulations are visible under phase contrast but disappear
prior to the neck openings [6]. This indicates an increase
in isotropic membrane tension (o ). Under re6ection in-
terference contrast which has a higher microscopic reso-
lution, the undulations are visible during the whole ex-
periment [2]. This shows that even the maximum isotro-
pic tensions are caused by membrane undulations.

It can be appreciated from the videotape [19] that the
undulations as observed under phase contrast reappear
right after the fast phase. This indicates that the isotro-
pic tension has returned to its low value. We denote the
energy released in this relaxation by EELY& and calculate
following Kas et al. [6]

hE&z= A cr a .
a

(28)

k"

Here, A is the surface area of the vesicle and a denotes
the relative decrease in projected surface area due to
membrane undulations. The indices denote, as above,
"extended" and "slack," respectively. Please note that a
is always negative. The expression for o is adopted from
Helfrich and Servuss [20]. Substitution into Eq. (28) and
integration yields

&(p

re T s~k, ha/k&
)

s0 A

8 Hk,
—m. k, ha .

(29)

Here, kT denotes the thermal energy and ha=a, —a, .
According to Kas et al. [6] b,a=6.5X10 . By o, we
denote the isotropic membrane tension prevailing when
a=a, . We take o, =2X10 dyn/cm, the geometric
mean of the range found by Kummrow and Helfrich [21]
for unstressed vesicles. From Fig. 5 of Kas and Sack-
mann [1] we deduce A =2040 pm and obtain, from Eq.
(29), AE&&=14X10 ' erg [22].

For the consecutive slow phase we use the same esti-
mate as in Sec. IIAS (EE,b=2.2X10 ' erg). For the
neck disappearance we use EE,b/3, a choice which is
motivated by comparison to calculations of Seifert,
Berndl, and Lipowksy [14] in the spontaneous-curvature
model.

4. Characteristic times

FIG. 4. Simplified geometry assumed for the opening of the

neck; (A) budded shape before the transition where the mem-

brane is extended due to isotropic tension; (B) shape after the
fast phase of neck opening, the membrane is slack again; (C)
shape after the slow phase of neck opening, the circular fold is
smoothed out; (D) final shape after the last opening. The con-
striction of the neck is lost.

From the equation EE&~=Ef+E» we obtain for the
fast phase of neck opening t„o= 1 s. This is much larger
than the observed value.

For the slow phase we calculated the energy dissipated
in 2D shear only. To account for the other contributions
we multiply by a factor 3, as adopted from the estimates
made in Sec. II A. Equating this value with BE,b gives
for the slow phase of neck opening tso =6 s. This is the
same order of magnitude as the observed value.

For the last phase we follow the same procedure and
obtain tND =37 s. This is also the same order of magni-
tude as the observed value.
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III. DISCUSSIGN

A. Deviation of estimates from experimental values

Our estimates for the duration of the first closure of the

neck, the slow opening phase, and the neck disappear-
ance seem to be in accordance with the experimental
values (Sec. IIA5 and IIB4). The estimate for the fast

opening phase, on the other hand, is larger by an order of

magnitude than the experimental value. As an explana-
tion for this discrepancy we propose the following.

To calculate the contribution of lipid shear to the ener-

gy dissipation we used a surface viscosity which has been

specified as an upper bound of the actual value because of
possible multilamellarity of the vesicles tested [10]. Un-

fortunately there are no other rneasurernents. As an in-

dependent estimate [23] may serve: r) i, d =4 X 10

dyns/cm, which is an order of magnitude below the
value used in our estimate.

As for the contribution of water flow, an appreciable
overestimate is not unlikely since the shear rates enter
quadratically into the expression for the power dissipa-
tion and the real flows are certainly smoother than the
ones assumed in our estimates [24].

For consistency we consider the estimates for the dura-
tion of the first closure of the neck, the slow opening
phase, and the neck disappearance to be too large by an
order of magnitude as well. This destroys the accordance
with experimental observations as noted above. For this
reason we suggest that the velocity of these processes is
not determined by friction but by lateral diffusion of
lipids in the plane of the rnernbrane.

B. Hypothesis of lateral segregation

The hypothesis is based on the fact that cornrnercial
lipid preparations inevitably contain impurities. We pro-
pose the membrane in the budded shape to be hetero-
geneous in that certain kinds of these impurities are en-
riched in the neck region whereas in the nonbudded
shape the membrane is assumed to be essentially horno-
geneous. In the following we refer to those impurities
that become enriched as heterolipids. The lipid nominal-

ly used to prepare the vesicles is referred to as the princi-
pal lipid.

1. Origin and concentration of impurities

At first sight one might ask why synthesized lipids
should not be pure. We quote two possibilities: (a) The
substances used to synthesize the lipids are typically 99%%u~

pure, and (b) the synthesized lipids may degrade, e.g., by
spontaneous hydrolysis.

An appreciable enrichment is only possible if the area
fraction of the neck region is on the same order of magni-
tude as the mole fraction of the envisaged heterolipids.
The neck diameter, when closed, is below optical resolu-
tion. The difFraction band of the membrane in the phase
contrast pictures of Kas and Sackmann [1]is at minimum
0.6 pm wide. This means the surface area of a closed
neck is smaller than 4n(0 3@m) =1 pm. . Consequently
the upper bound for the ratio of the surface area of the

neck region to that of the whole vesicle is 0.5 X 10 . At
maximum the local mole fraction of heterolipids in the
neck region is unity. This would require the global mole
fraction to be 0.5 X 10,which is in accordance with the
occurrence of impurities.

bs=+4Dtd . I30)

Here, td is the diffusion time and D the diffusion constant
for which we use the value 10 cm /s. For the first clo-
sure of the neck, which occurred during heating) we pos-
tulated the opposite process: the concentration of hetero-
lipids at a location in a plane. Applying nevertheless Eq.
(30) and substituting 50 s ( the experimentally observed
duration of the shape change) for td, we obtain As =14
pm. This distance defines a drainage area for heterolipids
into the neck region. In keeping with the hypothesis, it is
smaller than typical vesicle dimensions. At face value, it
indicates that an appreciable portion of all heterolipids in
the vesicle membrane moves to the neck region.

As for the slow phase of neck opening we suggest its
duration to be determined by a partial randomization of
the heterolipids. Supposing that immediately after the
opening they are concentrated in a band at the narrowest
position of the neck we may estimate the widening of this
band from Eq. (30). For td =2—3 s we obtain b,s = 3 pm,
which is in accordance with the observed neck dimen-
sions.

A time interval of 20 s [6] was determined experimen-
tally between a typical transitory opening of the neck and
the successive closure. After subtraction of 2 —3 s for
elongation of the neck a time interval of 17—18 s remains
for the closure. If, as suggested above, the distribution of
the heterolipids at the beginning of neck closure is far
from random, a smaller diffusion time than that calculat-
ed for closure during heating is indeed expected.

As to the neck disappearance, please note that this
shape change occurred at constant temperature [6], i.e.,

at constant surface area. We suggest its duration to be
determined by a randomization of the heterolipids over
the whole vesicle surface. This is in accordance with the
observation that the duration was the same as for the first
closure of the neck.

3. Equilibrium distribution of impuritie~

We now ask what kind of mechanism might cause the
postulated enrichment. We first discuss the decrease in
elastic energy concomitant to a lateral segregation of
heterolipids. For a convenient treatment of a heterogene-
ous membrane we use the deviatoric curvature (c) in-
stead of the Gaussian curvature [25]. In the neck region
we neglect the mean curvature (c„)and assume c„to be
constant. Then the elastic energy density (e„)reads [25]

2. Comparison to experiments

The mean distance (bs ) of heterolipids from a location
in a plane at which they were concentrated at time t =0
is calculated according to
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k,e„=2' (0.5+2/5) c„. (31)
separate a region in the neck in which the concentration
of heterolipids is much larger than in the rest of the vesi-
cle. This region may be stabilized by a line tension as in-
troduced by Lipowski [32].

The expression enclosed by curly brackets constitutes an
effective bending stiffness. We use this expression be-
cause it covers lipid species which, if present alone,
would not form bilayers. Again, k, is a typical bending
stiffness of a lecithin with saturated hydrocarbon chains.
As above we use the value 0.7 X 10 ' dyn cm. We divide
this value by 1.5 because only the isotropic share of k,
enters here. According to Fischer [25] we use a value of
0.5 for the ratio of deviatoric to isotropic bending
stiffness. g denotes the spontaneous curvature of the sin-
gle monolayers [26]. The more negative g', the smaller
the efFective bending stiffness. A value of zero is obtained
at g= —1/(4 nm). We show that such values are not un-
reasonable.

Fitting of elastic constants of symmetric bilayers to a
model accounting for the actual and spontaneous curva-
tures of the constituent monolayers gave values around—1/(5 nm) for polyunsaturated phosphatidylcholines
[25]. Measurement of radii in the inverted hexagonal [27]
or inverted micellar [28] phase gave values around—1/(3 nm} for phosphatidylethanolamines. Model cal-
culations of headgroup volumes indicate that the spon-
taneous monolayer curvature of diacylglycerol is still
more negative [29].

We conjecture that the average molecular shape of the
envisaged heterolipids is such that a hypothetical pure
monolayer would have a strongly negative spontaneous
monolayer curvature. The formation of the neck might
then support a local enrichment of these molecules and
vice versa. To calculate the energy gain per segregated
heterolipid would require one to consider the time course
of the strain distribution in the whole vesicle membrane
during budding. For a rough approximation we assume
that e„=0in the heterogeneous membrane and that the
same neck is formed in the homogeneous membrane.

The homogeneous membrane consists basically of prin-
cipal lipid. As such Kas and co-workers [1,6] used lec-
ithins with saturated hydrocarbon chains. Their average
shape is considered to be cylindrical [30]. We therefore
substitute /=0 in Eq. (31). To calculate the elastic ener-

gy (s„)per molecule we multiply by 0.65 nm, a typical
cross sectional area, divide by 2, the number of mono-
layers, and obtain s„=k,c„/6.For a strong enrichment
against the randomizing in6uence of the thermal energy
c„should be five to ten times larger than kT. This in
turn would require c„to assume values which are not
possible in a monolayer 2 nm thick.

We therefore conjecture that besides lateral distribu-
tion according to curvature preference, a molecular in-
teraction exists, in that above a threshold value in devia-
toric curvature the heterolipids attract each other. A
similar mechanism was suggested by Seifert [31]. As
mentioned, above, the transient from the essentially
homogeneous to the heterogeneous membrane might be
characterized by positive feedback between the change in
membrane curvature and the segregation of heterolipids.

In equilibrium we expect the threshold curvature to

4. Additional forces

Equation (30) describes the average motion of heteroli-
pids with time due to a gradient in their concentration.
The additional force on a heterolipid due to a gradient in
membrane curvature is not accounted for. To compare
both forces rigorously would require study of the tran-
sients in shape change. For an approximate account we
consider the budded shape as observed during heating
and estimate the drop in energy (hs) upon lateral translo-
cation of one heterolipid from the poles of the vesicle to a
location just outside of the region in which the heteroli-
pids are concentrated. We characterize these locations
by indices p and j, respectively.

We denote the contribution which depends on the con-
centration of heterolipids by he&. The index k derives
from the German spelling of concentration. For infinite
dilution we obtain

he& =kT In(k. /k ), (32)

5e~=k, (0.65 nm )P/1. 5 . (33)

To calculate the analogous contribution (5e ) next to the
region of segregated heterolipids requires the knowledge
of the local values of the mean curvature (cj ) and the de-
viatoric curvature (c; ). Except for the very unlikely case

where k denotes the concentration of heterolipids. Ac-
cording to our hypothesis the neck region acts as a sink
for heterolipids which in turn leads to a (negative) gra-
dient in concentration of heterolipids going from the
poles of the vesicle toward the neck. The ratio k /k is
not known. It is, however, likely that it amounts to more
than one order of magnitude. For a conservative esti-
mate we use k /ks =0.1 and obtain hsz = —10 ' erg.

We then consider the contribution that depends on the
deformation of lipids due to a deviation of their spontane-
ous monolayer curvatures (g} from the actual curvature
(c) of the membrane. We first estimate the increase in
elastic energy (5s) due to insertion of one molecule of
heterolipid into a monolayer of the principal lipid. The
drop in energy upon translocation of one heterolipid is
then calculated according to hc, =5m —5@~. Here, the
index c derives from "curvature. "

The evaluation of R is not trivial. If the values of g for
heterolipid and principal lipid are different an upper
bound is obtained by assuming that each lipid species is
deformed as if it were present alone. The real increase in
elastic energy is lower because of a compensation in de-
formation between the two kinds of lipids.

We denote the spontaneous monolayer curvature of
heterolipids by f;, where the index is derived from "im-
purity. " For a conservative estimate we use an extreme
value: g;= —1/(2 nm). At the poles of the vesicle we
neglect ~c~~ against ~g;~ and obtain an estimate of the
upper bound:
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that c. and/or c~ are on the order of ~g;~ we may neglect
5m~ against 6c~ and obtain hc, = —5c~= —1.5X10
erg.

Despite the conservative character of the estimate this
is of the same order of magnitude as hck. Therefore in-
cluding the driving force from elasticity would not
severely change the values obtained from Eq. (30). In
particular they would remain appreciably larger than
those predicted based on friction alone. For the slow
opening phase and the neck disappearance the reasoning
would be similar.

5. Comparison to theoretical models
with a homogeneous membrane

Based on the elastic bilayer-couple model Miao et al.
[5] found discontinuous as well as continuous budding
[33] when a temperature increase was modeled. For real-
istic values [34] of elastic constants discontinuous bud-
ding was found to be dominant. Below the temperature
at which the (discontinuous) budding transition was pre-
dicted to take place, the budded configuration was found
to have a 1ower energy than the nonbudded configuration
and the energy barrier between both states was higher
than thermal energies [5].

To bring our concept into accord with this model re-
quires that the energy barrier is lowered in our potential-
ly heterogeneous membrane so that the spontaneous tran-
sition from the metastable shape to the budded
configuration takes place at temperatures below that pre-
dicted in a homogeneous membrane. Otherwise the
shape change would be as fast as friction would allow and
a segregation of lipids would not slow down the shape
change. We will come back to this point in Sec. IV.

Besides the discrepancy between expected and ob-
served time scales which is the main interest of this paper
we present in Fig. 5 additional evidence for an inhomo-

C
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FIG. 5. Vesicle shape [19] after a transitory opening of the
neck showing a distance between mother and bud. The time
scale continues that in Fig. 2. Typical vesicle diameters are
25-30 pm [1].

geneous membrane. The pictures show the vesicle at
selected times after the same transitory neck opening as
in Fig. 2. It is striking that for about half a minute,
mother and bud appear spherical but are separated by
2 —3 arbitrary units which by comparison to published
pictures [1] translate to about 1 pm. The diameter of the
structure connecting mother and bud is below the resolu-
tion of the light microscope. Topologically, it must be
like a cylinder connecting mother and bud since the neck
opens again at about 5 min on the time scale of Fig. 5. A
slender structure connecting two spheres is at stake to the
predictions based on a homogeneous membrane [7,14,5]
and supports our hypothesis of lateral segregation. In
particular, a line tension, as mentioned in Sec. IIB3,
might be involved.

One minute after neck opening the distance between
mother and bud becomes submicroscopically small, prob-
ably due to the decrease in surface area.

C. Role of van der %aals interation

In Sec. II B 3 we calculated a value of hE;, much larger
than Kas et al. [6]. This appears to question the evi-
dence presented by these authors for the role of van der
Waals interaction. We first argue that the assumption of
Kas et al. [6] as to this role remains justified. Second, we
suggest that the nice accordance with experimental re-
sults found by Kis et al. [6] is due to the compensation
of two errors.

During slow recooling the neck (radius p) remained
submicroscopically small in the majority of vesicles tested
[2]. This can be explained by a dynamic equilibrium be-
tween the decrease in surface area and a volume fiow of
bud interior and a surface flow of bud membrane to the
mother. We suggest these Aows to be driven by the bend-
ing moments (in both single-layer and bilayer-couple
bending) and isotropic tensions in the membranes of bud
and mother.

Upon fast recooling all vesicles showed transitory neck
openings. However, to study these openings with greater
resolution Kis [2] switched from continuous (fast) cool-
ing to a temperature decrease in steps of 0.1'C. Each
step lasted 5 min when the shape fiuctuations as observed
under phase contrast became visibly smaller and 15 min
when shape Quctuations were no longer perceptible by
eye. This corresponds to a minimum cooling rate of
0.4'C/h which is much smaller than the slow (continu-
ous) cooling rate (10'C/h) and therefore shows that the
neck radius (p, ) just prior to the transitory neck opening
must have been much smaller than in dynamic equilibri-
um. Otherwise the neck would not have opened up. Fur-
ther, the neck diameter decreased again to submicroscop-
ic values although the temperature was further decreased.
Both findings call for an additional force which for p &p,
is responsible for reducing the neck radius below the
value in dynamic equilibrium and which disappears at
P=pe.

The van der Waals force between the two closely ap-
posed spherical surfaces of mother and bud is a good can-
didate for the additional force because it has a small
range which is likely to be exceeded while the neck diam-
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eter is submicroscopically small. For p &p, the neck ra-
dius would then be determined by a balance of forces
from membrane elasticity and van der Waals attraction.
At p=p, the membrane would spontaneously approach a
new equilibrium shape according to bending and isotro-
pic elasticity of the membrane alone. This would explain
why the neck opens (a) so quickly and (b) to such a large
diameter.

As for the second point, Kas et al. [6] argued that the
neck would open when the elastic energy stored in the
membrane due to the increased isotropic tension becomes
equal to the energy of the van der Waals interaction and
showed that estimates of both quantities are equal. Such
an energy compensation principle requires that the elastic
energy stored in isotropic tension is exclusively spent to
increase the distance between mother and bud. This is at
least not obvious. We conjecture that this is the second
error which compensated the first one noted in Sec.
II B 3.

A puzzling question remains to be addressed. Why, in

the majority of cases during slow (continuous) recooling,
did van der Waals interaction not have the efFect postu-
lated during fast (continuous) recooling although the iso-

tropic tension in the membrane must have been lower.
As an explanation we propose the steric repulsion be-

tween fiuctuating membranes to be larger during slow

recooling than during fast recooling, thus keeping mother
and bud at a distance larger than the range of the van der
Waals attraction.

IV. SUGGESTION OF EXPERIMENTS

The hypothesis of lateral segregation could be tested by
the following experiments. We suggest adding diacylgly-

cerol (DAG) to the lipid used to prepare vesicles. Above
a threshold value in molar fraction of the added mole-
cules this might decrease the drainage area and conse-
quently the duration of neck closure during heating. By
a similar argument a decrease in the duration of the other
diffusion-limited processes can be rationalized.

It was argued in Sec. IIIB5 that the presence of
heterolipids should lower the energy barrier between the
metastable and the stable vesicle shape. Therefore above
another threshold value in molar function of DAG a de-
crease in the temperature of the spontaneous transition
during heating might be observable.

Besides adding DAG other lipids characterized by
g(0 could be used for doping. This might show the
influence of molecular shape and/or interaction of these
molecules.

A change in the principal lipid is expected to change
the observations as well. Using lipids with increasing un-
saturation would decrease the difference in spontaneous
monolayer curvature between added lipids and the princi-
pal lipid species. This should decrease all effects of la-
teral segregation.
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