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The spatiotemporal characteristics on a series of the generalized noah~ear Schrodinger equa-
tions (NSE s) in one- and two-dimensional space have been systematically discussed. The current
investigations show that the high order Hamiltonian perturbation can lead to the destruction of the
coherent structures and the formation of the spatiotemporally complicated patterns. The route from
the coherent patterns to the complicated ones experiences a quasiperiodic route. For two-dimensional
problems, the numerical experiments illustrate that the singular solution, spatiotemporal chaos, and
pseudorecurrence can appear in the same NSE with the increase of the saturable nonlinear effects,
where the spatial patterns and the energy partition of the system in the Fourier modes exhibit com-
pletely different dynamic behaviors. In particular, the symmetric destruction of the spatial patterns
is associated with the energy in the nondiagonal modes.

PACS number(s): 52.35.Mw, 47.10.+g, 05.45.+b, 52.40.Db

I. INTRODUCTION

The generalized nonlinear Schrodinger equation (NSE)

iE, + V'E+ F(IEI')E = 0,

in which the potential F is a differential smooth real func-
tion, is one of the basic evolution models for nonlinear
waves in various branches of a wave train in conservative,
disperse systems. Early applications of the NSE were in
the context of nonlinear optics where it described the
propagation of light beams in nonlinear media [1]. Also,
it has been applied to gravity waves on deep water, for
which the predicted modulational instability and enve-
lope soliton formation have been clearly demonstrated
experimentally [2]. In plasma physics, it was 6rst de-
rived for nonlinear hydromagnetic waves by Taniuti and
Washimi using the reductive perturbation method [3].

For the one-dimensionally cubic NSE, the Lax pair has
been found by Zakharov and Shabat and the inverse scat-
tering transform (IST) is well established [4]. The infi-

nite integrals of motion and ¹ oliton solutions, which
are associated with integrability, can also be obtained
by IST [5]. For the case of high-dimensional space, Ras-
mussen and Rypdal [6] showed that focusing singularities
can occur in two- and three-dimensional space, and gave
the condition for the singular solution analytically.

For Eq. (1.1), the Lagrangian density is

theorem, we can obtain the following invariants: the
quasiparticle number

N= E dx,

the momentum

P = — (ExE' —EEx)dX,
2

(1.4)

the energy

Ex 2 — E2

(1.6)

(1.7)

and the other invariants, for example, angular momen-
tum in the three-dimensional space and the moment of
inertia, etc. [6].

Taking the different physical backgrounds into ac-
count, some particular types of F(IEI ) in Eq. (1.1) have
frequently been applied. For example [7—28],

L = —(E'E, —EE~') —I&El + f(IEI ),
2

(1.2)

(iii) F(IEI') =
1+g E2' (1.8)

2

where f(IEI ) = Jo F(s)ds. According to the Norther (1.9)

Mailing address.
For model (1.6), a collapse of the nonlinear wave [7,8],

when the spatial dimension (D) and the coefBcient q sat-
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isfy qD & 2, can occur. In nonlinear plasmas, this im-
portant process solves the problem of small-K conden-
sation in weak turbulent theory. When q = 1, the one-
dimensional cubic NSE possesses integrability. Solitons
developed by modulational instabilities keep their spa-
tially coherent structures and temporally periodic evolu-
tions. In particular, the well-known Fermi-Pasta-Ulam
(FPU) recurrence in connection with deep water waves
has been verified experimentally by Lake, Rungaldier,
and Ferguson [9] and Yuen et al. [10]. The simple and
complex recurrence phenomena were discussed numeri-
cally by Yuen and Ferguson [11]and analytically by Sti-
assnie and Kroszynski [12].

For model (1.7), the fifth order correction to the cu-
bic term arises &om the nonlinear interaction between
Langmuir waves and electrons [13]. The coupling nonlin-
ear equations, known as Zakharov equations, describe the
nonlinear interaction between the high &equency Lang-
muir wave and the ion-acoustic wave by ponderomotive
force. However, a beat &equency interaction between the
large amplitude parts of high &equency fields and parti-
cles can occur in the nonlinear strong turbulence stages.
Under the static approximation, He [13] has obtained
a NSE where the potential E(~E~2) can be expressed by
Eq. (1.7) in terms of Vlasov-Maxwell equations. In many-
nucleon systems, usually, collision processes of heavy ions
are described on classical or quasiclassical levels [14]; it
was shown that in the quasiclassical limit the nuclear
hydrodynaxnics equations with the Skyrme forces can be
reduced to the nonrelativistic cubic-quintic model for the
corresponding choice of variable [15]. For this model, on
the other hand, some theoretical work has been obtained
analytically and mimerically. Puskharov et al. [15] ob-
tained solitary wave solutions. Cowan et al. [16] nu-
merically showed that these are not solitons, but behave
like quasisolitons. Gagnon and Winternitz et aL [17,18]
presented a large set of exactly analytical traveling wave
solutions. Zhou et al. [19]also showed that a special peri-
odic solution can be reduced to a solitary wave when the
pseudoenergy is zero. The effects of the quintic nonlin-
ear term enhance the amplitude and width of the solitary
wave as compared with those for the cubic Langmuir soli-
ton. Cloot et ul. [20] qualitatively proved the existence
of bound solutions by making use of the invariants (1.3)
and (1.5). Their n»p»erical results displayed recurrence
of solutions. In high space dimensions, the Lie symme-
try group was analyzed by Gagnon and Winternitz [21].
They obtained a class of group-invariant solutions.

For model (1.8), Akhmediek et al. [22] studied the
pseudorecurrence in two-dimensional instability. They
showed that an approximated recurrence to an initial ho-
mogeneous field can appear, and this pseudorecurrence
arises only for a restricted range of the spatially modula-
tional frequency. Mclaughin et al. [23] gave the condition
for the singular solution.

Model (1.9) is considered as a useful model in homo-
geneous n~p»agnetized plasmas [24] and laser-produced
plasmas [25—28]. When the phase velocity of the slow
plasma oscillation is much smaller than the ion ther-
mal velocity, one can obtain the adiabatic (quasistatic)
electron density under the quasineutral approximation:

II. CHOICE OF INITIAL CONDITION AND
CONSTITUTION OF PHASE SPACE

A. Linearised analyses

For the continu»m Hamiltonian system (1.1), the dy-
namic description is dependent on the choice of the initial
condition. In particular, we cannot give a reasonable ex-
planation if we take an arbitrary initial condition. There-
fore, it is necessary that we choose an available initial
condition and constitute a reasonable phase space in or-
der to discuss the spatiotexnporally evolutive phenoxnena
of this system. For simplicity, in this work, we only deal
with the developing behavior of an initial hoxnogeneous
state due to the modulational instability. We ass»me a
homogeneous solution for Eq. (1.1) as E,(t) = Eoe' ',
where Eo satisfies

ED[1 —F(iEoi )] = 0. (2.1)

Simultaneously, we define

n, = noe ~ ~ . Combining the coupling equation which
exhibits the slowly varying complex amplitude E(X,t)
interacting with the low-&equency plasma motion, one
can easily obtain Eq. (1.1) involving nonlinear terms (1.9)
[24]. In laser plasmas, the light beam filamentation for
this model due to the ponderomotive force was exten-
sively studied. Max [25] showed that the self-focusing so-
lution becoxnes a periodic oscillatory phenomenon, rather
than a catastrophic process due to the exponential non-
linearity. Lam et al. [26] illustrated that the self-trapped
beams are stable. Kaw et al. [27] showed that an elec-
tromagnetic wave interacting with a plasma is subject to
instabilities leading to filamentation. In previous work

[28], we showed that the stochastic propagation of beams
can accompany the production of the oscillating filaxnen-
tation instability.

We note that, while previous theoretical and numerical
work [7—28] for discussing models (1.6)—(1.9) has concen-
trated on the solitary wave solutions, the singular so-
lutions, and pseudorecurrence, the problem of the spa-
tiotemporal patterns in one- and high-dimensional space
appears to have received very little attention. The main
purpose of this paper is to discuss the following ques-
tions. Can we choose an available method that corn-
pletely describes the dynamic behaviors of the spatiotem-
poral patterns in one- and high-dimensional space? What
are the characteristics and patterns of evolution? What
is the mechanism for the formation of patterns? These
problexns are very interesting and important in physics
and mathematics. In Sec. II, we constitute the phase
space and the initial condition by considering linear anal-
yses. In Sec. III, we describe the integrability and the
pattern structures for the one-dimensionally cubic NSE.
The spatiotemporal chaos and pattern dynamics in one-
dimensional space and two-dimensional space are dis-
cussed in Sec. IV and Sec. V, respectively. Some con-
clusions are summarized in the final section.
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E(X,t) = E.(t)+ hE(X, t),

and linearize Eq. (1.1), and yield

( i' + V'+ L, (IEpl') h, (t)
h;(t) —iB~+ V' + L, (IEpl ) )

(2.2) ments to be
(i) the case of one dimension:

E(X,0) = Ep + ee' cos(KX);

(ii) the case of two dimensions:

E(X,Y, 0) = Ep+ ee' cos(KxX)cos(Ky Y).

(2.9)

(2.10)

(2 8)
(aE i

where C. Phase space

L;(IEol') = ~(IEol')
++'(o) I.=)z. )

IEpl'(o —= IEI')
(2.4)

h'(t) = +'(&) l-=(E. )
E.'(t).

On the other hand, we can obtain the relation of the
linear growth rate with the instability wave number by
using the standard method [29,30]

For the continuiim Hamiltonian system (1.1), an avail-
able choice of the phase space is also a key problem to
analyze the dynamic behaviors due to the existence of the
infinite degrees of freedom. From Eq. (2.8), we note that
Ep would correspond to the saddle point if there were a
pair of conjuge complex roots for eigenvalue A, that is,
A = a +iP. To further illustrate this problem, we should
discuss some models in detail. Without loss of generality,
we assume ur, —:1 and finally obtain the following.

(i) For model (1.6) (the case of q = 1),

p(K~) = K~[EpF'(Ep) —K~]'~, (2.5) L i ——2IEpl2, hi ——E2(t),

where K~ = K for the case of one dimension and
K~ = v K~ K~ = QKxz + Ki2 for the case of two di-
mensions, and K, Kx, and Ky are the wave numbers
of the modulational instabilities to the uniform solution
in the one-dimensional space and the two-dimensional
space, respectively.

Considering the periodic boundary condition, for
Eq. (2.3), we can define the eigenfunction as

(i) the case of one dimension:

Kmax = Epy Kx, ——Ky, = ~Ep, (2.11)

A =1+i,
for Ep = 1.

(ii) For model (1.7),

L2 = 2IEol' —3glEoI', h2 = E!(t)(1—2glEoI')

( bE ) f ee'"'
cos(KX);

(ii) the case of two dimensions:

(2.6)
K „=Ep(1 —2gEp)'~',

1
Kx,max = Ky, max = ~Kmax&

(2.12)

( me'"'
I
cos(Kx X)cos(Ki.Y), (2.7)

where e and e' are small parameters. In this work, we

choose the wave number to be that corresponding to the

maximum growth rate, that is, K = 2EpF Ep
for the one-dimensional space and Kx, = Ky;

2 QEpE'(Ep) for two-dimensional space.
Inserting Eq. (2.6) or Eq. (2.7) into Eq. (2.3), we obtain

the equation of eigenvalue:

.—1+4g+ gl —4g

2g

for Ep ——
2 with 0 & g ( 1 4.

(iii) For model (1.8),

2IE I'+ glEoI'
h E.'(t)

(1+gIEoI')' * (1+glEoI')"

—2~, A —A + 2u), A —Ep ——0,

where A = —K~2+ L,(IEpl2).

(2.8) Ep =1K , , Kx, = Kv;m = Km~1+gEp
' g2

(2.13)

B. Initial conditions A =1+i(1—g),

According to Eq. (2.2) and Eq. (2.6) or Eq. (2.7), we
can choose the initial condition in the n»merical experi-

for Ep =
& wlth0&g(1.1—g

(iv) For model (1.9),
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point (Eo, 0) in phase space (~E~, dIE(/dt) corresponds to
the hyperbolic fixed point. Comparing initial condition
Eq. (2.9) or Eq. (2.10) with Eq. (2.17), we easily deter-
mine that the unstable manifolds for possessing the hy-
perbolic fixed point correspond to 8 = 45 and 225, and
the stable manifolds correspond to 8 = 135 and 315
(see Fig. 1).

III. THE INTEGRABILITV OF THE
ONE-DIMENSIONALLY CUBIC NSE

FIG. 1. Local phase Sows of saddle point (EO, O), which
are obtained in terms of Eqs. (2.13) and (2.15), and where
0!=1—g.

To better discuss the pattern dynamics of Eq. (1.1),
we should simply describe the dynamic characteristics of
the well-known cubic NSE. For convenience, we write the
cubic NSE in an obvious form:

i BtE + 8»»E +
~

E
~

E = 0. (3.1)

L4 ———[1 —(1 —2g)Eo) )e s~ '~ ],
2g

gQ 1
Kmax = &Oe ~ Kx,max = Ky, max = Kmaxq

(2.14)

.1 —2g
A = 1 + i ln(1 —2g),

2g

for Eo =
2 ln 1 —2g with 0 (g & 1 2.

Therefore, we have that (a) in the case of one dimen-
sion

~bE~ = eicos(K „X)e + c2cos(K X)e

In Sec. II, we have shown that (1,0) in the phase space
corresponds to a saddle point. If we take 8 = 45' in the
initial condition (2.9), the orbit that possesses the saddle
point (1,0) corresponds to the homoclinic orbit (HMO)
[19,31]. If we consider 8 P 45', then the orbit should
deviate &om the HMO. Considering the integrability of
the cubic NSE, on the other hand, we have that these
orbits must be the exact recurrent solutions [11].

In the following, we turn to the numerical experiments.
Here, the standard splitting-step spectral method [32] has
been improved in order to increase the accuracy of con-
served quantities. For the one-dimensional problem, the
periodic length of the system is taken as L = 2m/K
For the two-dimensional problem that will be discussed
in Sec. V, the periodic lengths of the system are chosen
as L» = 2x/K» and L1 = 2x/Ky ~, respectively.

A. Homoclinic connection

d/bEJ pt —pt.
dt

= ciPcos(K „X)e —c2Pcos(K X)e

(2.15)

(b) in the case of two dimensions

~hE~ = eicos(K» ~a„X)cos(Ky~~Y)eP'

+c2cos(K» X)cos(Ky „Y)e~',

d/bEJ = ciPcos(K» ~ „X)cos(Kv~ Y)e '

and

—c2Pcos(K» X)cos(K1 ~ Y)e (2.16)

t=o
(2.17)

Thus we can construct the phase
space as ((bE), d[bE)/dt) or ([E),d)E[/dt). Obviously, the

In the initial condition, we take 0 = 45' and 225, re-
spectively. To determine the stable and unstable mani-
folds for the hyperbolic fixed point (1,0), we trace the
unstable manifold by considering t & 0 and measure
the stable manifold by simulating t & 0. Figure 2 is
our computational result, which is traced at X = 0.
Prom Fig. 2, we observe that the stable manifold S'&'~

smoothly joins with the unstable manifold W&"~, that
is, W&')(X') = W(")(X') [X' —= (1,0)]. This structure
is called a homoclinic connection. The orbit that pos-
sesses the saddle point (1,0) corresponds to the HMO.
As far as a finite dimensional dynamic system is con-
cerned, the stable and unstable orbits for the hyperbolic
fixed point would be smoothly joined to each other if
the unperturbed system was taken to be integrable. For
the cubic NSE, it is illustrated in Fig. 2 that such an
idea is still efFective for us to analyze the integrability of
the continuum Hamiltonian system. Of course, almost
any nonintegrable perturbation may destroy the connec-
tion. In the following section, we will again discuss such
a problem for the saturable NSE (1.1).
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of hoxnoclinic points leads to extreme stretching and fold-
ing of the manifolds. However, we notice that our phase
space ((E(X,t)), d)E(X, t)(/dt) is only the projection of
a high-dimensional space, where the information about
phase for wave fields is not considered. Therefore, there
may exist some difFerence between our HMO crossings
and those in a finite dimensional Hamiltonian systexn in
which infinite hoxnoclinic points appear.

We also observe from Fig. 6(a)—Fig. 6(c) that their
topologic structures are basically consistent. In a sense,
the Hamiltonian perturbation Hq (4.3) destroys the ho-
moclinic connection and leads to the destruction of the
integrability.

B. Spatiotemporal chaos

1. Quasi periodic rou-te to chaos

As stated above, we know that the high order Hamil-
tonian perturbation can result in the formation of irreg-
ular HMO crossings. We recall that the infinite periodic
homoclinic states act, under perturbation, as sources of

sensitivity (including chaos). Therefore, we should fur-
ther discuss the chaotic characteristics and route.

We do not give a detailed description on all dynamic
xnodels as mentioned in Sec. I. As a specific example, we
only deal with the model (1.8), which is rewritten as

i8qE+ BxxE+ E = 0.1+g E2 (4.4)

In nuxnerical processes, we choose the initial parameters
as e = 0.1, e = 1.0005m/4, and vary g.

After many experiments, we find that the route &oxn
the exactly periodic solution to chaos is a quasiperiodic
route as shown in Fig. 7. From the figure, we see that
the periodic oscillation of amplitude for fields is broken
down with the increase of g; in particular, the stochas-
tic behavior occurs as displayed in Fig. 7(d) for g = 0.1.
For the phase-space trajectories, an exactly recurrent xno-
tion for the cubic NSE (g = 0) is given in Fig. 7(a)
and Fig. 7(a'). We also note that the phase trajectories
in Fig. 7(a') only move around an elliptic fixed point,
and are not coxnpletely consistent with those discussed
in Sec. III (B).This is because the initial parameter e is
not quite small. For g = 0.0005, the figures [Fig 7(b).
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From Eqs. (2.16) and (2.17), we know that (Ep, 0),
where Ep = [1/(1 —g)]ii'2 with 0 & g ( 1,
corresponds to a saddle point in the phase space
(!E(X,Y, t)!,d!E(X,Y, t)!jdt). The stable and unstable
manifolds that possess the saddle point also correspond
to 8 = 45', 225' and 8 = 135', 315', respectively. As dis-
cussed in Sec. IV, here, we choose the parametric values
as 8 = 45', g = 0.1, and trace the trajectories at the
fixed space point I = 0 and Y = 0. From Fig. 11, we
observe that the phase-space trajectories are completely
similar to that in the case of one dimension as shown
in Fig. 6. Therefore, we can say that the formation of
chaos in the current toro-dixnensional space is also due
to irregular HMO crossings. Of course, we cannot think
that such a HMO chaos in the saturable NSE (5.1) only
arises From the nonlinear perturbation. This is because
the cubic NSE in two-diinensional space is also not in-
tegrable. In the FoHowing analyses, we may understand
that the pseudorecurrence appears if the satm'able non-
linear efFects are very strong. %/ah the decrease of the
saturable effects, the irregular RRCO crossings lead to
the destruction of pseudorecurrence and the appearance
of stochasticity for 6elds.

0
0 0.2 0.4

I

0.6 oz
K

X

1.2 1.4 B. Blovrup, chaos, and pseudoreeurrence

FIG. 10. (a) The linear growth rate vs K» aud Xy-. (b)
The growth rate vs K~ with Ky = 0.

In the following simulations, we choose parametric val-
ues as ~ = 0.1 and 8 = 4, and vary the y value.



50 PA I lERN STRUCTURES ON GENERALIZED NONLINEAR. . . 4147

our simulation indeed verifies the prediction given by
Akhemediev et aL [22] on HMO chaos.

2

j8
o 0
Cl
tQ

-2

-5
1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 B

IE(o,o,t) I

FIG. 11. Stable and unstable manifolds for the hyperbolic
fixed point (EO, O) in the two-dimensional NSE (5.1); it is
,noted, that this structure is similar to that in the ease of one
dimension, which illustrates the characteristic of HMO chaos.

8. Pseudomcu~nt solution

A more interesting phenomenon is observed in
Fig. 12(e)—Fig. 12(h). With the increase of parameter
g, we find that pseudorecurrence appears. As plotted in
Fig. 12(e) and Fig. 12(g), the amplitude of the fields be-
haves like a periodiclike oscillation. These phase trajec-
tories are basically regular, where the motion is smooth
in small regions of phase space as described in Fig. 12(f)
and Fig. 12(h). In other words, the KAM tori are not
completely broken down when the parameter g comes
close to 1. In the work of Akhemediev et al. [22], they
chose g = 1 and also observed such a pseudorecurrent
behavior.

C. Spatial patterns

1. Sirayalai solutiora

To clearly study the features of the dyaamic sys-
tem (5.1), we first discuss characteristics of the two-
dimensionally cubic NSE. As g = 0, Eq. (5.1) corresponds
to the critical NSE. The solution should be the singular
one, where the time of blowup is finite [23] and the field
intensities exhibit catastrophic processes.

In order to describe the temporally evolutive charac-
teristics in more detail, we trace the trajectory at a fixed
position, i.e., X = 0, Y = 0. Figure 12(a) exhibits the
time evolution of amplitude for fields, where the solu-
tion is rapidly developed &om the initial value 1 to the
larger value within a finite time that is associated with
the time of blowup as seen &om Fig. 13. Owing to the
rapid change of amplitude with time, its slope must be
very large. Therefore, Fig. 12(b) indicates that the tra-
jectory in phase space is not bounded within a small area.

Chaotic solution

Taking into account g = 0.1, we observe that the am-
plitude stochastically oscillates as shown in Fig. 12(c).
The field Eo is developed due to the modulational in-
stability &om the initial value Eo to a finite amplitude
toward saturation, thea oscillates down because of the
saturable nonlinear force (ponderomotive force), and so
on. For the trajectory, its manifolds exhibit irregular
HMO crossings, where the trajectory as seen in Fig. 12(d)
is bounded with a finite region of phase space. Thus

In the following, we describe the pattern structures
corresponding to these three kinds of solutions as stated
in the above. For the case of g = 0, we observe &om
Fig. 13(a)—Fig. 13(d) the developing processes of the ini-
tial field (2.10) due to the modulation instability. Fig-
ure 13(c) and Fig. 13(d) correspond to the singular so-
lutions. Comparing Fig. 13(b) with Fig. 13(c), we un-
derstand that the time of blowup lies in the regions of
t' = 1.2 —2.0. With the evolution of time, the solu-
tion is rapidly contracted and the energy of the system
is concentrated on some small spots. In laser-produced
plasmas, these processes describe filamentation of laser
beams [25—27,37] as the time variable t is replaced by
the propagative distance Z. In plasma turbulence, they
describe the Langmuir collapse due to the ion-acoustic
perturbation [8], which is infiuenced by ponderomotive
force in the NSE (1.1).

For the case of the chaotic solution, the numerical ex-
periments show that the singular solution does not occur
where the saturable nonlinear efFects prevent blowup of
the solution. Speaking in terms of physics, the saturable
nonlinear force prevents the collapse of Langmuir waves
or the coaceatration of energy. We find &om Fig. 14 that
difFerent patterns are formed. In particular, the spatial
symmetry is broken down with the development of wave
fields as sketched in Fig. 14(b), which are difFerent from
those in the initial stages of evolution where the spa-
tial symmetry is kept as shown in Fig. 14(a). For these
structures, we will now give a description in terms of the
energy spectrum.

For the case of pseudorecurrent solutions, we see &om
Fig. 15 where g = 0.8 that the spatial structures at t = 50
are difFerent &om those at t = 200; however, the symme-
try of the solution is basically kept. In addition, we note
&om Fig. 16 where g = 0.98 that the spatial structure
at t = 50 is basically consistent with that at t = 200.
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VI. SUMMAMES AND DISCUSSIONS

7.p

7.fs

15

FIG. 16. The spatial patterns of the pseudorecurrent solu-
tion with g = 0.98.

energy in the Fourier modes. That is, the less energy
is partitioned in the diagonal modes or the more in the
nondiagonal modes, the higher the height of the spatial
patterns is or the smaller the width.

Now, we discuss the spectrum evolution correspond-
ing to the pseudorecurrent solution. From Fig. 19, we
see that the energy in the main mode Koo compared
with the other modes is very large and oscillates within
a small regime. The evolution'of the energy in the diag-
onal modes exhibits a periodiclike motion. In particular,
the energy in mode K22 indicates the energy is not ex-
actly FPU recurrent, but the partition of the energy in
this mode is not irregular, which actually illustrates the
pseudorecurrent feature. On the other hand, we 6nd from
the numerical experiments that the energy in the nondi-
agonal modes is nearly zero, which shows that the spatial
structures developed by the modulational instability are
symmetric, as seen in Fig. 15.

We have systematically described the spatiotemporal
characteristics of a series of generalized NSE s in one-
and two-dimensional space. Our investigations show that
a high order Hamiltonian perturbation can lead to the
destruction of the coherent structures and the forma-
tion of spatiotemporally complicated patterns. The route
from coherent patterns to complicated ones is quasi-
periodic. For two-dimensional problems, our numerical
experiments illustrate that the singular solution, spa-
tiotemporal chaos, and pseudorecurrence can appear for
the same NSE with the increase of the saturable non-
linear efFects, where the spatial patterns and the energy
partition of the system in the Fourier modes exhibit com-
pletely diferent dynamic behaviors. We emphasize in
particular that the symmetric destruction of the spatial
patterns is associated with the energy in the nondiago-
nal modes. These results should be of signi6cance in the
study of pattern dynamics in plasma waves and other
nonlinear waves.

As far as various branches of physics are concerned,
the presence of the stochastic wave 6elds depends on the
evolution processes of systems. In other words, the lowest
order nonlinear term ~E~2E is the predominant nonlinear
mechanism in the evolving initial stages. Some impor-
tant phenomena, such as coherent structures and Lang-
muir wave collapse, etc. , can be reasonably explained by
making use of the cubic NSE. In the strongly nonlin-
ear stages, other physical eEects could play an important
role. For example, the effects of Landau damping of the
high frequency waves become quite signi6cant in plasma
turbulence. The energy dissipation should be considered
[38,39]. On the other hand, nonlinear interactions, such
as the fourth 6eld interaction and other nonlinear sat-
urable mechanisms, should be involved in the processes
of plasma instabilities. These nonlinear saturable efFects
make rich dynamic behaviors occur. In a sense, these
complicated dynamic phenomena would probably be the
characteristic of wave propagation.

We should mention that our results are also impor-
tant in laser fusion studies. Considering the process of
ponderomotive 6lamentation, under the static approxi-
mation, one studies the characteristics of ponderomotive
filamentation in terms of the NSE's (1.6)—(1.9) [25—28,37]
when the time variable t is replaced by the spatial vari-
able Z. It is shown that the focusing becomes a periodic
oscillation, rather than a catastrophic process due to the
saturable eKects. In the previous work, it was illustrated
that there exists competition between SBS and 6lamen-
tation instability [25,26]. Taking into account filamen-
tation produced by perturbations or nonuniformities in
light that cause (or are caused by) local changes in the di-
electric constant, index of refraction, or the medium, we
easily understand that these inhomogeneities may be en-
larged due to mode-mode interactions, where the trans-
verse instability as described in this work or the self-
modulation as discussed by Max et al. [40] can broaden
the frequency spectrum of the incident laser. For these
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instabilities, as a matter of fact, there is no reason to
separate them in the nonlinear regime. They can coexist
and afFect each other. Of course, SBS is related to the
resonant interaction of a three-wave coupling, whereas
self-focusing and filamentation instabilities involve non-
resonant ion density disturbances. As far as the stochas-
ic instabilities are concerned, the mode-mode resonant

interaction [41] may also drive the chaotic propagation
of light. The current investigations show that an initial

homogeneous beam may develop into incoherent light,
where the symmetry of the laser could be broken down
and the center of the beams would be shifted ofF axis
due to the in8uence of the ponderomotive force. Of
course, the recent modulation should be the spatial mod-
ulation in the transverse direction, because the starting
equations (1.6)—(1.9) only allow for transverse inhomo-
geneities when the time variable t is replaced by the axial
variable Z.
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Finally, we point out that our work only deals with the
initial homogeneous state. It is shown that the presence
of the HMO crossings is a potential source of stochas-
tic behavior. We expect that more important theoretical
work on HMO chaos in the continuum Hamiltonian sys-
tem can be furthered in future study. We also note that
it is an interesting and important piece of research for us

to consider the initial inhomogeneous state, which could
be more difficult for theoretical analysis as in this work.
We think that the key problem should still be the con-
stitution of a suitable phase space for these continuum
Hamiltonian systems so that one can readily describe
their dynamic characteristics in terms of integrable and
nonintegrable equations.
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