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Granular relaxation under tapping and the traffic problem

D.C. Hong, S. Yue, J.K. Rudra, M.Y. Choi, and Y.W. Kim
Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015

Depar~rraent of Physics, Xavier University of Louisiana, Post Box 116c, 7895 Palmetto Street, New Orleans, Louisiana 70185
Department of Physics, Seoul National University, Seoul 151 7/8-, Korea
(Received 20 December 1993; revised manuscript received 18 July 1994)

We study the relaxation of a one-dimensional granular pile of height L in a conSned geometry
under repeated tapping within the context of the difFusing void model. The reduction of height as a
function of the number of taps is proportional to the accumulated void density at the top layer. The
relaxation process is characterized by the two dynamic exponents z and z' which describe the time
dependence of the height reduction Ah(t) t' and the total relaxation time T(L) L' . While
the governing equation is nonlinear, we Snd numerically that z = z' = 1, which is robust against
perturbations and independent of the initial void distributions. We then show that the existence of
a steady state traveling wave solution is responsible for such a linear behavior. Next, we examine the
case where each void is able to maintain its overall topology as a round object that can subject itself
to compression. In this regime, the governing equations for voids reduce to traffic equations and
numerical solutions reveal that a cluster of voids arrives at the top periodically, which is manifested
by the appearance of periodic solutions in the density at the top. In this case, the relaxation proceeds
via a stick-slip process and the reduction of the height is sudden and discontinuous.

PACS number(s): 46.10.+z, 05.40.+j, 05.60.+w

I. INTRODUCTION

One of the difficulties in studying the dynamic response
of granular assembly is our inability to derive any sensi-
ble continuum equation starting &om the first principle
[1]. This is in contrast with what we have encountered
in Buid mechanics, where any Buid instability can be, in
principle, studied by careful examination of the Navier-
Stokes equation. For this reason, much of the current
activity in granular dynamics has focused on large scale
computer simulations such as molecular dynamics stud-
ies, where the interparticle interactions and &iction laws
were put in to mimic the realistic situations [2—6], or cel-
lular automata [7, 8], where dynamics must be put in
by hand based on some physical arguments. While there
seem to exist some fundamental differences between ordi-
nary Buid and the granular systems, for example, such as
the absence of precise relation between the stress and the
rate of strain in granular materials, at least at the level of
molecular dynamics or cellular automata currently em-
ployed in the literature, the primary difFerence appears
to lie in density. It is not very clear whether the form
of interparticle potential is really crucial in producing
several distinctive nonlinear responses of granular assem-
bly, which are absent in Buids, via molecular dynamics.
Even with elaborate friction laws [8], it is equally un-
clear whether such unusual responses would persist in
the low density limit. If so, then the simple hard sphere
gas with perhaps suitable friction laws should be able
to produce most of the current molecular dynamics re-
sults such as Brazilian nut segregation [9—13], convection
[14—16), propagating density waves [17—20], and possibly,
segregation of two difFerent types of grains under rota-
tion [21]. Dynamics of hard sphere gas is controlled by

the momentum transfer through a direct contact. Hence,
in the spirit of hard sphere gas, it is not unphysical to
assert that tracing the continuous yet stochastic rear-
rangement of grains to external stimuli is one of the key
elements in understanding the complex dynamic response
of the granular assembly. With this in mind, the diffus-
ing void model [22] was proposed to trace the stochastic
movement of voids rather than the grains under gravity.
The thermodynamic model of Mehta and Edwards [23],
which is based on the random packing of grains, might
be viewed &om this aspect, too, even though it is an
equilibriuxn model.

The diffusing void model has been shown to produce
most of the unique features of the granular flow patterns
in a confined geometry in the slow limit. The purpose of
this paper is to extend the diffusing void model further
to study the dynamic responae of the granular assembly.
Our primary focus in this paper is to understand the
recent experiment performed by Jaeger and his collabo-
rators [24], where a granular pile in a tube is repeatedly
tapped and the relaxation of the height was investigated.
We will first explain how one can study this problem
within the context of the diffusing void model, then de-
rive the dynamic equation of motion for the void, and
present n»merical solutions along with a particular solu-
tion relevant to the present case. We will further examine
under what conditions the equation should be modified
and show how the appropriate change of the diff'using
void model allows us to map this problem onto the traf-
fic problem, which predicts quite interesting relaxation
behavior.

This paper is organized as follows: Section II presents
the diff'using void model extended properly to study the
dynamic response. We begin with the continuity equa-
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tion for the void density, and consider the fact that the
motion of a void is afFected by the presence of voids above
it. This allows us to write the upward velocity of a void
as a function of the void density and its gradient, and
leads to the dynamic equation for the voids. The ob-
tained equation is solved numerically in Sec. III for vari-
ous initial void distributions. We present one particular
solution to the dynamic equation, which has the form of
the traveling wave, in an attempt to explain the m~meri-

cal results. Section IV is devoted to the modification of
the dynamic equation by explicitly writing down the time
dependent equation for the void velocity, which manifests
its close relation to the tradBc problem. Finally, a sum-
mary is given in Sec. V.

II. DIFFUSING VOID MODEL

Our investigation is based on the model recently pro-
posed in an attempt to study the dynamics of grains in a
confined geometry [25, 26]. This is a continuum version
of the discrete random walk model of granular flow [22],
termed "the difFusing void model. " The model is based
on the assumption recognized previously by Litwinyszyn
[27] and Mullins [28] and others [29] that the How of
granular particles in a confined geometry is caused by
the upward motion of voids resulting from the escape of
granular particles through an ori6ce. But there are sev-
eral crucial difFerences in our approach: The model can
describe the evolution of the free surface, stream lines
with and without obstacles, shock front below the obsta-
cle, and stagnant solids, which the previous authors were
unable to handle. This model was shown to correctly re-
produce most of the unique features of granular Bows in
a confined geometry, in particular, the now patterns and
stream lines in any geometry with and without obsta-
cles. In addition, we have recognized that the cascading
process at the surface and the motion of grains at or
near the boundary and obstacles are intrinsically nonlin-
ear and hence the equation of motion must be nonlinear,
which is, in our opinion, a sharp departure from the pre-
vious authors [27—29] who mainly used the linear biased
diffusion equation.

We now apply and extend this model further to study
the relaxation of granular particles to tapping. When
the grains confined in a tube are subject to tapping, the
height relaxes. Hence, the scientific question we address
in this paper is simple and straight forward: how does the
height of the granular assembly decrease as a function of
the n»mber of taps or, in case of continuous tapping, of
time'? Note that in any granular assembly the grains
are never perfectly ordered and an enormous amount
of minute voids are always present. Hence, if a verti-
cal column of granular materials is repeatedly tapped,
the grains become more ordered and the voids will move
upward until they meet the sea of voids (empty space),
which results in the reduction of the height. This process
is schematically drawn in Fig. 1.

Hence, in this picture, the reduction of the height,
Eh(t) = ho —h(t) with ho ——L the initial height and
h(t) the height at time t, will be proportional to the ac-
cumulated void density at the top layer:

(a) (b)

FIG. 1. Schematic picture of the relaxation of a granular
pile under repeated tapping. (a) Grains are contined in a
quasi-one-dimensional tube whose initial height is I. Since
the grains (black) are randomly packed, there exist numerous
minute voids inside (white circles). The top layer of the pile
meets the sea of voids. (b) Under repeated tapping, grains
relax and the voids move up, which are then accumulated at
the top. The reduction of the height b h is proportional to the
total accumulated void density at the top layer [See Eq. (1)].
Note that the massive black also contains regular as well as
irregular voids even in the totally relaxed configuration, which

must be subtracted in the stricted sense.

Note that since the dynamics is initiated by tapping,
the time t is expected to be linearly proportional to the
number of taps [30]. We point out here that even in the
totally relaxed configuration, there still exist regular and
irregular voids, which must be subtracted in the stricted
sense. The voids de6ned here are coarse grained ones
in such a way that in the totally relaxed con6gurations,
there exist no voids at all. One might equally define the
totally relaxed state as the one with some constant void
fraction and stop simulations whenever the void fraction
reaches this point.

We now derive the dynamic equation of motion for the
voids. Note that the current density J of the voids is
related to the time evolution of the void density p(r, t)
at any point via the continuity equation:

8—p(r, t) + V' .J = 0.

In the absence of gravity the grains in the assembly do
not interact with each other and the thermal energy is too
small to trigger the motion of grains. So we may rule out
any simple density-gradient driven isotropic dift'usion of

h(t)
b,h(t) = p „= dzp(z, t) t',

ho

where we have defined the dynamic exponent z to char-
acterize the relaxation process. A variable of particular
relevance in experiments might be the saturation time T,
beyond which the height saturates and the reduction of
height no longer results in by tapping. The saturation
time is the total relaxation time to the ground state. We
might de6ne the second dynamic exponent, z', to char-
acterize this process,
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the voids. However, »~»ke a liquid, under the in6uence of
the gravitational field, the grains exert frictional forces on
one another. Motion of the voids is, therefore, only due
to the gravitational and the resulting &ictional forces,
which cause them to move upward (in the z direction)
with velocity V, and also horizontally (in the xy plane)
with velocity V ~. The granular How is thus caused by
"the biased diffusion" of the voids due to gravity.

If the granular assembly is confined in a box where the
height is substantially larger than the width, the problem
then becomes efFectively a one-dimensional one and only
the motion along the z direction is of relevance. For
this one-dimensional problem, the current density J, of
the voids along the vertical direction can be written as a
product of the velocity and the density

J = V p(z). (4)

Bp 8 B»' Bp)—= ——F'» (1-p)]+D —
I p—IBt Bz Bz g Bz) ' (6)

the solution of which will provide information about the
relaxation of grains. Note that the term p(1 —p) has
maximum at p = 1/2, which might be considered as the
barrier that the void has to overcome. However, more rig-
orous analysis must be taken to acommodate the thresh-
old condition, which is essential for failure dynamics such
as granular dynamics, earthquakes, peeling, and dynamic
fracture [31]. Since Eq. (6) is intrinsically nonlinear, we
first pursue numerical solutions and then present one par-
ticular solution to the sinai&ar but a slightly difFerent one,
which is the subject of Sec. III.

III. NUMERICAL SOLUTIONS

In order to solve numerically Eq. (6), we first have to
provide the initial conditions. We assume that the height
of the column is L and that initially voids are distributed
according to the various distribution functions. We then
supply the two fixed boundary conditions, p(L, t) = 1

The upward velocity V, is simply caused by the vertical
push of the gravity. Note, however, that the motion of
the voids has relevance only when they are inside the
granular assembly. They stop moving whenever they face
a free surface or the empty space (sea of voids). Thus a
void ceases to move upward when there is a complete sea
of voids (i.e., p = 1) immediately above it. Hence, V, (z)
is expected to be proportional to [1 —p(z+b, z)] with Az
the characteristic size of the void.

We therefore write the upward velocity V, in the form

V, = Vp ([1—p(z+bz]) = Vs ([1—p(z)]) —D —,dp
dz'

where Vo ls ass»~ed to be a constant and D = VOEz has
the dimension of the diffusion constant. One may treat
Lz as a dynamical variable and write down a separate
equation, but in the mean field limit(or in the first order
approximation) which we are concerned here, it may be
considered as a constant. Combining Eqs. (3), (4), and
(5), we arrive at the dynamic equation for the voids:

and p(0, t) = 0, which is simply the statement that the
top of the pile meets the sea of voids and the bottom is
supported by the grains. As we tap continuously, voids
inside the pile difFuse out and pile up at the top of the
column. Hence, the region with p(z, t) = 1 will increase.
We now discretize the column into L positions with Az =
1, for which case D = Vo. The discretized version of
the time evolution equation (6) for the void density at
position j takes the form

Bp(j)
Bt

= —Vo p(Z) [1—p(j+1)]+Vo p(j —1) [1—p(j)],

(7)

where we have symmetrized the second term in Eq. (6):

—
I »

—
I

= p(j) [p(j+1) —p(j)l
B f Bpi

Bz ( Bz)
—p(j —1) [p(j) —p(j —1)l

with the boundary conditions p(0) = 0 and p(L+1) = 1.
Equation (7) has a simple physical interpretation: The
first term represents the loss due to the movement of a
void &om z = j to z = j + 1, while the second term
describes the gain resulting &om the migration of a void
&om z = j —1 to j. We now present numerical results
for the relaxation with different initial void distributions.

(a) Random distribution. In this case, the initial voids
distribution is random with a mean value 0.5. So, the
total number of voids inside the tube is L/2, which is the
maximum height reduction. In order to trace the relax-
ation process, we display the three representative snap
shots of the time evolution of voids distribution in Fig.
2(a)—2(c). Note that in what follows, all the simulations
are done with an initial void fraction given by L/2.

As the void diff'uses out, it moves to the top and piles
up. Now, once the void density becomes one, it remains
one. The position of the top layer of the pile at time
t, h(t), can be easily identified as the interface where the
density p drops sharply &om one. This is the interface di-
viding the unrelaxed granular pile &om the sea of voids.
This interface moves down as the time progresses un-
til all the voids inside the pile have diffused out. As
pointed out before, the reduction of the height b,h(t) at
the time when the interface position is h(t) is given by

bh(t) =
f& dz since p(z, t) = 1 for h(t) ( z & hp. In

Fig. 3(a) is plotted b,h(t) as a function of time t for five
different values of L: L = 1000, 3000, 5000, 7000, and
9000. In all cases, it is evident that b,h(t) is linear in t.
Since by a simple rescaling of parameters, the Eq. (6)
can be recast into the form of (7), the linear relaxation
should persist for different values of Vo and D as long
as the initial void distribution is random: b, h(t) = Pt'
with the dynamic exponent z = 1. In addition, the ex-
ponent z = 1 is independent of the total void &action
inside the pile. We have decreased the total void &action
&om 0.5 to 0.2 and have found essentially no difference
in the dynamic exponent z. However, as usual, the pro-
portionality constant P is not universal and is linear in

(ps), which is the average void density at time t = 0. We
have also measured the total relaxation time, T(L), as a
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function of t and found that it is also linear [Fig. 3(b) .
Hence, the second dynamic exponent z' =

We now consi er e s g u-d th li ht variations in the distri u-
tion unc ion.f t' n. Experimentally, it has been recognize
that a loosely packed horizontal plane is o en ar

to mimic this situation in our model, we have consi ere

t e ensiyah d t at that layer remain fixed: p zp, t = pp. I
ere a thin layerpp P), se0 this efFectively models a case w ere a y

of void source is placed at z = zp. If pp && 1 then we
might say a barrier is placed a z =at z = zp. If we let the den-
't t z evolve according to the dynamic equation, t en

ion. Ph sically this means thatcourse of dynamic evolution. y

crosses over o at HiHerent value as shown in ig. a,
~~ ~

which is not unexpec e . et d. The movement of voids above
are not afFected by the presence of the layer an

til all the voids above the layer have difFuse out. erunti a e voi sa
be su ressed becauseth t e expect the relaxation to e s pp

We have mea-the la er blocks the movement of voids. W.f...ti...f th. ~.t..„sured the crossover time, v„asa u
from the top layer to the barrier [Fig. 4(b), w c s i

ut a source term athib'ts the linear behavior. If we put
0.5 there exists no crossover time andzp with pzp ) . , er

the relaxation procee s imprd pressively linear all the way p
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to the total relaxation time.
In sr~mary, we have shown that the dynamic expo-

nents z and z' are robust for a given raadom distribution.
They are not seasitive to the perturbations to the given
initial distributions. The next obvious question is to ex-
amine whether such robustness persists for diferent dis-
tribution functions. To this ead, we consider two difer-
ent distributions: linear distribution, and the Boltzmann
distribution, and examine the question of universality.

(b) Linear distribution. The initial voids distribution is
given by, p(z, 0) = 1 z/L—,. More voids are at the bottom
than the top. Note that fz dzp(z, 0) = L/2. So, after
the complete relaxation, the height will again reduce to
L/2. The reduction of the height b,h vs t is displayed for
different, L=1000, 2000, and 3000 in Fig. 5(a). Initially,
the relaxation seems to be slower than what we have seen

with random distribution aad asymptotically it seems to
have a slight curvature. In order to extract exponents, we
did simulations for t up to 15000. As shown in Fig. 5(b),
the slope is impressively linear in t and z=l. The total
relaxation time T(L) also remains linear with z'=1 [Fig.
5(c)]. Since less voids are present near the top with this
distributioa, the initial slowing down is understandable.
We have also examiaed the effect of Buctuatioas in the
void distribution by adding the random number to the
existing distributions, namely, p(z, 0) = 1 —z/L +( with
0 & ( = random number & 1. We have found no change
in the exponents z and z'.

(c) Boltzmonn distribution. Distribution is given by

p(z, 0) = exp( —az) with a = 0.01. In this case, we have
also found linear behavior and thus the results will not
be preseated here. It is quite interesting that within the
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context of the difFusing void model, the relaxation of the
grains in a simple one-dimensional pile is independent of
the initial void distributions and the reduction of height is
linear with the dynamic exponent z = z'=1, even though
the governing equation is nonlinear. In order to trace
the origin of this linear behavior, we have examined the
time dependence of the rising of a single void from the
bottom. The ascending time was measured as a function
of the height of the pile L. Not surprisingly, it is again
linear.

We now search for the origin of the linear behavior by
examining the steady state solution of Eq. (6). Since the
asymptotic behavior is determined mainly by the 6rst
term of (6), we expect that the following equation with
the modi6ed difFusion term should yield the same asymp-
totic result:

Bp B B (Bp)—= ——[Vo p(1 —p)l+ D —
I

—
IBt Bz Bz iBz) (8)

The above equation assumes the traveling wave solu-
tion of the form: p(z, t) = p(z vt) —In th. e moving frame,
p satisfies

D dp(z)/dz = —Vpp(z)[1 —p(x)] + vp+ c, (9)

where

where c is a constant that must be determined by the
boundary conditions. Equation (9) can be solved exactly
with two boundary conditions, p(x = —oo) = p and
p(z = +oo) = p . Going back to the laboratory frame,
we find

p(z, t) = —(v —Vo)/2Vo + Q tanh[(Vo/D) Q(x —vt)],

(io)

FIG. 6. Equation (9) has two fixed points: the stable one
at p+ ——p and the unstable one at p = p . The parabola
in the Fig. is the right hand side of Eq. (9) and the upper
and lower lines refer to the boundary conditions of the pile at
x = oo with p and x = —oo with p . The solution of (9)
is the trajectory that moves from p to p+ with the constant
speed Vo as x changes from —oo to oo.

then v=0 and the interface does not move. This is indeed
true if the system is infinite, but if the system is 6nite
with length L, the situation is difFerent. To see this more
clearly, let us consider the time dependence of the total
density in the system,

pT = px dx.

Q = (p + p--)/2

v = Vp[1 —(p + p )].
Direct integral of the Eq. (8) yields

(i2)

One way of understanding the existence of this travel-
ing solution is to use the language of dynamical systems
theory. Equation (9) has two fixed point, p and p
The former one is unstable and the latter is stable. Thus,
the trajectory will move &om p to p as x moves &om
—oo to oo, which is the solution given by Eq. (10) (Fig.
6). In the laboratory frame, the traveling wave solution,
Eq. (10), moves with the speed v given by Eq. (12). One
might impose the solvability condition at the stable fixed
point to determine the speed v as a function of external
parameters as was commonly done in dendritic solidifica-
tion and viscous 6ngers. It is tempting to suggest that if
we include the threshold condition to the dynamic equa-
tion (6), then there might exist no v that satisfies the
solvability condition. If so, then the traveling wave solu-
tion does not exist, leading to the difFerent universality
class. Note that the interface thickness is determined by
the ratio Vo/D. Also note that the speed of the travel-
ing wave is independent of the difFusion constant, which
justifies the use of Eq. (8) rather than (6), and is deter-
mined by the sum of the density at the end points, p
and p . If the sum is one as in the case considered here,

dp /« = [
—Vop(1 —p) + DBp/Bz]l:-.

If the system is in6nite, then both terms in the right
hand side of (13) vanish and the total density is con-
served and the interface does not advance. However, for
the finite system, the 6rst term vanishes but the gradient
term does not. Hence, the total void inside the system
changes. The difFerence in the density moves out into
the sea of voids and the reduction of the height occurs.
What we have shown here is that the origin for the lin-

ear behavior in the dynamic relaxation of a granular pile
under tapping, within the context of the diffusing void
model, lies in the existence of the steady state traveling
wave solution, which advances with the constant speed.

There is one simulation where such a linear behavior
has been observed in the context of the segregation of
grains. The authors of Ref. [12] carried out the molecular
dynamics simulations for the segregation of larger parti-
cles among smaller ones under shaking and they have

reported that the upward displacement of the larger one
is linear in time. It remains to be seen whether real ex-
periments would reveal such a linear behavior.
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IV. STICK-SLIP RELAXATION AND ITS
RELATION TO THE TRAFFIC PROBLEM

c II9+ V = p[V(p) V] (i4)

Note that the left hand side is simply the hydrodynamic
derivative term while the first term on the right hand side
represents the fIuctuations of the void velocity around its
xnean value with p the adjusting time scale. If we set
the left hand side of (14) to zero, it efFectively reduces to
(5) except the additional factor, p . The mean velocity
profile V(p) is a smooth and decreasing function of p,
although its exact form is not known. In this paper, we
ass»me the following simple form:

()=, (i5)

with a and P being constants. Note that in the difFusing
void model, this term is proportional to 1 —p, which has
a sharp cutoE at p = 1. Due to the numerical instability
with such a sharp cutofF, we have instead chosen the forxn
(15), which seems to fit the experimentally determined
V(p) for the real traffic fiow [32]. But certainly one might
try a cMerent form as long as it decays as a function of
P.

In this section, we make an attempt to modify the dif-
fusing void model considered in the previous sections by
taking into account Buctuations and long range corre-
lations among voids. In the previous sections, we have
ass»med that the void velocity V depends only on the
density right above it and hence obtained Eq. (6), which
consists of the two terms: V, = V(p) + Vg. Here V(p) =
Ve(l —p) might be viewed as the density-dependent aver-
age void velocity; the form (1—p) is not inconsistent with
the observation that voids repel each other and hence the
average velocity of the void reduces in the high density
regime. The second term Vg = D dp/dz is a simple difFu-
sion term, which needs some critical examination. Note
that Eq. (6) does not take into account fiuctuations in
the void velocity resulting &om, e.g., long range correla-
tions. For example, suppose the grains are very rough.
Then the void size distribution produced by such rough
grains presumably remains fairly uniform and each void
is expected to be a robust object. In that case, such a
robust void might change its shape during the time the
motion is taking place, but it does not entirely lose its
identity as a round object and can subject itself to com-
pression rather than losing its identity via the continuous
diffusion. In this limit, the void first adjusts its velocity
to the mean value Vo(1 —p), dictated by the density of
the immediate neighborhood surrounding it. At the same
time, as a compressible object, it does also have to adjust
its speed to the density gradient ahead of it. Hence, in
such cases, it would be pres»~ably more appropriate to
write down the time dependent equation by which voids
can adjust their speeds. In addition, the void is not a
rigid body but a hydrodynamic variable, so we should
replace the time derivative by the total (hydrodynamic)
derivative. We thus take into account all these factors,
and obtain the modified equation for the void velocity:

It is of interest that with the identification of p and V,
as the density and the speed of cars in a highway, respec-
tively, Eq. (14) along with the continuity equation (3) are
precisely those used in the traffic problem [32]. In this
case, there exist data for the mean velocity profile of the
cars as a function of the density [32], to which Eq. (15)
seems to be a reasonable approximation. In Eq. (14)
co is the dispersion in the speed distribution, which was
xneasured to be of the order of 25 miles per hour in the
highway considered in Ref. [32]. In the context of the
traffic problem, the justification of using the time depen-
dent equation (14) rather than simple static one such as
(5) is not difficult to make because the driver will do his
best to avoid collisions in the highway, first by simply ad-
justing his speed around the mean value V(p) and second
by either slowing down or speeding up depending on the
density gradient of cars ahead of him and/or to obey the
traffic signs on the highway. We assume that the mov-
ing void in the granular assembly made of rough grains
is fairly smart much the same as the driver in the traffic
problem: each void does not simply difFuse out, but is
now subject to compre88ion. The nuxnber of cars passing
by the toll gate in the highway then corresponds to the
the density p(L, t) at the top layer of the granular pile.

Kiihne [32] studied the traffic equations and identified
the stability parameter, A = —1 —(pe/ce)(BV/Bp)~~, .
He showed that for A ) 0, the homogeneous solutions
become unstable and subsequently argued that they may
bifurcate to either traveling solutions or periodic stop-
start solutions. Recently, Kerner and Kohnhauser have
added a viscous terxn to the traffic equation and their
n»merical solutions indeed have revealed the existence of
the traveling shock wave [33]. Neverthless, to the best of
our knowledge, Eq. (14) has not been studied in detail,
and we have xnade our own numerical investigations of
Eqs. (14) along with (15) in order to gain insight into
the relaxation of granular assexnbly.

Before presenting numerical solutions, we first describe
a subtlety in dealing with the compression term with
open boundary conditions. Consider a one-dimensional
column of height ho ——L. We now discretize it into L po-
sitions, each of which is labeled by the index i (= 1, ..., L)
If we use the same boundary conditions as was done to
solve Eq. (7), nainely, setting p(0) = 0 and p(L+1) = 1
with random initial distribution, then the density at each
position quickly approaches zero and we encounter a nu-
merical problem due to the factor p in the compression
term. We avoid this n»merical instability by exnploying
the following boundary conditions at the two end points,
z = 1 and L. First, we put a source beneath the bottoxn
at z = 0 and a sink right above the top at z = L+ 1 with
L = 100. The initial values of p(i, 0) are chosen randomly
such that the initial average void density is (p) = 0.5. We
also take V (i, O) = 0.5, together with the fixed source
density p(O, t) = e (0&&&1) and p(L+i, t) = 1. This
corresponds to the situation that constant Hux of grains
is fed into the tube while the grains escape through the
bottom. Hence, in this case, the density p(L, t) describes
the nuxnber of grains flowing out of the tube at given time
t, or equivalently, it is the density of voids that arrive at
the top. Note that this is not the acc»~ulated density at
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FIG. 7. The density at the
top obtained kom the traKc
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bution quickly settles to a uniform one inside the tube,
which is followed by the density profile developing a con-
cave yet positive gradient toward the sink and the con-
tinuous growing of the density at the top. It is during
this period that the voids are being compressed and ac-
cumulated near the top. While the drift term in Eq. (14)
is pouring out constant nux of voids into the sea (note
that the background density in Fig. 7 is finite, around the
mean value 0.5 of the initial void distribution), it appears
that a certain fraction of voids, pres»mably those that are
entering at the bottom, cannot simply sneak out into the
sea, which is mainly due to the absence of the diffusion
term in Eq. (14). This is similar to the situation of a void
moving up in water, due to the buoyant force. If the void
is small and hence the buoyant force is not large enough
to break the energy barrier at the air-water interface, it
is stuck right below the surface: In order for the void to
come out of the water, it must create an extra surface,
which requires extra surface energy. In the case consid-
ered here, while the physical origin of such accumulation
of voids at the &ee surface is not obvious, we offer the
following explanation. As we have mentioned in the be-
ginning of this section, we are dealing with diffusing voids
that are robust, compressible, and able to preserve their
overall topology as round objects. In addition, we rec-
ognize that the roughness at the grain boundary induces
effective attractive interactions among grains, which are
the source of the energy barrier at the grain-air bound-
ary. When enough voids are acc~~mulated at the top,
they form a shock or a pulse which can collectively break
the energy barrier, and push themselves out into the sea
of voids. So the void density at the sink will suddenly
increase when such a shock is released at the top. At
this point p(L, t) starts to decrease and the density pro-
file inside the tube also reverses its shape from concave
to convex, shifts its maximum toward the sink, and then
slowly disappears as one cycle is completed. (See Fig. 8.)

The appearance of the periodic pulse at the top is

Zh
j'4

FIG. 9. Schematic picture of the stick-slip relaxation.
When enough voids are accumulated near the top, they form
a shock or a pulse which collectively breaks the energy barrier
and results in a sudden reduction in the height.

a clear indication that clusters of voids in the form of
shocks or pulses arrive at the top periodically. Hence, in
the regime where the traffic equation makes more sense
than the difFusing void equation, we anticipate that the
reduction of the height of granular pile will be sudden and
discontinuous, which we term the stick-slip relaxation
(Fig. 9). Experimentally relevant parameters might be
the period and the width of the pulse as a function of the
control parameter, A. There does not exist a general prin-
ciple to determine the period for arbitrary A. Near the
onset of the instability, however, one might argue that
the period is determined by the imaginary part of the
growth rate ~. In the limit of small A, the linear stabil-
ity analysis for the unstable branch yields the following
dispersion relation:

ur = 2k A/(1 + 4k ) + ik[(1 —vo) + A/(1 + 4k )j, (16)

&om which we find that the period, T, of the pulse is

11500

11000

T(A)
10500-

10000-

9500-

9000-

FIG. 10. The dependence
of the period of the pulse on
the control parameter, A. It
decreases as A increases, con-
sistent with the prediction of
the linear stability theory [Eq.

8500-

8000—

7500
0.2 0.4

I

0.6 o.e 1.2 1.4 1.6



4134 HONG, YUE, RUDRA, CHOI, AND KIM

given by, T = 2z/0, where

0 = k[(1 —oo) + A/(1+ 4k')], (17)
The above equation predicts that the period of the pulse
with a well de6ned wave number k is inversely propor-
tional to A, which holds only near the onset. Far beyond
the onset, a single pulse will contain many Fourier modes,
in which case due to the dispersion the period will not
follow the simple formula given by Eq. (17). Numeri-
cally, we 6nd that the periodic pulse solution exists at
and beyond A = 0 for which case the prediction of the
linear stability does not necessarily hold. We, however,
have found that the linear dependence of the period on
the control parameter A seems to persist as shown in Fig.
10. The complete knowledge regarding the existence of a
pulse solution such as a soliton and the dependence of its
speed, period, and width on control parameter A, requires
a detailed nonlinear analysis of the traffic equations and
we will report it in the future work.

tion of the diffusing void model leads to the tr~HIc equa-
tions, which predicts the discontinuous relaxation of the
grains. We were informed by Jaeger [24] that this type of
discontinuous relaxation indeed occurs when the grains
are reugh; the underlying physical origin of such relax-
ation might be understood as discussed in Sec. IV. For
moderate amplitudes of the tapping, molecular dynam-
ics data also reveal such discontinuous relaxation [34). In
this regime, the grains move little by little until a sud-
den hexagonal packing is formed locally, which generates
a massive n»mber of voids. This process repeats until
all the grains relax to the ground state of the complete
hexagonal packing. Finally, we emphasize that our ap-
proach here has focused only the geometrical aspect of
the packing of grains. The future work must take into
account, in particular, the threshold condition for ini-

tiating the dynamical process, avalanches, dynamics of
di8erent void size along with the interactions, elaborate
&iction laws between grains, or the metastable nature of
the ground state of the grain conaguration.

V. SUMMARY

In this paper, we have examined the dynamic relax-
ation of a granular pile in a con6ned geometry under
repeated tapping. Within the context of the diffusing
void model, the relaxation process is algebraic with the
dynamic exponent z = z' = 1, which is robust against
perturbations and is independent of the initial void distri-
butions. We have shown that the existence of the steady
state traveling solution is responsible for such a linear
behavior. The experimental observation of the slow re-
laxation [24] of the grains under tapping requires more
studies. We have also shown that a simple modifica-
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