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The spatiotemporal characteristics on a series of the generalized nonlinear Schrodinger equa-
tions (NSE’s) in one- and two-dimensional space have been systematically discussed. The current
investigations show that the high order Hamiltonian perturbation can lead to the destruction of the
coherent structures and the formation of the spatiotemporally complicated patterns. The route from
the coherent patterns to the complicated ones experiences a quasiperiodic route. For two-dimensional
problems, the numerical experiments illustrate that the singular solution, spatiotemporal chaos, and
pseudorecurrence can appear in the same NSE with the increase of the saturable nonlinear effects,
where the spatial patterns and the energy partition of the system in the Fourier modes exhibit com-
pletely different dynamic behaviors. In particular, the symmetric destruction of the spatial patterns
is associated with the energy in the nondiagonal modes.

PACS number(s): 52.35.Mw, 47.10.+g, 05.45.+b, 52.40.Db

I. INTRODUCTION

The generalized nonlinear Schrodinger equation (NSE)
(1.1)

in which the potential F is a differential smooth real func-
tion, is one of the basic evolution models for nonlinear
waves in various branches of a wave train in conservative,
disperse systems. Early applications of the NSE were in
the context of nonlinear optics where it described the
propagation of light beams in nonlinear media [1]. Also,
it has been applied to gravity waves on deep water, for
which the predicted modulational instability and enve-
lope soliton formation have been clearly demonstrated
experimentally [2]. In plasma physics, it was first de-
rived for nonlinear hydromagnetic waves by Taniuti and
Washimi using the reductive perturbation method [3].

For the one-dimensionally cubic NSE, the Lax pair has
been found by Zakharov and Shabat and the inverse scat-
tering transform (IST) is well established [4]. The infi-
nite integrals of motion and N-soliton solutions, which
are associated with integrability, can also be obtained
by IST [5]. For the case of high-dimensional space, Ras-
mussen and Rypdal [6] showed that focusing singularities
can occur in two- and three-dimensional space, and gave
the condition for the singular solution analytically.

For Eq. (1.1), the Lagrangian density is

iE, + V2E + F(|E>)E =0,

L= Y(E*E, - EE;) - [VE[ + f(BP),  (12)

where f(|E|?) = fOIE!z F(s)ds. According to the Norther
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theorem, we can obtain the following invariants: the
quasiparticle number

N= /|E|2dx, (1.3)
the momentum
p= % / (ExE* — EE%)dX, (1.4)
the energy
# = [(1Bx] - F(EPX, (15)

and the other invariants, for example, angular momen-
tum in the three-dimensional space and the moment of
inertia, etc. [6].

Taking the different physical backgrounds into ac-
count, some particular types of F(|E|?) in Eq. (1.1) have
frequently been applied. For example [7-28],

(i) FOEP) = |Bf, (L6)

(i) F(EP?) = |EI* - gEJ", (1.7)
_|EP

(i) PUEP) = 15215 (18)

(iv) F(BP) = 3-(1— e7I5"). (19)

For model (1.6), a collapse of the nonlinear wave [7,8],
when the spatial dimension (D) and the coefficient g sat-
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isfy ¢D > 2, can occur. In nonlinear plasmas, this im-
portant process solves the problem of small-K conden-
sation in weak turbulent theory. When ¢ = 1, the one-
dimensional cubic NSE possesses integrability. Solitons
developed by modulational instabilities keep their spa-
tially coherent structures and temporally periodic evolu-
tions. In particular, the well-known Fermi-Pasta-Ulam
(FPU) recurrence in connection with deep water waves
has been verified experimentally by Lake, Rungaldier,
and Ferguson [9] and Yuen et al. [10]. The simple and
complex recurrence phenomena were discussed numeri-
cally by Yuen and Ferguson [11] and analytically by Sti-
assnie and Kroszynski [12].

For model (1.7), the fifth order correction to the cu-
bic term arises from the nonlinear interaction between
Langmuir waves and electrons [13]. The coupling nonlin-
ear equations, known as Zakharov equations, describe the
nonlinear interaction between the high frequency Lang-
muir wave and the ion-acoustic wave by ponderomotive
force. However, a beat frequency interaction between the
large amplitude parts of high frequency fields and parti-
cles can occur in the nonlinear strong turbulence stages.
Under the static approximation, He [13] has obtained
a NSE where the potential F'(|E|?) can be expressed by
Eq. (1.7) in terms of Vlasov-Maxwell equations. In many-
nucleon systems, usually, collision processes of heavy ions
are described on classical or quasiclassical levels [14]; it
was shown that in the quasiclassical limit the nuclear
hydrodynamics equations with the Skyrme forces can be
reduced to the nonrelativistic cubic-quintic model for the
corresponding choice of variable [15]. For this model, on
the other hand, some theoretical work has been obtained
analytically and numerically. Puskharov et al. [15] ob-
tained solitary wave solutions. Cowan et al. [16] nu-
merically showed that these are not solitons, but behave
like quasisolitons. Gagnon and Winternitz et al. [17,18]
presented a large set of exactly analytical traveling wave
solutions. Zhou et al. [19] also showed that a special peri-
odic solution can be reduced to a solitary wave when the
pseudoenergy is zero. The effects of the quintic nonlin-
ear term enhance the amplitude and width of the solitary
wave as compared with those for the cubic Langmuir soli-
ton. Cloot et al. [20] qualitatively proved the existence
of bound solutions by making use of the invariants (1.3)
and (1.5). Their numerical results displayed recurrence
of solutions. In high space dimensions, the Lie syninie-
try group was analyzed by Gagnon and Winternitz [21].
They obtained a class of group-invariant solutions.

For model (1.8), Akhmediek et al. [22] studied the
pseudorecurrence in two-dimensional instability. They
showed that an approximated recurrence to an initial ho-
mogeneous field can appear, and this pseudorecurrence
arises only for a restricted range of the spatially modula-
tional frequency. Mclaughin et al. [23] gave the condition
for the singular solution.

Model (1.9) is considered as a useful model in homo-
geneous unmagnetized plasmas [24] and laser-produced
plasmas [25-28]. When the phase velocity of the slow
plasma oscillation is much smaller than the ion ther-
mal velocity, one can obtain the adiabatic (quasistatic)
electron density under the quasineutral approximation:
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ne = noe” 1B ” Combining the coupling equation which
exhibits the slowly varying complex amplitude E(X,t)
interacting with the low-frequency plasma motion, one
can easily obtain Eq. (1.1) involving nonlinear terms (1.9)
[24]. In laser plasmas, the light beam filamentation for
this model due to the ponderomotive force was exten-
sively studied. Max [25] showed that the self-focusing so-
lution becomes a periodic oscillatory phenonienon, rather
than a catastrophic process due to the exponential non-
linearity. Lam et al. [26] illustrated that the self-trapped
beams are stable. Kaw et al. [27] showed that an elec-
tromagnetic wave interacting with a plasma is subject to
instabilities leading to filamentation. In previous work
[28], we showed that the stochastic propagation of beams
can accompany the production of the oscillating filamen-
tation instability.

We note that, while previous theoretical and numerical
work [7-28] for discussing models (1.6)—(1.9) has concen-
trated on the solitary wave solutions, the singular so-
lutions, and pseudorecurrence, the problem of the spa-
tiotemporal patterns in one- and high-dimensional space
appears to have received very little attention. The main
purpose of this paper is to discuss the following ques-
tions. Can we choose an available method that com-
pletely describes the dynamic behaviors of the spatiotem-
poral patterns in one- and high-dimensional space? What
are the characteristics and patterns of evolution? What
is the mechanism for the formation of patterns? These
problems are very interesting and important in physics
and mathematics. In Sec. II, we constitute the phase
space and the initial condition by considering linear anal-
yses. In Sec. III, we describe the integrability and the
pattern structures for the one-dimensionally cubic NSE.
The spatiotemporal chaos and pattern dynamics in one-
dimensional space and two-dimensional space are dis-
cussed in Sec. IV and Sec. V, respectively. Some con-
clusions are summarized in the final section.

II. CHOICE OF INITIAL CONDITION AND
CONSTITUTION OF PHASE SPACE

A. Linearized analyses

For the continuum Hamiltonian system (1.1), the dy-
namic description is dependent on the choice of the initial
condition. In particular, we cannot give a reasonable ex-
planation if we take an arbitrary initial condition. There-
fore, it is necessary that we choose an available initial
condition and constitute a reasonable phase space in or-
der to discuss the spatiotemporally evolutive phenomena
of this system. For simplicity, in this work, we only deal
with the developing behavior of an initial homogeneous
state due to the modulational instability. We assunie a
homogeneous solution for Eq. (1.1) as E,(t) = Ege*-t,
where E, satisfies

Eo[1 — F(|Eo|®)] = 0. (2.1)

Simultaneously, we define



4138

E(X,t) = E,(t) + 0E(X, 1), (2.2)

and linearize Eq. (1.1), and yield

10, + V2 + L;(| Eo)?) hi(t
hi(t) —i8; + V2 + Li(|Eo|?)

x (fg ) —0, (2.3)

where

Li(|Eo|?) = F(|Eo|?)
+F'(a)|a=|Bo 2| Eol* (a = |E|?),
(2.4)

hi(t) = F'(a)|a=|z, 2 E3(t)-

On the other hand, we can obtain the relation of the
linear growth rate with the instability wave number by
using the standard method [29,30]
v(K4) = Ka[EoF' (Eo) — K312, (2:5)

where K4 = K for the case of one dimension and
Ka =K. K| = /K% + K% for the case of two di-
mensions, and K, Kx, and Ky are the wave numbers
of the modulational instabilities to the uniform solution
in the one-dimensional space and the two-dimensional
space, respectively.

Considering the periodic boundary condition, for
Eq. (2.3), we can define the eigenfunction as

(1) the case of one dimension:

SE At
(32)= (i

(ii) the case of two dimensions:

(2.6)

At
( 665" ) = ( G*Ze—u'z ) cos(KxX)cos(KyY), (2.7)

where € and ¢* are small parameters. In this work, we
choose the wave number to be that corresponding to the
\/ 3 EoF'(Eo)
for the one-dimensional space and Kx max = Ky,max =
3V EoF'(E,) for two-dimensional space.

Inserting Eq. (2.6) or Eq. (2.7) into Eq. (2.3), we obtain
the equation of eigenvalue:

maximum growth rate, that is, Knax =

A% — 2w, — A% 4 2w,A—E2 =0, (2.8)

where A = —K?2 + L;(|Eo|?).

B. Initial conditions

According to Eq. (2.2) and Eq. (2.6) or Eq. (2.7), we
can choose the initial condition in the numerical experi-
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ments to be
(i) the case of one dimension:
E(X,0) = Eo + ee'®cos(K X); (2.9)
(ii) the case of two dimensions:
E(X,Y,0) = Eg + ee*®cos(Kx X)cos(KyY). (2.10)

C. Phase space

For the continuum Hamiltonian system (1.1), an avail-
able choice of the phase space is also a key problem to
analyze the dynamic behaviors due to the existence of the
infinite degrees of freedom. From Eq. (2.8), we note that
E, would correspond to the saddle point if there were a
pair of conjuge complex roots for eigenvalue A, that is,
A = axif. To further illustrate this problem, we should
discuss some models in detail. Without loss of generality,
we assume w, = 1 and finally obtain the following.

(i) For model (1.6) (the case of ¢ = 1),

L, =2|Eo|%, h, = E2(t),

Kmax = EO, KX,max = KY,max = \/LEE(), (211)

A=141,

for Ey = 1.
(ii) For model (1.7),

Ly =2|Eo|* — 3g|Eo|*, ha = EX(t)(1 - 29| Eol*),

Kmax = EO(l - 2gE§)1/21

(2.12)

1
KX,max = KY,max = ﬁKmaxa

/\zlii—1+4g;,/1 —_-_4_11’
g

for Eg =
(iii) For model (1.8),

VIS with 0 < g < 1/4.

L = ABol* +9|Eol* __ EBX)
(1+glEol?)? * ™~ (1+glEo[?)?’

E, 1
Kmax = T;Eg,Kx,max = KY,max = ﬁKmmn

(2.13)

A=1+4i(1-g),

forE0=1/1—1—5 with0 < g < 1.

(iv) For model (1.9),
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FIG. 1. Local phase flows of saddle point (Eo,0), which
are obtained in terms of Egs. (2.13) and (2.15), and where
a=1-g.

1 _
Ly = 5[0 = (1 2g|Bof)e"15P)

hy = E2(t)e=281Bo*

1

o2
Kmax = EOe gEO, KX,max = KY,max = ﬁKmax,

(2.14)

2g
In(1 — 29),
29 n( 9)

A=1=+1

for Eo = /3;In(1 — 2g)~! with 0 < g < 1/2.

Therefore, we have that (a) in the case of one dimen-
sion

|6E| = c1c08(KmaxX)ePt + cz3c08(Kmax X )e P,

d|éE)|

praie ¢18c08( K max X )ePt — c28cos(Kmax X )e P

(2.15)
(b) in the case of two dimensions

|6E| = clcos(KX,maxX)cos(Ky,maxY)e"jt
+¢2c08(K X maxX )cos(Ky maxY )e P,

d
%I- = clﬁcos(Kx,maxX)cos(Ky,maxY)em
—62ﬂCOS(Kx,maxX)COS(Ky,maxY)e_Bt; (2.16)
and
0FE .
3E* = +i. (2.17)
t=0
Thus we can construct the phase

space as (|0E|,d|6E|/dt) or (|E|,d|E|/dt). Obviously, the

4139

point (Ep,0) in phase space (|E|,d|E|/dt) corresponds to
the hyperbolic fixed point. Comparing initial condition
Eq. (2.9) or Eq. (2.10) with Eq. (2.17), we easily deter-
mine that the unstable manifolds for possessing the hy-
perbolic fixed point correspond to § = 45° and 225°, and
the stable manifolds correspond to # = 135° and 315°
(see Fig. 1).

III. THE INTEGRABILITY OF THE
ONE-DIMENSIONALLY CUBIC NSE

To better discuss the pattern dynamics of Eq. (1.1),
we should simply describe the dynamic characteristics of
the well-known cubic NSE. For convenience, we write the
cubic NSE in an obvious form:

10 F + 0xxFE + |E|2E =0. (3.1)
In Sec. II, we have shown that (1,0) in the phase space
corresponds to a saddle point. If we take § = 45° in the
initial condition (2.9), the orbit that possesses the saddle
point (1,0) corresponds to the homoclinic orbit (HMO)
[19,31]. If we consider 6 # 45°, then the orbit should
deviate from the HMO. Considering the integrability of
the cubic NSE, on the other hand, we have that these
orbits must be the exact recurrent solutions [11].

In the following, we turn to the numerical experiments.
Here, the standard splitting-step spectral method [32] has
been improved in order to increase the accuracy of con-
served quantities. For the one-dimensional problem, the
periodic length of the system is taken as L = 27/Kmax-
For the two-dimensional problem that will be discussed
in Sec. V, the periodic lengths of the system are chosen
as Lx = 27/ Kx max and Ly = 27 /Ky, max, respectively.

A. Homoclinic connection

In the initial condition, we take 8 = 45° and 225°, re-
spectively. To determine the stable and unstable mani-
folds for the hyperbolic fixed point (1,0), we trace the
unstable manifold by considering ¢ > 0 and measure
the stable manifold by simulating ¢ < 0. Figure 2 is
our computational result, which is traced at X = 0.
From Fig. 2, we observe that the stable manifold W (¢
smoothly joins with the unstable manifold W), that
is, W) (X*) = W®)(X*) [X* = (1,0)]. This structure
is called a homoclinic connection. The orbit that pos-
sesses the saddle point (1,0) corresponds to the HMO.
As far as a finite dimensional dynamic system is con-
cerned, the stable and unstable orbits for the hyperbolic
fixed point would be smoothly joined to each other if
the unperturbed system was taken to be integrable. For
the cubic NSE, it is illustrated in Fig. 2 that such an
idea is still effective for us to analyze the integrability of
the continuum Hamiltonian system. Of course, almost
any nonintegrable perturbation may destroy the connec-
tion. In the following section, we will again discuss such
a problem for the saturable NSE (1.1).
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1.5 guson [11] showed that the evolution of fields should be
“simple.” In other words, the solution developed by mod-
ulational instability corresponds to an exactly periodic
solution (see Fig. 3).

It is noted from Fig. 3 that different trajectories are
exhibited when we vary the initial phase 6. In numeri-
cal simulations, we find that the value of the amplitude
for fields is larger than the value 1 as seen in Fig. 3(a)
for 0 < 6 < 45°, and the value periodically oscillates
within the regions of 0 and 2.6 as shown in Fig. 3(b) for

d|E@.})]/dt

af (b) 45° < 6 < 90°. For phase-space trajectories, Fig. 3(c)
exhibits a clearer picture. When 6 = 45°, the trajec-

T tory that possesses the hyperbolic fixed point (1,0) is of
040608 1 12141618 2 2224 26 the periodic motion around an elliptic fixed point. When
IEQY] = 0°, the trajectory that deviates from the hyperbolic

FIG. 2. Stable W(® and unstable W(*) manifolds for the fixed point (1,0) periodically moves around the same el-
hyperbolic fixed point (Eo,0) with 6 = 45° and 225°, where liptic fixed point as that for § = 45°. When 6 = 90°,
the solid curve is computed with ¢ > 0, and the dashed curve however, the trajectory is of the periodic motion around
is computed with t < 0. two elliptic fixed points and the hyperbolic point (1,0).

For these pictures, of course, the perturbation parameter
€ in the initial condition should be quite small. If € is not
small, there could be some difference between theoretical

B. Recurrence results and numerical ones for our determining the region
of 6.

1. Periodic trajectory
2. Spatially coherent patierns

Because of the integrability of the cubic NSE, its so-

lutions can be displayed in terms of a class of periodic As mentioned above, we understand that the integra-
solutions. For our initial condition (2.9), Yuen and Fer-  bility of the one-dimensionally cubic NSE can be de-
@ 6=0°
1.5
= 1
&
0.5
©
% wm <
-
S 0
®) 0=90° w
26 ©
=} 05
2 F
18 F
— 18 :
gl -1
1
e 2
by 2
wf 1.5
° e 2 » “© = 040608 1 12141618 2 2224 26

|EQ.Y|

FIG. 3. Solutions of the one-dimensionally cubic NSE. (a) and (b) correspond to the amplitude of fields for § = 0° and 90°;
(c) is the phase-space trajectories, where the dotted line corresponds to § = 0°, the solid line corresponds to 6 = 45°, and the
dash line is 8 = 90°.
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scribed in terms of strictly periodic trajectories. As a
matter of fact, such an integrability is also associated
with the well-known FPU recurrence. For our simply re-
current initial condition, the evolution of the spatially
coherent patterns as shown in Fig. 4 exhibits an exactly
periodic recurrent solution.

Particularly, Fig. 4(a) and Fig. 4(b) represent two
types of patterns. In other words, a structure similar to
that plotted in Fig. 4(a) will appear for 0 < < 45°, and
one similar to that described in Fig. 4(b) will be formed
for 45° < 6 < 90°. Comparing Fig. 3 with Fig. 4, we eas-
ily understand that the choice process of these patterns
depends on the phase-space manifolds. If the trajectory
only recurs around an elliptic point [Fig. 3(a)], then pat-
tern Fig. 4(a) will be formed. If the trajectory moves
around two elliptic points and the hyperbolic fixed point
(1,0) [Fig. 3(b)], then the pattern Fig. 4(b) will be pro-
duced. Considering the Hamiltonian perturbation that
is added in the cubic NSE, in the following sections, one
can observe that the stochastic choice of these patterns
is associated with the irregular HMO crossings.

3. Evolution of energy spectrum

To display this recurrence, we further measure the evo-
lution of the energy contained in the Fourier modes. In
Fourier space, we define the energy of the system as

H=Y Hg,=) |Ex,|*

In our experiment, the initial energy is added to the mode
K nax- From Fig. 5, we observe that a large part of the
energy in the system lies in the first and second modes.
The temporal evolution of the energy in all modes is pe-
riodic, which is consistent with the periodic recurrence
solution [Figs. 3 and 4]. In a sense, the unstable mod-
ulation to the uniform solution would first grow at an
exponential rate as predicted by Benjamin and Feir [33],
but eventually the solution would demodulate and return

(3.2)

\oean

to a near-uniform state.

On the other hand, the periodically evolving process
of the energy in Fourier modes is associated with the
spatially coherent structures. That is, the amplitude of
soliton structures is dominated by the total energy of the
system, while the width and the pattern of the coher-
ent structures are associated with the energy partition
in the high modes. Thus, solitons developed by modu-
lational instability keep their spatially coherent patterns
and temporally periodic evolutions. The integrability of
the one-dimensionally cubic NSE can also be described
in terms of the exactly periodic recurrence in the energy
space.

IV. SPATIOTEMPORAL CHAOS IN
ONE-DIMENSIONAL SPACE

In the case of one dimension, the Hamiltonian of the
NSE (1.1) can be rewritten as

H = Ho + Hy, (4.1)

where
Ho = / (IEx[? - }|E|*)dX, (4.2)
H = / [31B]* - f(IB]?)dX. (4.3)

In Sec. III, we obviously illustrate that the integra-
bility of Hamiltonian Hy can be described in terms of
the homoclinic connection of the periodic trajectories.
Is the Hamiltonian perturbation H; integrable or non-
integrable? As yet, one has still not referred to a quite
satisfactory theory to deal with these problems, espe-
cially on the integrability of the continuum Hamiltonian
system. Generally speaking, there may exist finite soli-
tons for integrable systems, such as the Langmuir soliton
in the cubic NSE. However, the existence of a solitary

1€y,

\ooa\

FIG. 4. The coherent structures of the one-dimensionally cubic NSE; (a) and (b) correspond to 8 = 0° and 90°, respectively.
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cannot show the system to be integrable unless we can
constitute a Lax pair. For example, there exists a stan-
dard Langmuir solitary for the model (1.6) [19], but the
propagation of fields displays a typically chaotic charac-
teristic. Here we numerically discuss the integrablility
problem of the NSE (1.1).

A. Irregular HMO crossings

Taking into account Eq. (1.1) and Egs. (1.6)—(1.9), we
know that these NSE’s correspond to the integrable equa-
tions when g = 0, and the stable and unstable manifolds
that possess the saddle point (1,0) are smoothly joined to

(a) 6= Oo

\

IEK D*

©

0.1

008 |
007 |
008 |
005
0.04 |
008

IE® 912

001 |

o

®©

B

881
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each other. Making use of the results obtained in linear
stability analyses, we also choose the initial parameters
as § = 45° and g = 0.1, and measure their characteristics
of the stable and unstable manifolds for models (1.7)-
(1.9), respectively.

From Fig. 6, we obviously observe that the sta-
ble and unstable manifolds in the phase space do not
smoothly join together, which illustrates that these sat-
urable NSE’s are nearly integrable [31,34]. Comparing
our simulation results (Fig. 6) with those in finite di-
mensional Hamiltonian systems [34], it is also noted that
there are not an infinite number of homoclinic points in
Fig. 6. As for the finite dimensional system, the fact
that one transverse homoclinic point implies an infinity

(®)

n=1

as | I
ol ] f““ }\\
o VAV, L.U .

(EX HI?
&
T

o 20 25 30 3B 40 4 5

IE® 12

e—

-
8k

|

o 2
8 8
LAAAM MMM RAMM LA

L
20 25 30 35 40 4 X
Time

0 5 10 15

FIG. 5. The energy evolution in the first six Fourier modes for the one-dimensionally cubic NSE.
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d|E@©;)]/dt
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d|E(@0,t)|/dt
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08

0.6

04

0.2

0

d|EQ)| /dt

0.2

04

06

08 . L . . . L
1 12 14 16 18 2 22 24

IEQ.D)]

FIG. 6. Stable and unstable manifolds for the hyperbolic fixed point (Eo,0) with § = 45°, where (a), (b), and (c) correspond

to the models (1.7), (1.8), and (1.9), respectively.

of homoclinic points leads to extreme stretching and fold-
ing of the manifolds. However, we notice that our phase
space (|E(X,t)|,d|E(X,t)|/dt) is only the projection of
a high-dimensional space, where the information about
phase for wave fields is not considered. Therefore, there
may exist some difference between our HMO crossings
and those in a finite dimensional Hamiltonian system in
which infinite homoclimic points appear.

We also observe from Fig. 6(a)-Fig. 6(c) that their
topologic structures are basically consistent. In a sense,
the Hamiltonian perturbation H; (4.3) destroys the ho-
moclinic connection and leads to the destruction of the
integrability.

B. Spatiotemporal chaos
1. Quasi-periodic route to chaos
As stated above, we know that the high order Hamil-
tonian perturbation can result in the formation of irreg-

ular HMO crossings. We recall that the infinite periodic
homoclinic states act, under perturbation, as sources of

sensitivity (including chaos). Therefore, we should fur-
ther discuss the chaotic characteristics and route.

We do not give a detailed description on all dynamic
models as mentioned in Sec. I. As a specific example, we
only deal with the model (1.8), which is rewritten as

|E|?
1+ g|E|?

In numerical processes, we choose the initial parameters
as € = 0.1, § = 1.00057 /4, and vary g.

After many experiments, we find that the route from
the exactly periodic solution to chaos is a quasiperiodic
route as shown in Fig. 7. From the figure, we see that
the periodic oscillation of amplitude for fields is broken
down with the increase of g; in particular, the stochas-
tic behavior occurs as displayed in Fig. 7(d) for g = 0.1.
For the phase-space trajectories, an exactly recurrent mo-
tion for the cubic NSE (g = 0) is given in Fig. 7(a)
and Fig. 7(a’). We also note that the phase trajectories
in Fig. 7(a’) only move around an elliptic fixed point,
and are not completely consistent with those discussed
in Sec. IIT (B). This is because the imitial parameter € is
not quite small. For g = 0.0005, the figures [Fig. 7(b)

10:E + OxxFE + E =0. (4.4)
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and Fig. 7(b’)] of phase space behave like the quasire-
current solution where the trajectory is not the exactly
periodic one. For g = 0.005, Figs. 7(c)-7(c"’) show that
more subharmonics appear. Comparing Fig. 7(b) with
Fig. 7(c), we see that the amplitude of the wave fields
for the case of g = 0.005 is more irregular; especially the
trajectories of the phase space Fig. 7(c’) illustrate that
the KAM tori become thicker but are not completely de-
stroyed. Figure 7(c”) shows that more frequencies are
produced due to the increase of the saturable nonlinear-
ity. For g = 0.1, the irregular homoclinic orbit crossings
are also drawn in Fig. 7(d’). To describe the route, a
better technique is to measure the power spectrum. The
foundation frequency of the periodic solution for the cu-
bic NSE is labeled in Fig. 7(a”). Also, Fig. 7(d”) indi-
cates the noiselike characteristic typical of chaotic time
evolution. It is particularly noted that Fig. 7(b") exhibits
a quasiperiodic spectrum [34,35], where two incommen-

(a) @)
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surate frequencies {wo,w;} appear, and w; = wg —w;. In
the numerical simulations, we find that such a standard
spectrum is sensitively dependent on the initial param-
eters, such as # and g. In general, more subharmon-
ics [as described in Fig. 7(c”’)] may be observed with
variation of the parameters [36]. Hence we can con-
clude the route is as follows: period (coherent struc-
tures) {wo} — gquasiperiod {wo,w:1} (pseudorecurrence)
— subharmonics (wo,ws,...,wn) — chaos (spatiotem-
poral complexity).

Speaking in terms of physics, the Hamiltonian pertur-
bation

1 1
H, = / {§|E|4 - [;|E|2 - g—zln(l +g|E|2)] }dX

(45)
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FIG. 7. The solutions of Eq. (4.4) with € = 0.1 and § = 2:29%5"  where a fixed position (X = 0) is traced. (a), (b), (c), and (d)
correspond to the temporal evolution of amplitude for fields; (a’), (b’), (), and (d’) are the structures of phase space, noting
that (d') indicates the irregular homoclinic orbit crossings; (a”), (b”), (c”'), and (d"”) represent the power spectra corresponding
to (a), (b), (c), and (d), respectively. In particular, (b') exhibits the quasiperiodic spectrum.
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drives the formation of stochastic fields and the destruc-
tion of recurrence. When g = 0, the trajectory is periodic
and the spatial patterns are coherent due to the integra-
bility of the system. When g is quite small, a periodic
trajectory becomes the quasiperiodic one. With further
increase of g, the nonintegrable Hamiltonian perturba-
tion H, drives the KAM tori and the coherent structures
to be completely broken down.

2. Spatially complicated patterns

We have understood that nonintegrable perturbation
leads to the chaotic propagation of wave fields. On the
other hand, we observe from Fig. 8 that the solitonlike
structures are still kept but are quite irregular. The
appearance of these complicated patterns means that
the exactly recurrent structures disappear. In fact, the
stochastic choice of these patterns is associated with the
irregular HMO crossings. Comparing Fig. 7(d’) with

1EX ¢t/

AN R E\Y

g=0.1

FIG. 8. The spatiotemporal patterns for the saturable NSE
(4.4) with € = 0.1 and = 109957 byt the value g changed.
(a) Coherent patterns with g = 0; (b) spatiotemporally com-
plicated patterns with g = 0.1.
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Fig. 8, one can easily understand that these two similar
kinds of patterns as described in Fig. 4(a) and Fig. 4(b)
may also be formed under the current parameters. In ad-
dition, these irregular patterns depend on the partition
of the energy in the Fourier modes. For the coherent
structures (Fig. 4), the energy in the Fourier modes rep-
resents homogeneous decay. For these spatiotemporally
complicated patterns (Fig. 8), however, the partition of
the energy in the Fourier modes represents inhomoge-
neous decay [35]. To better analyze the mechanism by
which complicated patterns are formed, we should also
discuss the processes of evolution of the energy contained
in the Fourier modes.

3. Stochastic evolution of energy spectrum

The evolution of energy in the first four Fourier modes
is described in Fig. 9. Obviously, a large part of the en-
ergy in the system still lies in the low Fourier modes.
As for the first two modes, the evolution of the energy
behaves like a quasiperiodic motion, which makes sure
the spatially localized structures (Fig. 8) are still kept.
However, the evolution of the energy in the high modes
exhibits a stochastic behavior, which illustrates spatial
patterns that are very irregular as seen in Fig. 8. Physi-
cally, the energy in the system, which is initially confined
to the master mode, would spread to many slave har-
monic modes because of the nonlinear interaction, but
would not regroup into the original lowest mode. The
stochastic evolution of the energy in the Fourier modes,
in which the slave modes interact with the master one,
leads to the formation of spatiotemporal chaos.

V. PATTERN STRUCTURES IN
TWO-DIMENSIONAL SPACE

In this section, we turn to discussing the dynamic char-
acteristics of the two-dimensional NSE. Also we only deal
with the model (1.8) which is clearly written as follows:

|E|?

_E _p_o
1+g|E|2E

iE, + V?E + (5.1)

For this model, Akhemediev et al. [22] showed nu-
merically that pseudorecurrence can appear in two-
dimensionally modulational instability. Moreover, the
singular solution can also exist [23]. As we know, how-
ever, spatiotemporal dynamics in two-dimensional space
has not been systematically studied as yet, especially the
spatial patterns and the chaotic characteristics.

Here, we further investigate the behaviors of the so-
lution in terms of the miodulational instability in two-
diniensional space. First, we write the linear growth rate
(2.5) as the following obvious form:

Y(KL) =K,

1/2
2
2gE0 2] , (5.2)

(1+gE3)? 4

where K, = /K% + K%, which is sketched in Fig. 10.
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A. Irregular HMO crossings

From Egs. (2.16) and (2.17), we know that (Ey,0),
where Eo, = [1/(1 — g)]*/? with 0 < g < 1,
corresponds to a saddle point in the phase space
(|E(X,Y,t)|,d|E(X,Y,t)|/dt). The stable and unstable
manifolds that possess the saddle point also correspond
to 6 = 45°,225° and 0 = 135°,315°, respectively. As dis-
cussed in Sec. IV, here, we choose the parametric values
as @ = 45°, g = 0.1, and trace the trajectories at the
fixed space point X = 0 and Y = 0. From Fig. 11, we
observe that the phase-space trajectories are completely
similar to that in the case of one dimension as shown
in Fig. 6. Therefore, we can say that the formation of
chaos in the current two-dimensional space is also due
to irregular HMO crossings. Of course, we cannot think
that such a HMO chaos in the saturable NSE (5.1) only
arises from the nonlinear perturbation. This is because
the cubic NSE in two-dimensional space is also not in-
tegrable. In the following analyses, we may understand
that the pseudorecurrence appears if the saturable non-
linear effects are very strong. With the decrease of the
saturable effects, the irregular HMO crossings lead to
the destruction of pseudorecurrence and the appearance
of stochasticity for fields.

B. Blowup, chaos, and pseudorecurrence

In the following simulations, we choose parametric val-
ues as € = 0.1 and § = 10908% and vary the g value.
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FIG. 11. Stable and unstable manifolds for the hyperbolic
fixed point (Eo,0) in the two-dimensional NSE (5.1); it is
noted that this structure is similar to that in the case of one
dimension, which illustrates the characteristic of HMO chaos.

1. Singular solution

To clearly study the features of the dynamic sys-
tem (5.1), we first discuss characteristics of the two-
dimensionally cubic NSE. As g = 0, Eq. (5.1) corresponds
to the critical NSE. The solution should be the singular
one, where the time of blowup is finite [23] and the field
intensities exhibit catastrophic processes.

In order to describe the temporally evolutive charac-
teristics in more detail, we trace the trajectory at a fixed
position, i.e., X = 0,Y = 0. Figure 12(a) exhibits the
time evolution of amplitude for fields, where the solu-
tion is rapidly developed from the initial value 1 to the
larger value within a finite time that is associated with
the time of blowup as seen from Fig. 13. Owing to the
rapid change of amplitude with time, its slope must be
very large. Therefore, Fig. 12(b) indicates that the tra-
jectory in phase space is not bounded within a small area.

2. Chaotic solution

Taking into account g = 0.1, we observe that the am-
plitude stochastically oscillates as shown in Fig. 12(c).
The field Ey is developed due to the modulational in-
stability from the initial value Ey to a finite amplitude
toward saturation, then oscillates down because of the
saturable nonlinear force (ponderomotive force), and so
on. For the trajectory, its manifolds exhibit irregular
HMO crossings, where the trajectory as seen in Fig. 12(d)
is bounded with a finite region of phase space. Thus

PATTERN STRUCTURES ON GENERALIZED NONLINEAR ...

4147

our simulation indeed verifies the prediction given by
Akhemediev et al. [22] on HMO chaos.

3. Pseudorecurrent solution

A more interesting phenomenon is observed in
Fig. 12(e)-Fig. 12(h). With the increase of parameter
g, we find that pseudorecurrence appears. As plotted in
Fig. 12(e) and Fig. 12(g), the amplitude of the fields be-
haves like a periodiclike oscillation. These phase trajec-
tories are basically regular, where the motion is smooth
in small regions of phase space as described in Fig. 12(f)
and Fig. 12(h). In other words, the KAM tori are not
completely broken down when the parameter g comes
close to 1. In the work of Akhemediev et al. [22], they
chose ¢ = 1 and also observed such a pseudorecurrent
behavior.

C. Spatial patterns

In the following, we describe the pattern structures
corresponding to these three kinds of solutions as stated
in the above. For the case of ¢ = 0, we observe from
Fig. 13(a)-Fig. 13(d) the developing processes of the ini-
tial field (2.10) due to the modulation instability. Fig-
ure 13(c) and Fig. 13(d) correspond to the singular so-
lutions. Comparing Fig. 13(b) with Fig. 13(c), we un-
derstand that the time of blowup lies in the regions of
t* = 1.2 — 2.0. With the evolution of time, the solu-
tion is rapidly contracted and the energy of the system
is concentrated on some small spots. In laser-produced
plasmas, these processes describe filamentation of laser
beams [25-27,37] as the time variable ¢ is replaced by
the propagative distance Z. In plasma turbulence, they
describe the Langmuir collapse due to the ion-acoustic
perturbation [8], which is influenced by ponderomotive
force in the NSE (1.1).

For the case of the chaotic solution, the numerical ex-
periments show that the singular solution does not occur
where the saturable nonlinear effects prevent blowup of
the solution. Speaking in terms of physics, the saturable
nonlinear force prevents the collapse of Langmuir waves
or the concentration of energy. We find from Fig. 14 that
different patterns are formed. In particular, the spatial
symmetry is broken down with the development of wave
fields as sketched in Fig. 14(b), which are different from
those in the initial stages of evolution where the spa-
tial symmetry is kept as shown in Fig. 14(a). For these
structures, we will now give a description in terms of the
energy spectrum.

For the case of pseudorecurrent solutions, we see from
Fig. 15 where g = 0.8 that the spatial structures at ¢ = 50
are different from those at ¢ = 200; however, the symme-
try of the solution is basically kept. In addition, we note
from Fig. 16 where g = 0.98 that the spatial structure
at t = 50 is basically consistent with that at ¢ = 200.
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Taking into account these pictures for the case of pseu-
dorecurrence, therefore, we can say that the symmetry
of the solution is not basically broken down and the sin-
gular solution is completely prevented by the saturable
nonlinearity.

D. Analyses of the energy spectrum

To illustrate clearly the mechanism that leads to the
formation of these different complicated patterns, we also
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measure the evolution of the energy in the Fourier modes,
and define

H= Y |E(Kn,Km?t) (5.3)

Kn,m

where K, ,, = {Kn,Kn} represents the nth Fourier
mode in X space and the mth in Y space. The evolution
of energy in Fourier modes, ie., H, » = |Ek, k,.|?, is
shown in Figs. 17-19. Figure 17 corresponds to the case
of g = 0, where we observe that the energy in the diagonal
modes decays within a very short time and then stochas-

1EMXY,9)

AN\

FIG. 13. The spatial patterns of the blowup processes with g = 0.
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FIG. 14. The spatial patterns of spatiotemporal chaos with
g = 0.1. (a) the symmetric structures, (b) the nonsymmetric
structures.

tically oscillates. Also, the energy in the nondiagonal
modes increases within a short time. In other words, time
to reach the blowup may be associated with the evolution
of the energy in the Fourier modes. When the blowup oc-
curs, the energy in the main modes is decreased. In fact,
the energy in these modes would determine the structures
of the system. If the energy in the diagonal modes is very
large, then the width of the wave packets would be large
enough, which indicates that the blowup does not occur.
With the development of time, the energy in the diago-
nal modes decreases and that in the nondiagonal modes
increases. At this time, the energy in the system would
be concentrated on some small spots, which shows that
the singular solution occurs. Moreover, the nonsymmet-
ric patterns may appear [see Fig. 13(c) and Fig. 13(d)]
as soon as the energy in the nondiagonal modes is quite
large.

It is noticed from Fig. 18 that an important phe-
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FIG. 15. The spatial patterns of the pseudorecurrent solu-
tion with g = 0.8.

nomenon is exhibited. When ¢t < 60, the energy in the di-
agonal modes experiences a stochastic oscillation. Simul-
taneously, their largest amplitude is near equal though
the amplitude is actually stochastic. In particular, the
energy in the nondiagonal modes equals zero for t < 60.
When t > 60, the energy in the diagonal modes is de-
creased, and that in the nondiagonal modes is increased
but still has the stochastic characteristic. In addition, we
find that a large part of the energy lies in the main mode
(Koo), where the initial energy is injected. According
to these analyses, a clear conclusion is that the spatially
nonsymmetric structures are mainly dependent on the
energy in the nondiagonal modes. That is, the nonsym-
metry should be associated with a stochastic partition of
the energy in the Fourier modes, especially in the non-
diagonal modes. Comparing Figs. 13 and 14 with Figs. 17
and 18, also, we conclude that the concentration of en-
ergy in the system depends on the distribution of the
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g=098

IEx vty

FIG. 16. The spatial patterns of the pseudorecurrent solu-
tion with g = 0.98.

energy in the Fourier modes. That is, the less energy
is partitioned in the diagonal modes or the more in the
nondiagonal modes, the higher the height of the spatial
patterns is or the smaller the width.

Now, we discuss the spectrum evolution correspond-
ing to the pseudorecurrent solution. From Fig. 19, we
see that the energy in the main mode Ky9 compared
with the other modes is very large and oscillates within
a small regime. The evolution of the energy in the diag-
onal modes exhibits a periodiclike motion. In particular,
the energy in mode K5, indicates the energy is not ex-
actly FPU recurrent, but the partition of the energy in
this mode is not irregular, which actually illustrates the
pseudorecurrent feature. On the other hand, we find from
the numerical experiments that the energy in the nondi-
agonal modes is nearly zero, which shows that the spatial
structures developed by the modulational instability are
symmetric, as seen in Fig. 15.
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VI. SUMMARIES AND DISCUSSIONS

We have systematically described the spatiotemporal
characteristics of a series of generalized NSE’s in one-
and two-dimensional space. Our investigations show that
a high order Hamiltonian perturbation can lead to the
destruction of the coherent structures and the forma-
tion of spatiotemporally complicated patterns. The route
from coherent patterns to complicated ones is quasi-
periodic. For two-dimensional problems, our numerical
experiments illustrate that the singular solution, spa-
tiotemporal chaos, and pseudorecurrence can appear for
the same NSE with the increase of the saturable non-
linear effects, where the spatial patterns and the energy
partition of the system in the Fourier modes exhibit com-
pletely different dynamic behaviors. We emphasize in
particular that the symmetric destruction of the spatial
patterns is associated with the energy in the nondiago-
nal modes. These results should be of significance in the
study of pattern dynamics in plasma waves and other
nonlinear waves.

As far as various branches of physics are concerned,
the presence of the stochastic wave fields depends on the
evolution processes of systems. In other words, the lowest
order nonlinear term |E|2E is the predominant nonlinear
mechanism in the evolving initial stages. Some impor-
tant phenomena, such as coherent structures and Lang-
muir wave collapse, etc., can be reasonably explained by
making use of the cubic NSE. In the strongly nonlin-
ear stages, other physical effects could play an important
role. For example, the effects of Landau damping of the
high frequency waves become quite significant in plasma
turbulence. The energy dissipation should be considered
[38,39]. On the other hand, nonlinear interactions, such
as the fourth field interaction and other nonlinear sat-
urable mechanisms, should be involved in the processes
of plasma instabilities. These nonlinear saturable effects
make rich dynamic behaviors occur. In a sense, these
complicated dynamic phenomena would probably be the
characteristic of wave propagation.

We should mention that our results are also impor-
tant in laser fusion studies. Considering the process of
ponderomotive filamentation, under the static approxi-
mation, one studies the characteristics of ponderomotive
filamentation in terms of the NSE’s (1.6)—(1.9) [25-28,37]
when the time variable ¢ is replaced by the spatial vari-
able Z. It is shown that the focusing becomes a periodic
oscillation, rather than a catastrophic process due to the
saturable effects. In the previous work, it was illustrated
that there exists competition between SBS and filamen-
tation instability [25,26]. Taking into account filamen-
tation produced by perturbations or nonuniformities in
light that cause (or are caused by) local changes in the di-
electric constant, index of refraction, or the medium, we
easily understand that these inhomogeneities may be en-
larged due to mode-mode interactions, where the trans-
verse instability as described in this work or the self-
modulation as discussed by Max et al. [40] can broaden
the frequency spectrum of the incident laser. For these
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instabilities, as a matter of fact, there is no reason to
separate them in the nonlinear regime. They can coexist
and affect each other. Of course, SBS is related to the
resonant interaction of a three-wave coupling, whereas
self-focusing and filamentation instabilities involve non-
resonant ion density disturbances. As far as the stochas-
tic instabilities are concerned, the mode-mode resonant
interaction [41] may also drive the chaotic propagation
of light. The current investigations show that an initial

CANGTAO ZHOU, X. T. HE, AND TIANXING CAI 50

homogeneous beam may develop into incoherent light,
where the symmetry of the laser could be broken down
and the center of the beams would be shifted off axis
due to the influence of the ponderomotive force. Of
course, the recent modulation should be the spatial mod-
ulation in the transverse direction, because the starting
equations (1.6)—(1.9) only allow for transverse inhomo-
geneities when the time variable t is replaced by the axial
variable Z.
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Finally, we point out that our work only deals with the
initial homogeneous state. It is shown that the presence
of the HMO crossings is a potential source of stochas-
tic behavior. We expect that more important theoretical
work on HMO chaos in the continuum Hamiltonian sys-
tem can be furthered in future study. We also note that
it is an interesting and important piece of research for us
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to consider the initial inhomogeneous state, which could
be more difficult for theoretical analysis as in this work.
We think that the key problem should still be the con-
stitution of a suitable phase space for these continuum
Hamiltonian systems so that one can readily describe
their dynamic characteristics in terms of integrable and
nonintegrable equations.
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FIG. 10. (a) The linear growth rate vs Kx and Ky. (b)
The growth rate vs Kx with Ky = 0.
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FIG. 13. The spatial patterns of the blowup processes with ¢ = 0.
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FIG. 14. The spatial patterns of spatiotemporal chaos with
g = 0.1. (a) the symmetric structures, (b) the nonsymmetric

structures.
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FIG. 15. The spatial patterns of the pseudorecurrent solu-
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FIG. 7. The solutions of Eq. (4.4) with ¢ = 0.1 and § = 12527 where a fixed position (X = 0) is traced. (a), (b), (c), and (d)
correspond to the temporal evolution of amplitude for fields; (a"), (b'), (¢’), and (d') are the structures of phase space, noting

that (d') indicates the irregular homoclinic orbit crossings; (a"

to (a), (b), (

), (b”), ("), and (d") represent the power spectra corresponding
c), and (d), respectively. In particular, (b') exhibits the quasiperiodic spectrum.
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FIG. 8. The spatiotemporal patterns for the saturable NSE
(4.4) with € = 0.1 and 8 = 295" but the value g changed.
(a) Coherent patterns with g = 0; (b) spatiotemporally com-
plicated patterns with g = 0.1.



