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Textures of surfactant monolayers
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Microscopy studies of coexistence droplets of (tilted) surfactant molecules absorbed at air-water inter-
faces have demonstrated that such droplets contain a variety of textures. In this paper we describe the
observed droplet textures using the Landau free energy for tilted hexatic surfactant Sms, supplemented

by a boundary energy. It is shown that this free energy can naturally explain the morphology of droplet
textures with sixfold symmetry. In particular, it predicts (i) the existence of a continuous transition from
straight to kinked domain walls and (ii) the appearance of spiral textures associated with spontaneous
chiral symmetry breaking in part of the phase diagram. We compare the predicted textures with recent
polarized Buorescence and Brewster-angle microscopy experiments.

PACS number(s): 68.10.—m, 64.70.Md, 61.30.Jf, 68.15.+e

I. Ibl I.MODUC1ION

A. Surfactant monolayers

Surfactant molecules form monomolecular films at air-
water interfaces. If the molecules are insoluble in water
such films are called Langmuir monolayers while
monomolecular films of soluble amphiphiles are known as
Gibbs monolayers. These monolayers are important for
both biological and technical reasons. For example,
lungs will not function without the coating of a surfac-
tant monolayer; monolayers transferred from water to
sohd supports are the basis of chemical and biological
sensors. Surfactant monolayers are also of fundamental
physical interest, however, because they allow investiga-
tion of naturally occurring two-dimensional (D =2) sys-
tems which are relatively easy to prepare. It is well

known that the statistical mechanics of D =2 many-body
systems often is quite different from that of three-
dimensional (D =3) systems. A well-known example of
unusual physics in D =2—and relevant for what
follows —is the prediction by Nelson and Halperin [I] of
the existence of the so-called "hexatic" phase as a new

phase intervening between D =2 liquids and solids. Hex-
atics are, in essence, D =2 liquid crystals that lack
translational order but retain order in the orientations of
the bonds between the center-of-mass positions of neigh-

boring molecules. The bond-orientational order leads to
a sixfold orientational symmetry in the phase. Hexatic
phases are not common, but they have been encountered
in free-standing smectic (Sm} liquid crystal films [2].

In recent years, phase diagrams of Langmuir mono-
layers have been investigated in considerable detail [3].
Macroscopic studies, such as isotherm measurements in
which the D =2 pressure is determined as a function of
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the monolayer area, have been supplemented by micro-
scopic methods, such as surface x-ray diffraction studies,
which have revealed the nature of the monolayer phases.
The phase diagram of monolayers exhibits the D =2 ana-
logs of the usual gas, liquid, and solid phases of D =3
materials, but additional phases are found as well. In
particular, one encounters a variety of higher density
"liquid-condensed" (LC) phases, which intervene between
the solid and a low-density "liquid-expanded" (LE) phase.

The existence of a multiplicity of phases in Langmuir
monolayers should not really be surprising. Surfactant
molecules consist of nonpolar hydrocarbon tails (general-
ly 25—40 A in length) attached to hydrophilic polar head
groups. At area densities typical of those of LC phases,
the tails of the surfactant molecules have a rodlike con-
formation. It is well known that D =3 liquids of rodlike
molecules can condense into a variety of liquid-crystal
mesophases. It is thus natural to suppose that the vari-
ous LC phases could be D =2 analogs of familiar liquid-
crystal mesophases, while the LE phase would corre-
spond to the D =2 analog of an isotropic liquid (the sur-
factant tails in the LE phase have a more random confor-
mation). This relationship was proposed at least 60 years
ago [4], but it is only recently that the x-ray studies have
demonstrated [5] that the molecular packings in surfac-
tant monolayer phases bear a one-to-one correspondence
to certain known smectic liquid-crystalline phases [6].

Four of these phases are believed to be hexatics [5].
They differ primarily in the orientation of their tails with
respect to the surface normal and the bond-orientational
order. In the discussion by Bibo, Knobler, and Peterson
[3] they have been classified as the LS ("superliquid" },L &,

Lz, and Lz phases. A very schematic phase diagram is
shown in Fig. 1. In the LS phase, the average direction
of the tails is perpendicular to the surface while in the
remaining phases the tails are tilted. The tail orientation
can be described by introducing the position dependent
two-component unit vector c(x) (or "c director"), which
indicates the projection onto the surface of the average
direction of the molecular tails (see Fig. l, inset). The c
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of the free-standing tilted smectic hexatic %ms, but a
large variety of other textures has been found as we11.

For example, the "ground state" of the LC phase for
some fatty acids is a stripe texture consisting of straight
or kinked defect lines [10]. The mesoscopic studies thus
suggest that the analogy between surfactant monolayers
and the D =3 tilted-hexatic liquid crystals may not be
complete since in the latter the ground state is believed to
be uniform.

8. Droplet textures

FIG. 1. Schematic pressure-temperature (m-T) phase diagram
showing several of the monolayer phases that have been
identified in fatty acids and their esters. The relative locations
of the gas (6), liquid-expanded (L &), and superliquid phases (LS)
are much the same for many substances. The locations of the
other phases and the positions of the boundaries between them
are more variable and less we11 known. The inset shows the
orientation of the molecular tilt azimuth with respect to the lo-
cal sixfold structure of the head groups that exists in the three
tilted hexatic phase L &, L2, and L, .

The spatial variation of the optical axis of a texture
reflects an inhomogeneous structure of the underlying or-
der parameter. The order parameter of an LC phase is
rather complex: it is a combination of the e director and

director points toward nearest neighbors in the L2 phase,
toward next-nearest neighbors in the L 2 phase, and along
an intermediate direction in the L '& phase. In the
language of smectic liquid crystals, the tilted LC phases
are the analogs of, respectively, the smectic-I, -I, and -L
phases (we will use this latter notation}. The fact that the
surfactant liquid crystals appear to be hexatics is some-
what surprising since tilted hexatics are less common in
the phase behavior of D =3 liquid crystals. On the other
hand, the nematic phase, which is quite common in D = 3

liquid crystals, appears to be absent in the surfactant
films studied to date.

Liquid crystals in D =3 are birefringent and can be
characterized visually by their striking multicolored tex-
tures when viewed between polarizers; the textures reflect
the spatial variation of the local optical axis of the ma-
terial. This spatial variation may be due to metastable
"defects, " which for topological reasons cannot decay,
or, for finite systems, it may be imposed by boundary
conditions at the sample boundary. Textures are also
very useful as a quick diagnostic for the type of liquid
crystal involved. Recent studies of monolayers by polar-
ized fluorescence [7] and Brewster-angle reflection [8,9]
have shown that the spatial variation of the c director can
be observed and demonstrated that LC phases of surfac-
tant monolayers also exhibit textures; see Fig. 2.

At Srst sight, it mould appear natural to expect that
LC-phase textures should be similar to those of the analo-
gous D =3 smectic phases for achiral molecules (the sur-
factant molecules used were generally achiral). The most
striking texture of the D =3 phases is a fivefold star-
shaped object [2]. The appearance of stars in tilted hex
atics can be readily explained by allowing the c director
to couple to the local orientation of the six hexatic crys-
tallographic axes (see below}. LC phases have indeed
been found to exhibit star textures very similar to those

FIG. 2. Images of droplet textures. The droplets are sur-

rounded by the liquid expanded phase, which is isotropic. I,'a)

Polarized fluorescence microscope image of a star defect in a
monolayer of methyl octadecanoate. {b) Brewster-angle micro-
scope image of a boojum in a monolayer of pentdecanoic acid
4,'courtesy J. Meunier).



50 TEXTURES OF SURFACTANT MONOI. AYERS 415

the hexatic order parameter. We characterize the hexatic
order by the angle 8 made by the six crystallographic
axes with a fixed axis, say, the x axis (see Fig. 3}. This
"bond-angle" field 8(x) can, like c(x), vary across the
sample. Obviously, 8(x) is defined only modulo 60' so the
LC free energy must be invariant under rotations by mul-

tiples of 60'. It is the experience in D =3 systems that
complex order parameters produce complex textural pat-
terns and, as mentioned, a bewildering variety of textures
has indeed been observed in monolayers. The question
now is whether we can hope to carry out a program of
texture classification in surfactant monolayers in the
same way as has been done for D =3 liquid crystals [11].
In this paper we will address this issue only for the sim-

plest possible case, namely, that of a D =2 LC droplet in-
side a LE matrix. In such a confined geometry, the num-
ber of allowed textures should be severely reduced by the
boundary constraints imposed on both the c(x) and 8(x)
fields at the LE-LC interface because they raise the ener-

gy cost of adding metastable topological defects. Electro-
static repulsions inhibit the coalescence of LC droplets
and their sizes are therefore generally only of order 100
pm; their shapes usually vary between circular to (round-
ed} hexagonal.

Coexistence droplets in ester monolayers show a range
of textures; some common ones are shown in Fig. 4. As
one moves along the LE-LC coexistence curve, reversible
changes are observed in both the texture and the droplet
shape. On the basis of these relaxation processes, it is
reasonable to assume that the observed textures represent
a local equilibrium of the free energy rather than a
frozen, or pinned, configuration determined entirely by
the preparation history of the drops. The fluorescence
data on the esters also reveal that c(x} is fairly strongly
anchored along the normal to the LE-LC interface. The
boundary condition on the bond-angle field (if any) is not
known since the 8(x) field cannot be visualized by the
Suorescence studies. The observed textures are often
based on the sixfold hexagonal "basic motif' shown in
Fig. 4(a). The origin of the basic motif is easily under-
stood if we assume that the hexatic degree of freedom is

FIG. 3. Definition of the bond angle 8, the tilt angle 8, the
tilt azimuth y, and the director c.
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FIG. 4. Droplet textures for hexatic phases. The lines indi-

cate the orientation of the molecular tilt azimuth within each
domain and the shading gives an impression of the contrast that

would be observed in an image obtained by polarized fiuores-

cence microscopy.

relatively stir and thus spatially unifo~ across the drop.
In each of the six sectors of the hexagon, the in-plane
director is also uniform and locked to the bond-angle
field with the relative angle between them assuming the
equilibrium value appropriate for the LC phase in ques-
tion. At the boundary between adjacent sectors, c(x}
makes a rapid rotation of 60' to flip from one of the six
hexatic directions to the next ("60' wall" ). On the other
hand, coexistence droplets of fatty acid monolayers have
textures with no sharp boundaries but rather a smoothly
varying c director. Understanding the origin of the
difFerent phenomenology of ester surfactants and fatty
acid surfactants is important for learning how to inter-
pret the observed textures.

If the droplet shape is a perfect hexagon, then the basic
motif naturally satisfies normal boundary conditions for
the c director at the LE-LC interface. In this view, hex-
agonal droplet shapes would be a consequence of the nor-
mal boundary conditions on the molecular tail rather
than the direct influence of the hexatic order on the LE-
LC interface. This is confirmed by the fact that in the
high-pressure LS phase, where the molecules are perpen-
dicular to the air-water interface, the droplets are not
hexagonal even though the phase is believed to be hexatic
[7]. It is important for the following to note that the
strength of the boundary conditions on the c director is,
in reality, limited. As shown in Fig. 4(b), experiments
also show the existence of circular drops with a hexago-
nal interior structure, which could only satisfy normal
boundary conditions by distorting the textural uniformity
inside the six sectors, which does not appear to be the
case. As will be discussed below, a circular shape is actu-
ally a natural variation of the basic motif if we allow for
an increase of the LE-LC line tension with respect to that
of a 60' waB.

The basic motif is closely related to the five-armed
star-shaped defects observed both in the LC phase of ma-
terials such as pentadecanoic acid away from the coex-
istence line as well as in freely suspended films of tilted
smectic hexatics. We can crudely think of the basic motif
as a stable star-type defect imposed by the LE-LC phase
boundary. The difference between the two textures is
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that in a true fivefold star, the tilt and bond degrees of
freedom necessarily are not uniform inside the star seg-
ments whereas for the ideal basic motif they are uniform.
Also, the five defect lines of the star terminate at point
defects while the six defect lines of the basic motif ter-
minate at the LE-LC phase boundary (it is actually the
energy cost of the point defects of a star that controls the
number of arms of the star).

Typical droplet shapes and textures of the esters,
shown in Figs. 4(a)-4(e), show a variety of variations on
the basic motif of Fig. 4(a).

(i) The observed droplet shapes vary from circular to
hexagonal [Figs. 4(a) and 4(b)] while rosette-shaped coex-
istence droplets have been observed [12] as well [see Fig.
4(c)].

(ii) The basic motif is frequently found [7,12] to be de-
formed into sixfold "spiral" and "broken-spiral" patterns
[Figs. 4(d) and 4(e}]. Both left- and right-handed defor-
mations of the spokes of the hexagon are encountered.
This chirality provides us with a puzzle since, although
chiral textures are encountered in the free-standing tilted
hexatic films, it appears to be necessary for the constitu-
ent molecules to be chiral while the constituent surfac-
tant molecules used in the Langmuir monolayer experi-
ments showing the spirals are achiral. Note, however,
that if we leave the I or the F phase to enter the I. phase,
we must make a left or right choice. In other words, the
L-phase order parameter has broken chiral symmetry
even though the constituent molecules are achiral. It is
not known at present whether the droplets with spiral
textures indeed are in the L phase.

(iii) Less common variations are textures with three de-
fect lines emerging from a point on the LE-LC boundary
or textures with defect lines that appear to terminate near
the center of the droplet.

Star textures are less common in droplets of fatty acids.
A characteristic texture in that case appears to be the
"boojum" [see Figs. 2(b} and 5(a}], which has been ob-
served by Brewster-angle microscopy [9,13].

It is the aim of this paper to see whether the basic
motif and its variations can be naturally explained with
the type of Landau —de Gennes theories [11] that have
been very successful in explaining the textures in D =3
liquid crystals. A theoretical description of textures in
surfactant monolayers must be based on a model cou-
pling the two order-parameter fields (i.e., the c-director
and bond-angle fields). Such a theory was previously
developed by Nelson and Halperin [14] for the case of
liquid-crystal films of tilted hexatics, which have the

FIG. 5. Droplet textures without domain walls. (a) m =1
boojum splay defect; (b) m = 1 splay defect.

same order-parameter structure as hexatic surfactant
films. Selinger and Nelson [15] discussed the resulting I
L-I' phase diagram and showed that the model can de-
scribe the star textures observed by Dierker, Pindak, and
Meyer [2] in free-standing films of tilted hexatics. How-
ever, the ground state of the model is always uniform and
no spiral textures are encountered, so it cannot be direct-
ly applied to surfactant films. Selinger et al. [16] pro-
posed that this originates from the fact that the Landau
free energy of a surfactant monolayer (i) does not need to
be reflection invariant with respect to mirror reflection in
the plane of the film and (ii) does not need to obey any
c~—c symmetry because of the head-tail asymmetry of
surfactant molecules located at an interface. This lower-
ing of the symmetry —an example of surface ferroelectri-
city [17]—combined with the intrinsic head-tail asym-
metry of the surfactant molecules allows new terms in the
free energy. Because of such terms, the ground state of
surfactant monolayers need not be tianslationally invari-
ant. For example, for sufiiciently strong head-tail asym-
metry the ground state of the I and F phases is an array
of parallel 60' splay-type defect lines where the tails (or
heads} have an unusually high concentration, somewhat
resembling a D =2 variant of the well known L phase of
surfactant molecules in D=3 [18]. (In the I. phase, it
also possible to have a stripe pattern with alternating
chirality and bend deformation in the texture. ) The
stripe textures observed in fatty acids [10,13,19] indeed
appear to be consistent with an array of splay walls. We
will, in the following, supplement the free energy of Sel-
inger et al. [16] with an expression for the LE-LC
boundary energy to see whether the model is also able to
reproduce the observed droplet textures.

II. CONTINUUM THEORY

In this section, we will develop the continuum theory
that will form the basis of a subsequent discussion of tex-
tures. We start by briefly reviewing the Landau free en-

ergy for hexatic surfactant monolayers as proposed in
Refs. [14—16]. A Landau free energy of Langmuir
monolayers in an LC phase should describe (i) the relative
free energy cost of the I, L, and F phases and (ii) the free
energy cost of spatial variations of the tilt and bond-angle
fields. We will restrict ourselves to the case of mono-
layers with tilted molecules. The c director mill be denot-
ed by

c(x ) =cosy&(x },sing)(x)

with p(x) the tilt-azimuth field of the molecular tails (see
Fig. 3}. We will always assume that the polar angle be-
tween the molecular tails and the surface normal is fixed
at some equilibrium value by local molecular interac-
tions. The reason that we can neglect spatial variations
of the polar angle is that a global simultaneous rotation
over any angle of the azimuthal angle p(x) and the bond-
angle field 8(x} is a symmetry operation of the system as
a whole and thus should cost no energy (neglecting
boundary efi'ects). A corresponding coupled long-
wavelength spatial variation of the two Selds thus should
cost relatively little energy. On the other hand, the polar
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angle has no such "gapless mode" and any variation

away from its equilibrium value will be energetica11y cost-
ly. If we restrict ourselves to low-energy textures, we can
thus neglect variations of the polar angle.

The simplest possible Landau free energy per unit area

f consistent with the symmetries of a tilted hexatic sur-

factant monolayer is

f=
—,'Kb(V8)~+ —,'K, (V.c) +—,'K3(VXc)+ V[6(8—y)]
—A,,cos[6(8—qr))V c—A,bsin[6(8 —y}]z (VXc) .

(2.2)

The first term in f is the deformation energy of a nonuni-

form D =2 hexatic with K6 the hexatic rigidity; this term
describes the energy cost of spatial variations in the
bond-angle field. The magnitude of K6 is not known, but
if K6 is large compared to K& and K3 (see below), then
thermodynamic stability of the hexatic phase requires
that K6 exceed k~ T, (times a numerical constant of order
one) with kz the Boltzmann constant and T, the transi-
tion temperature between the hexatic and the isotropic
liquid (the LE phase in the present case). The second and
third terms in Eq. (2.2) represent the usual deformation
free energy of a D=2 nematic liquid crystal. There are
two Frank constants: the splay rigidity K, and the bend-

ing rigidity K3, both, like K6, having the dimensions of
energy. Not much is known about their magnitudes ex-
cept that they must be less than K6 for the case of the es-

ters.
The fourth term is the coupling energy between the

two fields. The function V(8—y} is periodic in 8—
q&

with period 2m/6. This ensures both the sixfold periodi-
city of the bond-angle field as well as the invariance un-
der simultaneous global rotations of the bond-angle and
tilt-azimuth fields. Following Selinger and Nelson [15],
we expand the coupling in a Fourier series. The first two
terms are

V= —h6cos[6(8 —p)]—h, 2cos[12(8—qr)] — . . (2.3)

The minimum of V determines the nature of the phase.
In terms of the relative angle 8—y, there are three
possibilities [assuming that we can keep only the two
terms of Eq. (2.3)]: (i) For h6&0 and h6 & —4h&2, the
minimum is at 8—y=m2n/6, with m =0, 1, . . . , 5

(I phase). (ii) For hb &0 and hb &4h &2, the mini-
mum is at 8 y=n/6+m2—n/6 (F. phase}. (iii} For

2 ~6 4~12 nd ~12 0, there are 12 minima at
8—qr=ka+m(2m/6), with a an angle intermediate be-
tween 0 and n/6 (L phase). The sign in front of a deter-
mines whether the phase has right- or left-handed chirali-
ty.

As a function of h6 there is, for positive h, 2, a sharp
Srst-order transition at 56=0 from the I to the I' phase,
while for negative h 12 there are two second-order transi-
tions at h6=+4h, z (see Fig. 6). The L phase intervenes
between these two limits with a varying from zero at the
I-L phase boundary to n l6 at the L Fphase boundary. -

The last two terms in the free-energy density require
special discussion. They are permitted for surfactant

FIG. 6. Phase diagram of tilted hexatic monolayers as a func-

tion of the potential parameters h6 and h &2. The insets show the
orientation of the tilt azimuth with respect to the bond angle in

each phase.

X= ( sin[6(8 —
qr ) ] ) (2.4}

as a chiral order parameter, which is nonzero only in the
L phase. It couples linearly to the bend of the texture ac-
cording to Eq. (2.2).

monolayers (but not for bulk systems) because of (i) the
asymmetry between the air and water media at whose in-
terface the surfactant molecules are located and (ii) the
head-tail asymmetry of surfactant molecules. The diver-
gence of the c director represents a splay of the texture.
Because of the head-tail asymmetry, splayed textures
with c(x) replaced by —c(x) must have a different energy.
Since V c is a scalar under the symmetry operations of all
three phases, terms linear in V c are in principle allowed.
However, V.c by itself is a total derivative, which can be
adsorbed in the boundary conditions discussed below.
The splay term thus can only contribute to the free-
energy density if we multiply it by a position-dependent
scalar. To construct such a scalar out of the y and 8
fields, we define the two unit vectors d=(cos6q&, sin6p)
and e=(cos68, sin68}. The lowest-order scalar consistent
with the sixfold symmetry is d e and (d e)V c produces
the A,, term in f. The parameter A,, [which has units of
(energy)/(length)] is a measure of the head-tail asym-
metry of the surfactant molecules residing at the inter-
face.

The pseudovector VXc represents a bend of the tex-
ture. Since there is no re6ection symmetry at the air-
water interface, a term of the form z V Xc, with z the in-
terface normal, would seem possible, but it is in fact not
permitted in the Landau free-energy density because it
transforms as a pseudoscalar. %e can, however, con-
struct a scalar from the dot product of V Xc with d Xe,
which provides the A,b term in Eq. (2.2). Note that this
scalar vanishes if 8 is locked to P at the two equilibrium
angles (0 and 30') corresponding to the I and F phases
[see discussion following Eq. (2.3)] so it plays a role only
in the chiral L phase. Vfe can define
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We now must construct a Landau-type expression for
the interfacial energy between the liquid-condensed and
the liquid-expanded phases. If we want to compare
textural energies of coexistence droplets, such a term
must be added to the area contribution (i.e., the integral
of f over the droplet area). This interfacial energy must
depend on the relative orientation between the normal to
the LE-LC boundary n, the c director, and the hexatic
axes. We will assume that the lock-in energy has an ana-
lytic dependence on the relative angle P between the c
director and n so that it can be expanded in a Fourier
series in P in the same spirit as Eq. (2.3}. For the reasons
given in the Introduction, we will assume that the hexatic
degree of freedom does not couple to the interfacial ener-

gy.
There is again no head-tail symmetry at the LE-LC in-

terface and thus no c~—c symmetry. This means that
the Fourier series must start directly with the cos(P) and
sin(P) terms. The lowest-order terms in the Fourier
series of the interfacial energy F; are then

F,. = s y
—I &c n —I 2 2 c n —1— (2.5)

The first term in Eq. (2.5) is the isotropic LE-LC interfa-
cial line tension y. The second term corresponds to the
cos(P) contribution. The sin(P) term is proportional to
z VXc. Since such terms are forbidden in the I and F
phases and since Eq. (2.5) must hold in all three phases,
we are not allowed to include it. The sign of the constant
I, distinguishes whether the tail or the head prefers to be
normal to the boundary. The third term is the cos(2P)
contribution, which would be the lowest-order boundary
term for nematic liquid crystals (which do obey the
c~—c symmetry). Thermodynamic stability of the LE-
LC interface requires that the interfacial energy as a
whole be positive.

We will assume that the Fourier series converges
suiciently fast that we can restrict ourselves to the first
few terms discussed above. The optimal boundary angle

P as a function of I', and I'2 is then easily found by
minimizing Eq. (2.5): (i) For I, positive and I, & 4Tz, —
P=O. (ii) For I, negative and I, &41'z, P=~. (iii}

cos(P) = —I &/41 z in the remaining case.
If I 2 is positive, the boundary energy is thus always

minimal if the c director is normal to the boundary (with
I

&
determining whether the head or tail sticks out of the

droplet}. For negative 1 z, the optimal orientation for the
e director is either again along the normal or at an angle

P with the normal that varies continuously from 0 to m if
~

I'&
~

& 4~ I 2~. We conclude that, in contrast to the case of
D =3 nematics, where parallel boundary conditions are
common, parallel boundary conditions are not realized in
surfactant monolayers at LE-LC interfaces except for the
special case when I, is exactly zero. Since I, is in gen-
eral permitted to be finite, we should not expect to en-
counter parallel boundary conditions in the LC phases
except for a special line in the phase diagram defined by
I,(II, T)=0. Normal boundary conditions are expected
to be most commonly encountered. Most (but not all}
textures examined indeed appear to have normal bound-
ary conditions. We will assume that I, is large compared

fd rVc=fdscn,
~r z. Xc= z nXc .

(2.6a)

(2.6b)

If 8 is everywhere strictly locked to y, then, from Eq.
(2.6a), A,,cos[6(8—p)] reduces to a trivial renormaliza-
tion of I, while the A, bsin[6(8 —q&}] term produces a
"sin(P)" type contribution to the boundary energy. This
contribution is proportional to the (pseudoscalar) chiral
order parameter X, so it only appears in the L phase, as it
should. If one assumes A,b to be small compared to the I
parameters, then the textural boundary conditions of the
locked L phase are found to be

kbX
I', +4I 2

(2.7a)

(i) for 1, positive and I, & —4I 2,

A,bX+ r, +4r,
(ii) for I, negative and 1,& 41 2, and (iii)

cos(P) = —I, /41"z

(2.7b)

(2.7c)

in the remaining case. We thus conclude that in the L
phase, in regions where the c director is locked to the
hexatic axes, the molecular tails cannot be strictly normal
to LE-LC interface and that their angle is proportional to
the chiral order parameter.

An important ingredient in the discussion of alterna-
tive textures is the characteristic length scales that can be
constructed by combining the various parameters in the
free energy. We start with the A,, splay term, which is

linear in V' c. It favors inhomogeneous splay-type tex-
tures while the restoring elastic terms, which favor a
homogeneous texture, are quadratic in V.c. This means
that in general the free energy can be lowered by allowing
a splay texture with a characteristic length scale:

g, =@6/A, , (2.8a)

assuming the rigidity E6 against deforming the hexatic
degree of freedom to be greater than the splay and bend
Frank constants. If the sample is large compared to g„
we expect to encounter a deformed splay texture in the
ground state, while for sample sizes small compared to
this length, the ground-state deformation would be small.

to I z, so we always have a preferred normal orientation.
Physically, this is reasonable because the molecular tails
of the surfactant molecules at the interface are likely to
prefer, for entropic reasons, the lower-density environ-
ment of the liquid-expanded phase. Thermodynamic sta-
bility then imposes ~l, ~ &y; otherwise we could create
negative interfacial energies by a suitable orientation of
the e director with respect to the interface normal.

The boundary conditions on the c director in the L
phase must be considered separately. Returning to the
bulk free energy Eq. (2.2), the Gauss and Stokes theorems
state that
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Similarly, the characteristic length for a bend modulation
1s

gb=+E, /h6,

012 +El /~ 12

(2.9a)

(2.9b)

The physical meaning of these two length scales is that of
"healing lengths": they determine how rapidly the rela-
tive angle 8—q will approach the equilibrium value ap-
propriate to the phase in question if this angle has been
perturbed away from equilibrium at some point. Tilted
LC phases generally contain many defect lines where the
molecular tail flips from one azimuthal orientation to
another (see Sec. IV) and their width should be set by
these healing lengths. The widths of these defect lines as
determined by Brewster-angle microscopy [9] indicate
that healing lengths are about 2-3 pm.

III. LOCKED TEXTURES

We begin our discussion of textures by assuming that
the lock-in energy V(8—y) between the hexatic and
orientational degrees of freedom is suKciently large so
that the relative angle 8—p can be kept ffxed at an equi-
librium value appropriate to the phase under considera-
tion. We will discuss later the condition for locked tex-
tures to be realized. Experimentally, the condition ap-
pears to hold for the case of LE-LC coexistence droplets
of fatty acids. The assumption of lock-in simplifies the
full free energy F (i.e., the integral of f over the droplet
area plus the LE-LC boundary energy) to F=Ftt+Fs
with

Fs =fdx dy P(E, +E6)(V c) +—,'(E3+E&)(VXc) ],
(3.1a)

Fs--yards —I,ddsc n Xbfds—z cXn.
—r,

wads

[2(c-n) —1], (3.1b)

(2.8b)

Selinger et al. [16] found that g, and fb are the charac-
teristic length scales of the stripe patterns decorating the
ground state of the LC phase in the case of infinite films.
If we identify the stripe texture observed experimentally
in the LC phase away from coexistence with the predict-
ed stripe patterns, then these length scales are of order
100 pm. This is somewhat larger than the typical size of
the coexistence droplets, so the textural deformation pro-
duced by the A,, and A,b terms in the free energy should be
modest. We thus will treat the two terms using perturba-
tion theory.

By combining the Frank energies with the coupling
V(8—q) between the hexatic and orientational degrees of
freedom, we can identify more characteristic length
scales. The two most relevant ones are

Note that A, b is proportional to the chiral order parame-
ter X. The bulk term F~ is the free energy of a D=2
nematic with an effective splay Frank constant K, +K6
and an effective bend constant K3+K6. The only meta-
stable defects of a D =2 nematic are point defects called
disclinations. They can be classified, just as for D=3
nematics, by the rotation of the director on going around
the defect in a closed circuit. If ha is the rotation angle
of c around the defect, then we must demand that
ha=m2~, with m an integer. Half-integer disclinations,
which are present in D =3 nematics, are forbidden here
because c and —c correspond to physically distinct
molecular orientations. An m = 1 point disclination
obeying normal boundary conditions is shown in Fig. 5(b)
(m = —1 disclinations are inconsistent with normal
boundary conditions in a circular drop [11]and will be
ignored}.

To construct a textural pattern, we must first minimize
F with respect to the tilt-azimuth angle y. This produces
a complex nonlinear equation that simplifies greatly if we
set the two Frank constants equal:

htp=0, (3.3)

(3.4)

where ao is a cutoff' (of molecular size}. The constant
E,(m =1}describes the disclination core energy, i.e., the
contribution to hF from a core region with a radius of or-
der the molecular length cp, where our continuum theory
would not be valid. A circular droplet with no texture at
all would have an energy of F=2m.yR. An m =1 dis-
clination has a lower energy than such a uniform drop
provided the droplet radius exceeds a length of order
E,(m =1)/II &I or (E&+E&)/Ir&I, whichever is larger.

We can also have point defects that are mixtures of
splay and bend. An obvious trial state is another (and
more general) solution of Eq. (3.3}

i.e., the tilt-azimuth angle obeys the Laplace equation.
Nevertheless, we shall see that it is important to allow K&
and K3 to differ. Accordingly, we will assume that the
general nature of textures for which K& and K3 are not
equal is similar to that of the solutions of Eq. (3.3) and
use those solutions to construct trial textures whose vari-
ational parameters are found by minimizing the full free
energy.

We start with a pure m =1 splay point defect at the
center of the coordinate system. This texture has a c
director that is parallel (or antiparallel) to the radial unit
vector (we will choose the orientation that minimizes the
boundary energy). This indeed is a solution of Eq. (3.3)
(with the tilt-azimuth angle qr equal to the in-plane az-
imuth angle). The free energy cost of an m =1 splay de-
fect in a circular drop of radius R is then

F=2m 1n(R /ap)[E&+E6]

where ct =cos(sts+po}, sin(P+po), (3.5)

r, =r, +X,cos[6(8—q) ],
Xb=k,bsin[6(8 —y}, ] .

(3.2a)

(3.2b)

with y=P+yo, P the in-plane azimuthal angle, and yo a
variational parameter. The "field lines" of this texture
are, for general yp, logarithmic spirals with yp controlling
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F=2m ln(R/ao)[Eb+Kicos (yo)+E3sin (yo)]

+2m R [y —I',cos(yo) —I 2cos(2yo) —
Xb sin(po) ]

+E,(m =1), (3.6)

the pitch. If yo is zero or m, the texture reduces to a pure
m = 1 splay disclination and if yo is km. /2, to a pure bend
disclination. The pitch angle of the trial texture is equal
to the boundary angle P of the c director with the LC-LE
interface normal discussed in Sec. II. The trial free ener-

gy is

large R, we should expect to find a spiral texture that
resembles an m=1 bend texture at the origin and an
m =1 splay texture at the boundary. This type of texture
is not related to the growth of a chiral order parameter,
but should be easily distinguishable from the uniform
spiral textures discussed previously by the radial gradient
in the Quorescence or Brewster intensity. A second as-
sumption embodied in our trial texture is that of azimu-
thal symmetry. A single point defect that does not have
azimuthal symmetry is the so-called "boojum, " an m = 1

splay defect pulled to the edge of the sample [Fig. 5(a)].
If we choose the origin of a polar coordinate system to lie
at the droplet edge where the boojum is to be located,
then the appropriate solution of Eq. (3.3) is

%o=
XbR /(K3 E i )ln(R /ao—), K, & K3 (3.7a)

m/2+~1',
~

R/( E,

—K, )ln(R/a ), E, &K, .

(3.7b)

Since kb is proportional to the chiral order parameter, it
follows that for E, &E3 the texture is radial in the I and
F phases and spiral in the L phase [compare Eqs. (2.4)
and (3.2b)]. The pitch of the spiral remains a measure of
the chiral order parameter [although the proportionality
constant differs from the one found in (i)]. For E, & K3,
the texture is nearly pure bend with circular field lines.
Combining the two results, we see that in both cases (i)
and (ii) the appearance of a spiral texture correlates with
being in the L phase, while textures may undergo a
dramatic reorganization at the threshold K, =E3. We
will see that these conclusions have more general validity.
Although m =1 disclinations appear to be natural tex-
tures for droplets, they have not been observed in alkyl-
ester monolayers.

It was implicit in our variational ansatz that any spiral
texture is homogeneous across the drop. This assump-
tion may be invalid if the bulk contribution to the free en-

ergy prefers a bend texture while the surface energy
demands normal boundary conditions. For K& &E3 and

where we assume that the core energy does not depend
on the pitch of the spiral. Note that the hexatic rigidity
does not couple to the pitch angle of the spiral. Minimiz-

ing the free energy with respect to the pitch angle qo of
the spiral gives results that depend on the droplet radius.
Assuming I', »Xb, we find the following.

(i) R »Ei 3/~I'i~. In this range of droplet radii, the
boundary energy F, dominates and fixes the pitch angle
so (po assumes the value of the boundary angle P comput-
ed in Sec. II. Assuming that the preferred boundary
orientation of the e director is to be along the interface
normal, droplets of the I and Fphase should exhibit radi-
al splay textures while those of the I.phase should exhibit
a spiral texture whose pitch angle is proportional to the
chiral order parameter X [see Eqs. (2.7a} and (2.7b)].

(ii) R «E, 3/~1', ~. In this range, the nematic free en-

ergy F~ dominates and the preferred boundary condi-
tions need not be obeyed. We find the following results:

c=cos(2$), sin(2$) (3.8)

for r &2R cos(y). The free-energy cost of this texture is
(normal boundary conditions}

F=2m'ln(2R /ao)[Eb+ —,'(Ei+E3)]—0.2[K, +Eb]

0.9[E,+—E, ]+2mR(y ~I, ~

—I,}+E,(boojum) .

(3.9)

y(x,y)=q& 0+x a+bye +xy+( d—x y ), (3.10)

which define a family of second-order curves along which
the c director has a constant direction. For nearly uni-

The textural part of the free energy of the boojum is very
close to that of an m =1 disclination (if the two Frank
constants are about equal}. It is not possible, however, to
compare the respective defect energies because the core
energy of a boojum will generally be quite difFerent from
that of a disclination because the core of the boojum is lo-
cated at the LE-LC boundary while the disclination core
is deep inside the droplet. A droplet containing a boojum
will no longer be circularly symmetric because the asym-
metric texture exerts a torque on the LE-LC interface.

If the core energy of the boojum is high compared to
the splay energy, it may be more favorable to place the
core outside the sample as discussed by Langer and Seth-
na [20] and Hinshaw and Petschek [21] for chiral Sm-C'
films. This avoids the divergent energy at the core and
produces a more uniform texture inside the droplet but,
for a pure boojum texture, at the cost of a violation of
normal boundary conditions. Boojum textures of this

type have indeed been observed in Gibbs monolayers of
fatty acids by Henon and Meunier [9] and in Langmuir
monolayers of pentadecanoic acid by Overbeck, Honig,
and Mobius [13]. In ester monolayers, boojum-type tex-
tures have also been observed, but they contain line de-
fects of the type discussed in Sec. IV.

The boojum textures with a virtual core represent a
balance between a violation of the normal boundary con-
ditions and increased textural uniformity. To examine
droplet textures for weak boundary conditions more gen-
erally, it is convenient to use polynomial solutions of Eq.
(3.3):
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form textures, we can assume aR and bR to be small
compared to unity and keep only the first three terms.
Choosing the average c director to lie along the x axis, we
can set g7p=0. The associated variational energy is then

P= 'nR—z(K6+K)(a +b )+2myR+ ,'I &—bR (3.11)

where for simplicity we set the Prank constants equal to
K. The only variational minimum of Eq. (3.11) is at a =0
and b =—(1/2n )I', /(K6+K) with the curves of constant
c director reducing to lines parallel to the x axis. The re-
sulting texture is a virtual boojum whose core is on the x
axis far outside the droplet, so virtual boojum textures
should be generally expected for weak boundary condi-
tions. Note that the droplet texture can never be truly
uniform, no matter how small I &, which again can be
traced to the head-tail asymmetry. The free energy of the
nearly uniform texture is

I )8
8 K+K (3.12)

17

The condition bR «1 for Eq. (3.10) to apply translates
to R lI', ~/(K6+K) &&1. This condition is apparently
obeyed for the fatty acid surfactants, but not for the es-
ters. If the droplet retains a circular shape, despite the
torque exerted by the mismatch at the boundary, then I

&

must be less than the surface energy y, in which case the
second term of Eq. (3.12) is only a small correction.

IV. LINF DEFECTS:
LIGHT AND HEAVY WALLS

As mentioned in the Introduction, the hexatic stiffness
K6 of the LC phases studied experimentally so far ap-
pears to be rather large compared to the splay and bend
Frank constants. The energy of the m =1 disclination
discussed in Sec. II increases linearly with K6 [see Eq.
(3.6)). The energy cost might be reduced if the hexatic
degree of freedom were uniform across the droplet, thus
restricting the texture to the c-director field. This implies
that we must relax the condition that the relative angle
8—y between the c director and the hexatic axes is fixed
at one of its equilibrium values. Since such deviations
will be energetically costly, we must expect them to be re-
stricted to thin lines stretching across the texture. Line
defects are ubiquitous in the observed textures and they
are the subject of this section.

The internal structure of line defects must be a transi-
tion' over a short distance between different equivalent
minima of the lock-in potential V[6(8—Ip)]. The calcu-
lation of the internal structure, by a minimization of Eq.
(2.2), is conventional and we will only summarize the re-
sults. In the following, the hexatic angle will always be
kept fixed at 8=0. A typical line defect in the I and F
phases (where V has six minima) will correspond to a rap-
id change of gr by +60 (a m./3 line defect). In the I
phase, where there are 12 minima, there are two possibili-
ties: (i) a "type-I" chiral wall, where the angle qr changes
by 2a and the L phase switches from left- to right-handed
chirality {or vice versa); and (ii) a "type-II" chiral wall,

where y changes by m /3 —2a. We can construct an ordi-
nary m/3 line defect by letting a type-I wall be followed

by a type-II wa11.
The characteristic width of a line defect as well as its

line tension depend on the defect type. For a m. /3 line de-
fect, the tilt field y must cross a barrier that is essentially
controlled by the first Fourier coefBcient h6 of the lock-in
potential [see Eqs. (2.2) and (2.3)]. The characteristic
widths of a n/3 line defect are the healing lengths
f6=+K&/b& for a line defect dominated by splay and

$6=+K3/h6 for a line defect dominated by bend.
Splay and bend walls are illustrated in Fig. 7. On dimen-
sional grounds, we must expect that the line tension e, of a
n. /3 wall is of order

e, h6(6 (splay wall),

h, g, (bend wall) .
(4.1a)

(4.1b)

In the L phase, both type-I and -II chiral defects are con-
trolled by the second Fourier coefficient h, 2, except close
to the I-L and L-F phase boundaries. Inside the L phase,
away from the phase boundaries, the characteristic
length scales are $,2=+K, /h, z for splay walls and

QK3 /h &2 for bend walls. The line tensions in this
case are found by replacing b6 by h, 2 in Eqs. (4.1). For
h6 &0, the rotation 2a of the t." director across a type-I
wall is smaller than the rotation n /3 —2a across a type-II
wall and consequently the type-I wall has the lower line
tension while for b6 &0, the situation is reversed. In the
Appendix we give an explicit solution of the internal
structure of a defect line for a special case.

If a defect line connecting two points A and B were
characterized simply by a line tension, then its lowest-
energy state would always be a straight line. However,
the defect line exists in an anisotropic, hexatic environ-
ment. As the line traces its path across a droplet, the an-
gle between the tangent vector of the curve and the hex-

Bend, Heads turning to
the right

, lg)88

~~5885~
Bend, Heads turning to

the left

Splay repulsive
interaction

between head
groups

wall region

FIG. 7. Two equivalent domains in the F phase, differing by
2~/6 in their tilt azimuth, are separated by domain walls of
different orientation. The figure illustrates how the nature of
the domain wall (splay or bend) depends on the orientation an-
gle P.
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s(g)= g A„cos(ng) .
n=0

(4.2)

The various Fourier coefficients represent the different
physical effects discussed above. The Ao term is the iso-
tropic contribution to the line tension. It is equal to the
average ep=(e, +eb)/2 of the splay and bend line ten-
sions [see Eq. (4.1)]. The Ai term must be proportional
to a combination of the k parameters and the Az term
must be proportional to E, —K3. An explicit calculation
shows (see the Appendix) that

atic crystallographic axes varies and the lowest-energy
configuration of the defect line need no longer be a
straight line. Consider two neighboring domains (1 and
2) of Fphase with respective c directors ci and cz separat-
ed by a m /3 wall. Let c=—,'(c, +cz) and let g be the angle
between c and the tangent vector of the wall. In Fig. 7
we show the case where domain 2 is a circular region in-
side domain 1. It shows that when /=0 and n the wall is
pure splay while for P= km/2 the wall is pure bend with
hybrid variants at arbitrary angles. Let e(f} be the
angle-dependent line tension. Note from Fig. 7 that the
function s(f) is not invariant under a 60' rotation of P as
would be naively expected. A rotation by +n. /2 turns a
splay wall into a bend wall and vice versa so we must ex-
pect e(g) —e(f+n/2) to be proportional to K, —K3 be-
cause this combination controls the difference in energy
between splay and bend textures. Examination of Fig. 7
also reveals that e(P) appears to have a symmetry for a
rotation over m. Under this operation, the field lines of
the line texture are invariant while their direction is in-
verted. The head-tail asymmetry of surfactant mono-
layers breaks the invariance of a texture under inversion
of the field lines so s(f)—E(g+m) must be proportional
to some combination of the A, parameters in the free ener-

gy, Eq. (2.2).
Since the line tension clearly must be periodic with

period 2m, we can always develop s(g) in a Fourier series:

with t(s} a unit vector tangent to the defect line and R„n
the distance between A and 8. This energy is, according
to Eq. (4.4), not dependent on the path taken by the de-
fect line, so in determining the optimal path of the defect
line between fixed points, we can neglect the first term of
the Fourier series. The n =2 term in Eq. (4.2) is thus the
lowest-order term, which is sensitive to the path of the
defect line (apart froin the isotropic line tension).

Assume first that E& & K3. The n =2 term is then min-
imized by choosing /=0 or m, i.e., a splay wall. Consider
such a splay wall with a tangent along the y axis so the c
directors c, and cz of the two adjacent domains make an-

gles of +30' with the y axis. On the other hand, a bend
wall lying along the x axis, with /= km/2 and ci and cz
making angles of a/2+30' with the x axis, would maxi-
mize the n=2 term. We thus can call a splay wall
"light" and a bend wall "heavy. " Now assume that we
begin with a splay wall and increase K, (say, by changing
the temperature) until it exceeds K3. The bend and splay
walls exchange their roles as light and heavy walls. If,
however, we keep the initial and final points A and 8 of
the defect line fixed at their original positions (at, for in-

stance, the center and one of the vertices of a hexagonal
droplet) and also keep the two domain orientations ci and

cz fixed, then the wall is, in a sense, frustrated. The splay
wall would like to turn into a bend wall to lower the line

tension, but it can do so only by letting the direction of
the wall point away from the y axis. This would indeed
lower the local line tension, but it also increases the
overall length of the line, thereby raising the contribution
of the isotropic n =0 term to the line energy. The true
configuration of the defect line must result from some
compromise between these two effects.

As an example, a straight wall along the y axis, with
/=0, has, using Eqs. (4.2) and (4.3), a line energy of

r

K)
(4.5a)

1 3

Ah+kg Ab'+
5 7

(I,F phase), (4.3a)
with I. the distance between the end points A and 8. Al-
ternatively, we could choose a defect path with a 90' kink
in the middle with g=kn/4 along the two legs of the
kink. This would have an energy

(4.3b)
b,Ek;„k=2&2Leo . (4.5b)

The value of A
&

in the I. phase is more complex and is
discussed in the Appendix. It follows from Eqs. (2.8),
(2.9), (4.1), and (4.3) that A, /A 0 and A, /A z are both of
the order of g/g, the ratio of the two characteristic
length scales of our problexn discussed in Sec. II. For the
textures studied so far this ratio is small, so the contribu-
tion of the n =1 term to the Fourier series is expected to
be smaller than that of the n =2 term. Indeed, let A and
8 be the initial and final points of the defect lines and s
the arc length along the defect line with, as before, f(s)
the local angle between the tangent vector to the defect
line and c. Keeping the end points fixed, the contribution
to the total line energy hE from the n =1 term in Eq.
(4.2) is proportional to

aE, ™f cos[P(s)]ds ~y f t(s)ds ~y.R„& (4.4)

If K, /K3) 1/(&2 —1), then the kink solution has a
lo~er energy, while in the opposite case we must choose
the straight-line configuration. The threshold for the ap-
pearance of kinks with arbitrary kink angle is E& /E3 =2.
The kink angle 5z starts from 180 and gradually de-
creases as we increase K i (Fig. 8}:

1
5z =~—2 arccos

1 3

(4.6)

We thus must expect a progressive reorganization of the
texture of the droplets characterized by the appearance of
kinks as we cross the threshold Ki/K3=2 from below.
If we had started with a straight bend wall for K, & E&,
kinks would have appeared at a critical value less than
E3 as we reduced K, . In other words, the changes in the
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180

120—

—,'E, (b}

2K'" X +I{.

(5.2)

60—

We conclude that if the anisotropic contribution to the
interfacial energy exceeds the defect line tension

0—
I

0
I I

6 8
K1/K3

I

10

2K'
"IC+R

then there is a critical radius

(5.3)

FIG. 8. Dependence of the kink angle 5z on the ratio K~ /K3
for a droplet with strong perpendicular boundary conditions to
the isotropic phase. Starting at K&/K3=2, kinks smoothly
evolve by decreasing the kink angle from ~ to lower values.

texture around K& =K3 should be characterized by a no-
ticeable hysteresis.

V. DROPLET TEXTURES

A. Basic motif revisited

We now will return to the general problem of droplet
textures, using the results obtained in Secs. III and IV to
construct a catalog of stable droplet textures as allowed
by our continuum free energy. In the Introduction we
discussed the basic motif of most observed droplet tex-
tures: a central radial defect with six line defects emerg-
ing from the core [Figs. 4(a}-4(c)]. The drop is either
circular, hexagonal, or rosette shaped. In each of the six
segments, the director is roughly uniform and normal to
the boundary. We will want to compare the energy cost
associated with the variations on the basic motif. In or-
der to do so, we must start with an estimate of the energy
cost of the texture of the basic motif itself.

We first will assume a perfectly hexagonal drop. In the
language of Sec. IV, the six segments of the drop are bor-
dered by six n/3 splay walls where the director makes a
60' rotation (either /=0 or g=~ splay wills). The free
energy of the basic motif with a purely hexagonal shape is
then

2K)F=6R e ~ +6R jy —il'ii —I ]+E,(b)

(5.1}

with RH the radius of a circle circumscribing the hexa-
gon. The Srst term in Eq. (5.1) is the energy of the six
line defects obtained from Eq. (4.5a). The second term is
the usual LE-LC interfacial energy, while the third term
is the core energy of the central defect. The core of the
central defect and its energy E,(b) may differ from that
of the m = 1 disclination of Sec. III [22].

The energy calculated from Eq. (5.1) may be compared
with 6yRH, the energy of a droplet with a nearly homo-
geneous texture [see Eq. (3.12)). The condition for the
basic motif to have a lower energy than a uniform hexag-
onal drop is

R, =
2K;" X +I{.1 3

(5.4)

E,(b}—E, (m =1)
+C2

1

r —Il, l

+C3R
1

ln(R /ao), (5.5)

with the C s positive numbers of order one. The second
term is due to the difference in core energies of the two
textures, while the last term is due to the fact that the
perimeter of a hexagon (or rounded hexagon) exceeds
that of a circle of the same area as the hexagon. If we as-
sume that both the core energies and the Frank constants
are of order kz T, then the first and third terms dominate
for droplet radii of order 100 p,m (assuming g6 to be a few
micrometers and y, which must exceed

~ I, ~, to be of or-
der kz T/ao}.

As we argued in the Introduction, the observed stabili-
ty of the basic motif requires the hexatic rigidity to
exceed the Frank constants. The surprise is how large
the hexatic rigidity actually must be for the basic motif to
be stable. According to Eq. (5.5},for large enough drop-
let radii R the basic motif always has a higher energy
than the m =1 disclination. The reason is that the ener-

gy of an m =1 disclination increases only logarithmically

beyond which coexistence droplets must have a texture in
their ground-state configuration (although of course not
necessarily the basic motif). Recall that we reached simi-
lar conclusions in the discussion of the m = 1 disclination.
Notice that the critical radius is not one of our "natural"
length scales. It is controlled by the core energy of the
central defect in the basic motif. Droplets with radii
smaller than R, have (nearly} uniform textures. If the in-

equality Eq. (5.3}is not obeyed, then the (nearly} uniform
texture has a lower energy than the basic motif for any
droplet radius. In the present model we thus must as-
sume that the fatty acids, which have nearly uniform
droplet textures, violate Eq. (5.3) while the eaters, which
exhibit the basic motif or one of its variations, obey it.

We can also compare the basic motif with the m=1
splay disclination in a circular drop discussed in Sec. III.
The basic motif has a lower energy provided

K)
(K6/E, ) ) C, (R /$6)
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B. Droplet shape

The geometrical signature of a coexistence drop that
can be probed most easily is its shape. The basic motif is
a perfect hexagon, but real coexistence drops are not per-
fect hexagons. Their shape normally ranges from circu-
lar to rounded hexagons. It could be thought that this is
simply due to the effect of thermal fluctuations, which al-
ways tend to round two-dimensional facetted structures
because of thermal roughening [18]. However, more re-
cently six-petalled rosette-shaped droplets have also been
seen which would be difBcult to explain as a roughening
effect and we will ignore thermal fluctuations in the fol-
lowing. The shape of a droplet is in general determined
by the various contributions to Eq. (5.1): the LE-LC line
tension y, the strength I 1 of the normal boundary condi-
tions, and finally the line energy so of the m/3 defect
lines. One would expect three types of shapes for a fixed
given droplet area: a circular shape (with a weak sixfold
modulation) for y » ~I', ~, a hexagonal shape for ~1, ~

of
order y, and finally a rosette shape for large cp. A circu-
lar shape obviously has the lowest energy when the iso-
tropic LE-LC line tension is large, while large ~1'&~ im-

poses normal boundary conditions on the c director, and
thus a hexagonal shape, at the price of an increased inter-
facial perimeter.

To see how a rosette shape can occur, set I,=0 and let
P be the angle of contact between the defect line and the
LE-LC boundary. If op=0, then this angle is 90', while
for finite cp Young's law must be obeyed at the intersec-
tion point where the defect line meets the LE-LC phase
boundary:

2/1
Eo =2/ cosP .

1 3

(5.6}

As we increase eo with respect to y, P falls below 90' and
the circle transforms into a six-sectored rosette whose
perimeter consists of segments of circles. The reason that
the boundary must consist of circle segments is that the
pressure inside the coexistence drop is uniform (as it is a
liquid}. For 1

&
=0 Laplace's law must be obeyed, which

requires that the pressure drop across the interface equals
the product of the interface curvature and the interface
tension. Since the interface curvature is a constant, the
boundary must be a circle segment. Note that we must
demand that the line tension is not too great

2I(
1

Ep (2g (5.7)

for the rosette to be stable.
We cannot directly use Young's law for finite I 1

be-
cause the anisotropy of the boundary condition implies

with R while the energy of the basic motif increases
linearly. For droplets of radius 100 pm, the first term of
Eq (5.5} requires K6 to be more than an order of magni-
tude larger than E, . The third term would increase this
estimate even more. The absence of certain textures thus
gives us important information about the various con-
stants entering in the free energy.

that a torque is exerted at the intersection point. Howev-
er, for a sixfold symmetric droplet texture with six defect
lines connecting the center of the drop to six intersection
points at the LE-LC boundary, and with uniform texture
inside the six sectors of the drop, the I'& term in Eq. (2.5)
can be written as

FI= y —I cs -ns+-- ds

=f(y —I,c zXt(s)+ )ds

sectors

(5.8)

Here t(s) is a unit vector tangent to the LE-LC interface,
P, is the perimeter of a sector, and C, is the length of a
chord inside a segment stretching between two of the in-
tersection points. The I, term thus behaves like a (nega-
tive) line tension acting on the line segments connecting
the intersection points and tends to increase the chord
lengths. We can still use Young's law, provided we in-
clude the negative line tensions of the six chords. The re-
sult is

2E1
sp i

I i i

=2$ cosP .
1 3

(5.9)

If ~I',
~

is less than s02K, /(K, +K3), we retain the rosette
shape. In the opposite case, P must exceed 90', which
means that the droplet has a hexagonal shape. A perfect
hexagon would correspond to P= 120', which is reached
when ~I, ~

equals so[2K, /(K, +K3)]+y. But as we saw
earlier, ~1, ~

cannot exceed y for reasons of thermo-
dynamic stability, so we conclude that droplets with the
basic motif are at best hexagons with rounded edges.

In summary, for y large compared to both Fp and I 1,
the shape is roughly circular; for c,p comparable to y and
both large compared to I'„the shape is a rosette with
apex angle P given by Eq. (5.6); and for I, and y compa-
rable and both large compared to cp, the shape is a
rounded hexagon, with the transition from rounded hexa-
gon to rosette taking place at so[2K, /(K, +K3 )]= ~ I, ~.

C. Dodecagonal droplets

For L-phase droplets, the m/3 wall can break up into a
type-I and a type-II wall, as we saw in Sec. III. One of
these two walls will then be "high contrast" and one "low
contrast" in terms of fluorescence and Brewster-angle
studies (since the contrast should increase with the mag-
nitude of the rotation of the director across a wall).
Type-I and type-II walls can either repel or attract (de-
pending on the relative magnitudes of E, —E3 and the
head-tail asymmetry). The sign of the interaction and the
energy cost of the intersection points between defect lines
and the phase boundary determine the minimum energy
configuration, which is either type-I walls halfway be-
tween type-II walls or type-I walls bound to type-II walls.
The first possibility would produce a dodecagonal-shaped
droplet with 12 defect lines of alternating high and low
contrast [Fig. 4(fl]. The shape should not be a perfect
dodecagon; however, because a low contrast defect line is
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not expected to deform the droplet shape as much as a
high contrast defect line.

sin6(8 —P),q' '
K.+K,

(5.11b)

D. Chiral textures

p(x,y)=k x ——~3R
(5.10)

with k an undetermined constant, which can be identified
as the "vorticity" z P'Xc of the texture. Here kR «1
because we are only testing the stability of the basic
motif, so we will expand the free energy of the wedge in
powers of kR. The textural energy cost per unit area is
proportional to K6k while the energy gain is proportion-
al to A,bk, which always produces a nonzero vorticity
upon minimization. A straightforward calculation shows
that allowing curvature in the texture lowers the free en-
ergy by

A, f, sin 6(8—P)~hF= ——A
2 (Es+E3}

(5.11a)

with A the droplet area. The vorticity

In the discussion of locked droplet textures in Sec. II,
we saw that the appearance of spiral textures was associ-
ated with the onset of chiral symmetry breaking in the L
phase, with the pitch of the spiral proportional to the
chiral order parameter. In this section we will explore
what happens to the basic motif when the L phase is en-
tered. The 12-fold structure of Fig. 4(f) is associated with
alternating left and right chiral domains, which try to
curve in opposite directions, thereby producing no net
chirality in the droplet. We thus will focus on the other
configuration [Fig. 4(d)], where type-I and type-II walls
are bound together, leaving only domains of one kind of
chirality. The question is whether we now can use the
net chiral deformation of the six defect lines of the basic
motif as a measure of the chiral order parameter of the L
phase, since such deformations are directly observable in
optical studies.

To investigate the stability of the basic motif against
chiral deformation, assume we have a (nearly) hexagonal
droplet and that the defect line tension is small compared
to the interfacial energy. Now consider one of the six
segments of the basic motif and choose the x axis to lie
along the director. The two line defects that form the
boundary of the segment emerge from the origin and'

make angles of kn/6 with the x axis. We will assume
that the c director and the hexatic axis remain locked to-
gether in the interior of the segment. To investigate the
stability we allow small excursions of the director away
from the x axis. For K& =K3, the rotation angle q of the
c director with respect to the x axis produced by the per-
turbation must obey Laplace's equation [b,p=0; see Eq.
(3.3)]. If we demand that this angle is zero at the LE-LC
boundary, we must impose as boundary condition
p[x =R (~3/2), y ]=0 on the solution of Laplace's equa-
tion. The appropriate solution of Laplace's equation cor-
responding to a bend texture associated with the onset of
chirality is

is proportional to the chiral order parameter X.
%e now consider the enect of the curvature of the tex-

ture on the defect line. The defect-line energy was dis-
cussed in Sec. IV:

K3 —K)E= Jds so 1 — cos[2$(s)]
3 1

(5.12)

with, as before, f the angle between the tangent to the
defect line and the average c director on opposite sides of
the line. The line integral is along one of the defect lines
whose initial and final points are kept fixed, so we do not
include the shape-independent first-order term in the
Fourier series. Because of the curvature of the texture in-
side the wedge, the angle g is forced to deviate away from
its optimal value of zero or m. The restoring torque will
tend to reduce the vorticity of the texture inside the
wedge, but it is easy to show that for kR «Ks/s we may
neglect this efFect.

Assuming k thus to be given by Eq. (5.11b), we mini-
mize Eq. (5.12) by allowing the defect line to be deformed
away from a straight line. Let y (s) be the displacement
of the defect line along the normal of the undeformed
line. For small y(s), this gives

l 2K
E=Cp S

K3 —K)+2 y'(s) — k(R —s )
3 1

(5.13)

The first term is the usual defect line tension while the
second term is the restoring energy, which tries to reduce

g to zero. Minimizing Eq. (5.13) gives the optimal shape
of the defect line, which is found to be a parabola with
curvature:

yll
~3(E3—E, )

2K3+K (
(5.14}

The curvature of the defect line is thus of order k, the
vorticity of the bend texture inside the segment. The full
structure of the perturbed droplet is shown in Fig. 3(d).
The line defect curvature y" is experimentally directly
accessible. Since the vorticity is, according to Eq.
(5.12b), proportional to the chiral order parameter, the
appearance of a spiral shape in the defect lines is indeed a
signature of the L phase.

There is, however, a caveat to this prediction. %'e saw
that for infinite samples, the ground state of the texture
can be a periodic array of m/3 splay walls due to the
head-tail asymmetry, an eiect which is not a signature of
the L phase. The characteristic stripe spacing is of the
order of the length g. If we start with a coexistence drop
with a basic motif and allow the drop to grow in size, it
could nucleate a sixfold Archimedean spiral (i.e., a spiral
with a fixed spacing between adjacent arms} [23]. The
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spacing would be of the order of the equilibrium width of
a splay wall, so that far from the defect core the texture
would locally assume its ground-state structure. For
large but finite droplet radii, with 8 comparable to or
larger than g, one could expect spiral structures com-
pletely unrelated to the chiral phase. This would, howev-
er, demand a nonuniform splay-type texture inside the six
segments rather than a bend texture discussed in this sec-
tion, which could not be consistent with the normal
boundary conditions at the LE-LC phase. Whether em-
bryonic Archimedean spirals really can be ruled out
would have to be determined experimentally by a careful
quantitative study of the texture inside the segments.

K. Kinked droplet textures

Finally, we consider the competition between splay and
bend inside a droplet. We saw in Sec. IV that a n. /3 splay
defect line prefers to be straight if E, &2K3, while for
K, )2K', it prefers to have a kink (Fig. 8) whose angle
decreases from n. as K, increases (when a bend wall is the
light defect). In the context of a coexistence droplet, this
means that along the LE-LC coexistence line there can be
a critical temperature and pressure, where E&=2E3,
which should mark the reorganization of the texture of
the droplet. Once K, exceeds 2E3, the six defect lines
prefer be kinked [Fig. 4(e)]. If we assume strictly uniform
textures in the interior of the six segments, then each de-
fect line could have a kink displacement that is arbitrarily
to either side of the defect line, as long as the kink angle
is so small that there is no steric interaction between the
six walls. However, since for E, &2E3 a kinked defect
line is not a pure bend wall —the stable configuration —it
must deform the texture inside the segments. In addi-
tion, because of the surface-ferroelectric terms, the tex-
ture inside the segments is in general not quite uniform.
For these reasons, the texture is expected to mediate an
interaction between the kinks on difFerent defect lines.
Although the problem is computationally involved, this
interaction is likely to be repulsive. This means, at least
in the L phase, that the kinks will all tend to deform in
the same direction, producing a kinked spiral [Fig. 4(d)].
The appearance of a kinked spiral inside a droplet thus
should not be used as an indicator of chiral symmetry
breaking.

VI. CONCLUSIONS

We have shown that the phenomenological free energy
Eq. (2.2) leads to a variety of domain structures for drop-
lets of hexatic monolayer phases surrounded by an isotro-
pic phase. Experiments on Langmuir and Gibbs mono-
layers are generally in accord with the picture outlined in
this paper; nearly every kind of texture discussed in the
paper has been observed in experiments. Indeed, one of
the textures, the rosette, was observed experimentally
[12] only after it had emerged from the theory. To our
knowledge the dodecagonal structure that we predict for
the L phase has not yet been observed, but it is not clear
if the tilt-angle resolution of the experimental techniques
is suSciently high to show the presence of both types of

defect lines. (A closely related structure has been seen,
however, in films of tilted hexatic liquid crystals [24].)

The polarized fluorescence and Brewster-angle micro-
scope images show spatial variations in the tilt azimuth
but do not immediately provide values of azimuth itself.
In principle, the tilt azimuth can be determined from the
fluorescence studies, but this requires a knowledge of
both the orientation of the transition moment of the
probe with respect to the axis of the surfactant molecule
and the tilt angle. Nevertheless, it is possible to deter-
mine some information about the tilt azimuth from the
symmetry of the images and the vari. ation in contrast
with the direction of the incident radiation [10] and one
finds qualitative agreement with the theory.

The relation between the Brewster-angle images and
the tilt azimuth is more direct because the contrast arises
from a property of the surfactant itself rather than from a
probe. A full analysis of the tilt structure of a domain re-
quires a careful study of the variation in intensity as a
function of the polarization; this has not yet been done
for monolayers at the air-water interface. Qverbeck,
Honig, and Mobius [13] have used the method of Berre-
man [25] to calculate the textures that would be observed
for a variety of domain structures consistent with those
described here and find that the calculated patterns close-
ly resemble those that have been observed.

Not all of the experiments are consistent with the
theory however. In recent work, Riviere, Henon, and
Meunier [19] examined striped textures in Gibbs mono-
layers of sodium myristate by Brewster-angle microscopy
and determined that the variation in the tilt azimuth
across each stripe was 95'+10. On the other hand,
fluorescence studies of stripes in Langmuir monolayers of
pentadecanoic acid seem to be consistent with a 60' varia-
tion in the tilt azimuth, but no quantitative comparison
with the theory could be carried out [26]. It is possible
that for sodium myristate the hexatic sti8ness E6 is com-
parable to the Frank constants K

&
and K3. Combined ro-

tations of the director and bond-angle fields across a
stripe would then produce a variation in the tilt azimuth
difFerent from 60'. Coexistence droplets with textures
that di5er from those that we have predicted are also ob-
served. These include structures (for example, those con-
taining two kinked defect lines) whose symmetry is
dificult to reconcile with the hexatic order and the
boundary conditions at the droplet interface.

Studies of the variations of textures with the chain
length of the amphiphile, which are now underway, will

allow a check on the consistency of the theory, but a
rigorous test will require a knowledge of a large number
of substance-dependent constants. Estimates of some of
them can be obtained from observations of the variations
of angles between tilt regions [9] and fluctuations in de-
fect lines [19], but experiments similar to those carried
out on films of liquid crystals by Rosenblatt et al [27].
must be carried out.

Finally, it is implicit in the analysis of the textures that
the monolayer phases are hexatics. The structures of the
monolayer phases of the fatty acids are now reasonably
mell known, but no di8'raction studies have been carried
out as yet on esters. A miscibility study of ester-acid
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mixtures [3] has allowed the phases in the esters to be

correlated to those of the acids, but there is still a great
deal of uncertainty about the nature of the ester phases.
In particular, the regions of stability of the I. phase
remain unknown.

ACKNOWLEDGMENTS

The work was supported by the Donors of the Petrole-
um Research Fund administered by the American Chem-

ical Society and by the NSF. T. F. acknowledges addi-
tional support under the F. Lynen program of the Alex-
ander von Humboldt Foundation. We are grateful to J.
Meunier for providing the image of the boojum in Fig. 2.

I

APPENDIX

In the limit of vanishing head-tail asymmetry and iso-
tropic Frank constants (K& =K3) the structures of the
domain walls may be calculated analytically. Being sta-
tionary solutions to the free energy they obey the equa-
tion

d (8—y} dV
K)+Kb dx2 d(8 q&)

—' (Al)

with (8—y) having equilibrium values at x=+~ The
solutions of this equation are

We thank him and S. Henon, I. Peterson, J. Selinger, and
F. Rondelez for helpful discussions.

K1+K6
(8—y} (x)=—arccot —sinh 6 h

K,K

' 1/2

(A2a)

(8 q)F(x)—= +(8 —y)I(x)—, (A2b)

1
(8—y) (x)=—arctanI.)

1+cr

1 —0.

' 1/2 K+K
tanh —+I —o —h

3 2 1 6

2 K1K6
(A2c)

1
( 8—

qr ) (x }=—arctan
1+or
1 —0

' 1/2
J

1/2K1+K6
coth —+1—o —h x

2 ' KK (A2d}

with o =hb/4h, 2.
Solution (A2a) refers to the I phase, (A2b) to the F

phase, and (A2c) and (A2d} to the two walls in the L
phase. In the I and F phases, h, 2 is unimportant and it
has therefore been set to zero. The length scales of Sec.
IV are found in the limit K6 »K, in the I and F phase
and, additionally, for a ~0 in the L phase (inside the L
phase, not at the boundaries}.

The orientation dependence of the domain wall energy
is found to first order in the Frank constant anisotropy
and the head-tail asymmetry by using the solutions (A2),
which are degenerate in energy with respect to the angle

1t (see Sec. IV and Fig. 5 for the definition of 1t}, as trial
states for the total free energy (2.2}. We find for the
domain wall energy per unit length in the I and Fphase:

K1 —K3
s =sl 1+ cos(2$)

1 3

A,b+A, ,—2 sin[5(8 —y);„]

sin[7(8 —p),„]cos(g),

K1 —K3
s=eL 1+ cos(2$)

n K1+K

Ah+kg—2 sin[5(8 —p);„—5n /6]

(A3b)

K1 —K3
e=clz 1+ cos(2$}

1 3

sin[7(8 —{p);„—7n /6] cos(f)

(A3c)

~b+A,, A,b
—A,,+ cos(hatt),

5 7
(A3a)

where the + sign refers to the I phase and the —sign to
the Fphase. In the L phase we Snd

for the type-I and type-II walls, respectively. The terms
Ao, A, , and A2 can be easily read off from Eqs. (A3).
Note that if the minimum energy is the splay
con6guration with lower head density in the I phase, then
the minimum energy in the F phase is the splay with
higher head density. The same is true for the type-I and
type-II walls well inside the L phase.
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