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Anomalous energy dissipation in molecular-dynamics simulations of grains:
The "detachment" efFect
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We study models for granular materials using both molecular-dynamics (MD) and event-driven (ED)
methods. In the MD simulations we implement linear as well as nonlinear interaction laws. In the case
of multiparticle interactions, we Snd that MD calculations lead to an anomalous energy loss. In this pa-

per we elucidate this effect and the conditions under which it appears.

PACS number(s): 46.10.+z, 05.60.+w, 05.40.+j

I. INTRODUt. l'ION

Nature offers numerous examples for noncohesive
granular materials such as sand or pebbles. Also in the
industrial world powder processing is of crucial interest.
The phenomenological behavior of such systems, halfway
between solids and liquids, is full of surprises [1];up to
now the basic physics is not well understood [2]. In par-
ticular, a vibrated powder exhibits properties that resem-
ble a fluid such as convection rolls [3-5] and surface
fluidization [6—8] but sometimes with peculiar behaviors
such as heaping [4—6], size segregation [9—11],bulk dila-
tation [12-14], and also surprising propagation proper-
ties of the sound waves [15]. Analytical approaches to
the problem of granular materials are, for example, Refs.
[16-20].

Recently, experimental evidence of spontaneous con-
vection rolls was reported on three-dimensional (3D)
granular materials [4,5] as well as 2D model media [7].
In parallel, experiments have motivated a great deal of
computer work, since numerical simulation is an impor-
tant complementary tool which accesses physical quanti-
ties which are almost impossible to get directly from ex-
periments, such as energy transfer, microfluctuations, or
vault effects. Thus it is crucial to develop reliable com-
puter algorithms that can, at least, reproduce correctly
the macroscopic phenomenology.

At the moment, a majority of simulations use
molecular-dynamics techniques [21] which involve
ad hoc microscopic assumptions such as linear spring-
dashpot interaction laws [22-28], nonlinear interaction
laws, and static as well as dynamic friction [29-32]. In
another group are simulation calculations which follow
series of binary collisions for assemblies of hard spheres
[33—40]. Simulations based on binary collisions are ham-
pered by the fact that for a certain threshold of energy
loss, the collision frequency between the beads is bound
to diverge and clusters will form. Thus a prescription has
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to be elaborated to handle the possibility of having con-
nected clusters [38,39].

Recently, two independent groups of authors [25,27]
have reported, based on molecular-dynamics (MD) simu-

lations, spontaneous convection in vibrated granular
models. The calculations are related to effects found ex-
perimentally in hard-sphere systems. Thus the question
arises as to how far MD methods faithfully reproduce
hard-sphere collisions, especially in situations in which
the systems are made up of many particles. As we
proceed to show, MD calculations produce spurious
effects, which may be responsible for the appearance of
convection patterns.

Here we investigate an assembly of beads which in-
teract with each other. At first we introduce the different
simulation methods: molecular-dynamics and also hard-
sphere-type methods. We discuss the choice of the forces
used in the simulations and we relate the internal MD pa-
rameters to the momentum restitution coefficient; the last
quantity is of utmost importance in calculations which
focus on collisions of hard spheres. Then we show on a
simple 1D toy model that in MD simulations an anoma-
lous behavior appears, connected to large fluctuations in
the distances between beads, in their energy loss and in
the dilatancy threshold (connection to collective motion).
This behavior is due to the MD model forces acting on
the beads and may subsist even in the limit of very hard
interactions. We call this behavior "detachment effect, "
because under certain conditions the particles separate
completely. This effect is different from the so-called
decompaction which was evidenced in 2D dissipative
granular systems [41]. The efFect there was due to the
friction with the walls and not due to the elastic proper-
ties of the material. Furthermore, we show that the de-
tachment effect is amplified for larger numbers of beads
and longer contact times. We present a comparison of
ED and MD simulations and relate these to experimental
results. We also give arguments that the detachment
effect may lead in 2D to the appearance in the MD calcu-
lations of convection rolls [42]; this means that convec-
tion may disappear when the interactions used in the cal-
culations are rendered "hard, " as is necessary to model,
say, steel beads.
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II. THE SIMULATION METHODS

In common experience, hard beads have rather well-
defined binary collision properties [40]. In general, one
defines for each type of material a momentum restitution
coefficient which is found to be weakly dependent on ve-
locity in the experimentally accessible velocity range
around 1 m/s. It is therefore a natural idea to use this
property to monitor the collision sequence of an assembly
of beads in an event-driven (ED) way. Furthermore, as
we show in the next section, this coefficient has a counter-
part in a MD model with linear interactions and thus it
allows a direct comparison between the ED and the MD
methods.

A. MD simulations

f,", = —K[—,'(d, +d ) r,t]n;J, — (2)

where n; =r; lr, is the normal "direction of contact and
E is the spring constant. Second, a frictional force in the
normal direction,

(0—fn = Dnmij'[vij''nit ]nij (3)

where v;J. is the relative velocity of particles i and j, D„is
the normal dissipation parameter, and m; is twice the re-
duced mass of particles i and j, m,"=2m;m, l(m;+mj ).
Third, a frictional force in the tangential direction,

f", = —D, m, [v,, t,, ]t.. . (4)

where t, =( —
nf~, n,j) is the vector n, rotated by 90' and

D, is the tangential dissipation parameter. In our simula-
tions we include the forces Eqs. (2) and (3}in 1D and Eqs.
(2)—(4) in 2D; however, we neglect the rotation of the
particles and also the static friction.

B. Event-driven simulations in 1D

In a recent work [39] numerous simulations were car-
ried out for a 1D column of particles. For those simula-

In the MD simulations we follow the dynamics of a
system of N spherical particles with diameters d;
(i = 1, . . . , ¹I d, equals do for simulations with equal ra-
dii, or d; is chosen randomly from a homogeneous distri-
bution of width w. In the 1D simulations the particles
are placed on a vertical line (thus only the lowest particle
interacts with the bottom plate); in the 2D simulations
the particles are put in a container of width L and infinite
height; here one may use either periodic boundary condi-
tions or horizontally fixed walls. The bottom plate in 1D,
or the container in 2D may carry out a sinusoidal motion:

z (0t) = Aosin(2mft )

In the MD calculation a fifth-order predictor-corrector
algorithm is used [27]. Two particles (or a particle and a
wall) interact when their relative distance r,t

=
~ r;J ~

(where r;1 points from the center of i to the center of j) is
smaller than the sum of their radii (the radius of the par-
ticle}. In this regime, d;+d )2r, , three fo"rces are ac-
tive. First, an elastic restoration force

tions an ED algorithm was used. Event-driven simula-
tions consist in monitoring a sequence of events (i.e., col-
lisions) between which Newton's equations of motion for
each particle are solved exactly. For particles, an event is
defined either by a sudden change in momentum (col-
lision) or by the take off from the bottom plate. In the
following, for 1D simulations, the X beads are numbered
from below starting with i =1; for the bottom plate we
set i =0. Between events each particle i follows its own
trajectory; this is so, because we assume dissipation to
occur only on collision. For events occurring at distinct
times the sequence of collisions is well defined by their se-
quence in time. For events which happen simultaneously
the collisions get ordered following the largest relative ve-
locity (LRV) procedure [38,39]: The procedure consists
in sequentially picking up the pair of particles with the
largest relative velocity U; &

—
U;, letting them collide,

and then updating the respective velocities. The pro-
cedure stops when all relative velocities are smaller than
a certain threshold. For an extended description of LRV
see Refs. [38,39]. We stop to note that there is a funda-
mental difference between MD simulations, where the
duration of a collision (i.e., the time t, the beads are in
contact) is larger than zero and ED algorithms where one
has t, =0.

III. MODELS USED IN SIMULATIONS

A. The spring-dashpot model

where the parameters p and Np are adjustable. In terms
of the reduced mass m =m i m z i(m, +m2), of the dash-

pot loss coefficients D„andD„andof the spring constant
K one has too=&Elm, and p=D„for central collisions
of two particles (p=D„/2 for the perpendicular collision
of one particle with a wall). For two colliding particles
the contact time is

t~ =1T/ Q COO P2 2 (6)

a quantity independent of the initial relative velocity Up

[23—25]. From t, one obtains the coefficient of restitu-
tion c as being

2 2—pt pm/ V ~0
e = x(t, )/uo =e '—=e

Note that here c is also independent of Up. For low dissi-

pation the maximal penetration is x,„=uo/coo.
The coefficient of restitution c is known from experi-

ments [43] for collision velocities uo around 1 m/s. Here
we observe that there are many choices for p and ct)p,

which lead via Eq. (7) to the same e; these choices, how-

ever, lead to difFerent t, values. It is therefore important
to discuss which of these t, values are realistic. This
leads us to consider also nonlinear interaction models.

Usually MD simulations of powders are based on the
linear spring-dashpot model (LSD) [23—26]. Here the
penetration x along the line connecting the centers of the
particles obeys the linear differential equation

x+2px +co~ =0,
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As we recall, for two colliding spheres t, can be evaluated
using an expression which goes back to Hertz [44]. For
steel beads of diameter d = 1.5 mm, one obtains for veloc-
ities of 1 m/s a value of t, =4.6X10 s (see below).
Hence for time-driven MD simulations one has to use
time steps at least one order of magnitude smaller than t, .
Hence, to simulate one second, some 10 steps are need-
ed, which means a lot of computer power.

B. Nonlinear interaction models

Linear interactions are not an accurate description for
rigid bodies, since the surface of contact generally de-
pends on the compression. On phenomenological
grounds we consider the following general compression-
dissipation equation:

y
x xmx+gd — x+Ed — x =0 .
d d

(8)

Here E and g are material and shape dependent; E de-
pends on the Young modulus and the Poisson ratio, and

g depends on both the shearing and compression viscosi-
ties. Note that the loss channel in Eq. (8} is only viscoe-
lastic; thus neither a plastic permanent deformation nor a
loss due to residual vibrations stored in the spheres after
collision are included. Furthermore, the nonlinear terms
are formulated as functions of (x/d), where d is the diam-
eter of the beads, in order to keep the structure of the
equation close to that of Eq. (5). As we proceed to show,
several models used in literature are special cases of Eq.
(8). The simplest form (P=y=O) leads to Eq. (5). For
two spheres Hertz calculated the elastic interaction pa-
rameter E due to a symmetric deformation; this leads to
P= —,

' [44]. Different recent works used this interaction
law [28,29] together with a linear loss coefficient (y=0).
Kuwabara and Kono [43] generalized the Hertz argu-
ment to deal with viscoelastic loss; they obtain y= —,'.
Taguchi [45] extended the expression by including also a
nonlinear dependence of the dissipation on the velocity.
In the Appendix we present scaling arguments which al-
low us to estimate from Eq. (8), in the limit of low dissi-
pation, the dependence of the momentum restitution
coeScient c on the initial velocity vo.

Equation (A2) of the Appendix, with P= —,
' and y =0,

reproduces Hertz's equation. One has E= Y/[3(1 —o )]
where 1'is the Young modulus and cr is the Poisson ratio.
We calculate the order of magnitude of t, for steel beads
of diameter d =1.5 mm. For steel we use X=2.06 X 10"
N/m, cr=0.28, and rn =1.38X10 kg and obtain for
an initial velocity of 1 m/s a contact time of
t, =4.6X10 s, when dissipation is ignored, i.e., the re-
sult mentioned above; for aluminum, for which one has
Y=0.71 X 10" N/m, cr =0.34, and m =0.479X 10 kg
one again obtains a contact time t, of around 4.6X 10
s. The estimate is less precise here because of the large
dissipation of aluminum beads. We note that Hertz's ex-
pression, valid for low dissipation, shows a weak depen-
dence of t, on the velocity, i.e., t, ~ v 0

'

Furthermore, we stress the fact that once a reasonable
t, value is chosen, one can model the dynamics using

even simple LSD interactions. This is the idea behind a
large number of works on the problem. In the following,
we shall use mainly the simple LSD interaction laws.
Choosing a pair of values for c and t, appropriate to the
material fixes the parameters p and coo in Eq. (5) unambi-
guously. Thus for spheres made of steel a=0.9; for
spheres with diameter d =1.5 mm we use t, =4.6X10
s which leads to coo=6.8 X 10 s ' and to p=2. 3 X 10
s '. For aluminum a=0.6 so that using t, =4.6X10 s
one has roughly co =6.8X10 s ' and p=1.1X10 s
These values for coo and p are much larger than what has
been commonly used in former simulation approaches
and lead, for an initial velocity vo= 1 m/s, to a penetra-
tion depth of x =1.5X10 m, which means 0.1% of
the diameter. Other simulations [25,27] (both have a
different size and time scaling) use coo and p values which
lead to a penetration depth of a few percent of the
particle's diameter for particle velocities in the order of
magnitude of the maximum velocity of the vibrating box
vo

———Aoco. Note here again, that taking a very low value
for t, requires involved computing power. The problem
is really to know whether it is of much importance to use
such low contact times. This is the question we address
in the following.

IV. THE DETACHMENT EFFECT

Now we are interested in probing the collective
behavior of an array of beads in a simple one-dimensional
toy-model. In this subsection we neglect gravity effects
and focus on the collision of this array of beads with a
static boundary. This situation is interesting since it al-
lows us to compare MD results with those obtained using
the ED algorithms [33,35,36,38,39]. In Figs. 1(a)—1(c) we
plot the results of MD simulations for N=10, @=0.9,
vo= —0.2 rn/s, and t, =0.7X10 s. The y axis displays
the reduced height

z, =h, (N 1}d——d /2—,

where h; is the height of the center of bead i. The values

p and coo are then obtained using Eqs. (6) and (7); further
on they fix via E=m coo and D„=p the parameters to be
used for binary collisions. In Fig. 1(a) we start from an
initial separation between neighboring particles of so=0
m; in Fig. 1(b) we use so=10 m and in Fig. 1(c) we use

so =10 s m. In Figs. 1(d)—1(f) we plot the results of ED
simulations with N=10, a=0.9, and vo= —0.2 m/s; we
again use so=0 m [Fig. 1(d}],so=10 m [Fig. 1(e)], and
so=10 m [Figs. 1(f)]. For ED simulations the contact
time t, is zero. Comparing Figs. 1(a) and 1(b) with 1(d)
and 1(e), respectively, shows that the outcome of MD
simulations differs from the one for ED in the case of
very small initial separations; the final velocity of the par-
ticles' center of mass (c.m.} turns out to be larger in MD
simulations; furthermore, the interparticle separations
after the collisions are relatively ordered for ED and
quite disordered for MD simulations. Evidently this
finding may be a means to check experimentally the com-
putational methods. On the other hand, for suf6ciently
large initial separations [see Figs. 1(c) and 1(fl] MD and
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ED simulations lead to qualitatively similar results. We
furthermore note that the ED procedures lead both for

s0 & 0 and also for s0 =0 to similar results; the situation is
difFerent for MD. To be more quantitative we now intro-
duce the effective restitution coeScient through
Keg )/ Ef /Ep where Ep and Ef denote the initial and
anal energies. We furthermore de6ne the relative kinetic
energy (also called "granular temperature" [17]) through
E,= ,'g—+ &m;(v; —U, ); E„is also a measure of the
typical separation of the beads after rebound. In Fig.

2(a) we plot e~ obtained from MD simulations as a func-
tion of the initial separation so; we rescale the axes in
such a way that the ratio of the external time between
contacts sp/Up to the internal contact time t, shows up,
i.e., we set o'=sp/Upr, .

In Fig. 2 we have N =10, d =1 mm, and c.=0.9. The
initial velocity vo is varied between 14 and 0.008 m/s; t,
is varied between 2.2X10 and 2.5X10 s. For each
pair (Up, t, ), sp is varied between 10 and 10 m. In
Fig. 2(a) we plot s,s as a function of o. We find that all
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FIG. 1. (a) MD trajectories of the centers of %=10particles which collide with a Sxed boundary. Here a=0.9, t, =0.7X 10 s,

uo = —0 2 m/s, aud sz =0 m. The positions are in reduced units, Eq. (9). (b) The same as in (a) but with ss =10 m. (c) The same as

in (a) but with so = 10 m. Note the diferent axes. (d) ED trajectories of the centers of N = 10 particles; the parameters are as in (a);

especially so =0 m. (e) The same as in (d) but with so = 10 m. (fl The same as in (d) but with so = 10 m. Note the dHFerent axes.
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results scale; they lie on a universal curve which depends
only on o. We also mention that a simulation with ran-
dom initial separation (i.e., each particle i at position
z,.=is0 is shifted by a random value taken from the inter-
val between —so/2 and so/2} also falls on the same
curve. Two features are prominent: first, when a((1

the energy loss is very small. This leads to large fluctua-
tions in the interparticle distances after the collision with
the plate, a phenomenon which we call detachment effect.
Second, for cr ))1 the MD solution gets near to the ED
result and the energy loss gets to be only slowly depen-
dent on o [right side of Fig. 2(a)]. The ED procedure
leads for various so values (so=0, 10, 10, 10
10, 10, and 10 m}, N= 10, and E=0.9 to
s,&-=0.34120.002 [the dashed line in Fig. 2(a)]. We
varied vo between 20 and 0.01 m/s. As a general remark,
we note that the ED procedure [38,39] leads to practical-
ly s0- and v0-independent c,z, and we find that c,z is con-
siderably smaller than c.

A. The energy loss during collisions

0.0
10 10-4 10 10

SO ~0
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/
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~ i I ~ ~ ~ ~ I
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1 10 10

FIG. 2. (a) Linear-logarithmic plot of the effective restitution
coefBcient a,m as a function of o =so/vot, . Here the MD calcu-
lation involved N= 10 particles colliding with a fixed boundary.
We have a=0.9 and d =1 mm, while vo and t, are given in the
inset. The dashed line indicates the result of the LRV pro-
cedure. (b) Log-log p)ot of ) —c,z as a function of N for so =0,
vo =0.05 m/s, and t, =0.2X 10 s. Here N varies from 1, 2, 5,
10, 20, 50, to 100 and a varies from 0.6, 0.8, 0.9, 0.95 to 0.975
from top to bottom for each Xvalue. The dashed lines indicate
the slopes —0.5 (top) and —0.315 (bottom). (c) Plot of E, /E~
as a function of N (E,: relative kinetic energy after collision;
E&.. total kinetic energy after coBision). The parameters are as
in (b). The filled triangles correspond to a =0.6.

We now analyze for MD the case of a colliding column
with zero initial separation (cluster) and look into the en-

ergy loss as a function of both internal (a, t, ) and also
external (vo, N) parameters. In Figs. 2(b) and 2(c) we set
so=0, UO=0. 2 m/s, and t, =0.2X10 s and vary N and
s. In Fig. 2(b) we plot on double-logarithmic scales the
effective dissipation 1 —c,,z as a function of N for different
c; we find that 1 —c,z depends nonlinearly on the number
of particles and that the energy loss decreases with in-
creasing N. This is a rather surprising feature. In Fig.
2(c) we plot the E„/EIwhere E„is the relative energy
and E& is the total energy after collision. The simulations
are the same as in Fig. 2(b). For N=10 and a=0.9 we
find, as an example, E„/E&to be 0.035. This means that
after the collision the particles separate; we have detach-
ment.

We have determined from simulations for s0 =0 the to-
tal time of the interaction, tk, of the whole column of
beads with the wall. We find that tk is proportional to the
number of beads and to the contact time; hence tk =Nt, .
This is consistent with viewing the beads as a series of
elastic springs. We furthermore find that E, ~v0,' by
varying a in the limit of low dissipation, c &0.9, we find
that c,z~ c. Thus the "detachment effect" is the result of
madel-dependent dissipation properties. Inside the
column the energy is dissipated mainly in interactions in-
volving particles with high relative velocities. Since dur-
ing the collision with the wall the column of beads gets
compressed, the energy is dissipated preferentially be-
tween beads at the boundary of the compressed and the
relaxed region. Keeping the other parameters fixed, the
size of the boundary area depends only weakly on N (this
leads to the nonlinear dependence on N). Even in the
case of very high dissipation (i.e., N= 10 and a=0.6) de-
tachment occurs, while ED simulations with the LRV
procedure lead to an c,,m

which practically vanishes, i.e.,
to a clustered column.

B. The dependence of the detachment efFect
on the interaction law

We carried out a series of simulations in 1D for
different interaction laws and different numbers N of par-
ticles which hit the wall. The nonlinear elastic force is, as
an extension of Eq. (2),
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FIG. 3. The effective restitution coefBcient c,,N plotted as a
function of N for so =0, uo =0.05 m/s. Here N varies from 1, 2,
5, 10, 20, 50, 100 to 200. We used the Hooke interaction
(p=y =0, triangles), the Hertz interaction (p= —,', y =0,
squares), and the Hertz Kuw-abara interaction (p=y= —,', cir-
cles). See text for details.

E,it as a function of a =s0/uct, for N = 130 particles with
d =1 mm which collide with a wall. Here a=0.9 and s0
varies between 10 and 10 m, u0 varies between 1 and
0.01 m/s, and t, varies between 10 and 0.2X10 s s.
The transition from the dissipative regime (large o ) to the
detachment regime (small o ) is less sharp in 2D (the tran-
sition takes place in the interval 0. 1 & o & 10), than in 1D
(the transition takes place in the interval 0. 1&a &1).
Note that in both limits (small or large o ) e,it does not de-
pend on the dimensionality, but only on the height
L =Ma /L and on s (in 1D L /a =1). This is also obvious
from Fig. 4(b), where we plot the efFective dissipation
1 —s,It as a function of h for vanishing initial separation
s0. We use a=0.6 (circles) and a=0.9 (triangles) and
compare the data of 2D with the results of 1D (crosses),
already displayed in Fig. 2(b). From this figure we infer
that arrays of particles with equal height behave similarly
in 1D and in 2D, as long as the particle separation is
small.

f,'I'= —K[—,'(d;+dj ) r;1 ]'+—~n;z

and the nonlinear dissipative force is an extension of Eq.
(3),

f'„'= D„m, [v;~—'n; ][—,'"(d;+d ) r, ]rn,, —"

where r, &(d;+dj )/2. "
In Fig. 3 we plot the efFective restitution coefficient as a

function of N for s0 =0, v0 =0.05 m/s, d =1 mm, and for
difFerent interaction laws. Using the linear interaction
law with P=y=0, E/m =2X10 s, and
D„=3.17X 10 s ' we find that e.,N increases with X. Us-
ing the Hertz-type interaction with p= —,', y =0,
K/m=2X10' s m ' and D„=2X10 s ' or a
more general form with p=y= —,', X/m =2X10'2
s m ', and D„=10s 'm ' we find that e.,&varies
little as a function of N. The net result is that the detach-
ment effect is weaker for nonlinear interactions; nonethe-
less there is still a fundamental difFerence to ED algo-
rithms, for which s,Ir is close to zero for N(1 —s) large
[39].
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C. The detachment effect in 2D
+

Parallehng the 1D MD simulations we perform 2D cal-
culations on a system of particles which hit a wall. The
initial velocity u0 is taken to be the same for all particles.
At start we put all particles on a periodic, triangular, lat-
tice with lattice constant a=d+$0 width of L=13a,
and height h =N/13 lattice points. Then we introduce
randomness by shifting each particle horizontally and
vertically by a random amount between —s0/2 and s0/2
(here we took care that no overlap exists in the initial
configuration). Then we let this system hit the wall and
after the collision we determine again c.,f; Here the pro-
cess is considered to be finished, when in a time interval
of 2Ns0/U0 no collision occurs (i.e., no contact exists).

In Fig. 4(a) we plot the efFective restitution coefficient

10 +

~ ~ s I ~ I I ~ ~ I ~ I

10
I

02

FIG. 4. (a) Linear-logarithmic plot of the effective restitution
coe%cient c,N in two dimensions, as a function of o.=so/Dot, .
The parameters are @=0.9, %=130, and d=1 mm; uo and t,
are given in the inset. (b) Log-log plot of the elective dissipa-
tion 1 —c,m as a function of h for so=0, uo=0. 05 m/s, and

t, =0.2X 10 s. The height h varies in steps of one from h =2
to 21 for a=0.9 (triangles) and for m =0.6 (circles). The crosses
display the 1D data of Fig. 2(b).
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V. COMPARISON OF ED AND MD SIMULATIONS
WITH THE EXPERIMENT

In this section we investigate the behavior of a column
of beads undergoing vibrations in a gravity field. For this
we let the bottom plate vibrate according to Eq. (1). The
aim of this section is to find out under which conditions
MD and ED results are comparable and when deviations
in the computed macroscopic properties occur. We also
present experimental results; these are better reproduced
by ED than by MD simulations.

A. The anomalous behavior of an excited column of beads

In Fig. 5 we present the MD trajectories of the centers
of the beads calculated using N=10 and e, =0.6. The
bottom plate moves according to Eq. (1) with amplitude
As=1.24d and frequency f=20 Hz; this leads to a maxi-
mal acceleration of 2g (where g is the gravitational ac-
celeration). The y axis displays the reduced height
z, =h, (N 1—}d—d—/2, where lt, is the height of the
center of bead i. The value e, -=0.6 is typical for alumi-
num beads. From previous studies we know, both from
experiments and from ED simulations [38,39], that such
a collection of beads (N=10, a=0.6 has a very low
effective restitution coefficient (s,a=0} and that the sys-
tem forms a cluster whose behavior mirrors that of a very
inelastic single bead [46]. The MD results were obtained
for i, =0.7X10 s [Fig. 5(a)] and t, =0.7X10 5 s [Fig.
5(b)]. Note that there occur large fluctuations in the in-
terbead separations; this is due to the fact that the con-
tact time of ten particles with the bottom plate is roughly
15% of the period and is thus too large to decouple the
collisions from the vibration. In Fig. 5(b}, where the con-
tact time of the beads is much shorter than the excitation

period, we observe a pattern which alternates between
condensed states, with almost zero relative energy, and
states with large interbead separations due to large rela-
tive energies. In the condensed state we find very small
separations; thus o.=sp/vol &(1 is very small and there-
fore the detachment effect is active (which means that the
next collision sequence occurs under very low-energy
lass). After this collision sequence the separations be-
tween beads get to be large, i.e., cr ) 1. Therefore in the
next collision sequence much energy is lost, so that the
separations again decrease. This periodic change from
high to low cr values and back again is the reason for the
pattern observed in Fig. 5{b). On the other hand, for
high t, values cr stays small most of the time so that the
system remains in a high-energy state, in which detach-
ment occurs.

An ED algorithm as introduced in Refs. [38,39] shows
a totally different behavior in this parameter range. For
N=10 and @=0.6 the event-driven LRV procedure leads
to s,a—-0 (the inelastic collapse [33-36]);in other words,
the energy of collision is always dissipated inside the
column, so that the particles stay clustered. This leads to
a pattern for the c.m. trajectory similar to the one of a
single, totally inelastic particle [46].

B. Comparison with experiments

Now we present two experiments for a collection of
aluminum beads which are moved vertically. The result
is that in 1D the beads behave more or less as a cluster; if
microfluctuations in the positions exist, they occur at a
scale much smaller than the size of the beads.

We investigate a vertical column of aluminum beads.
The diameter of the beads is d =3 mm. A description of

0.01

0.008

0.006

0.004

0.002

I

1

I

(a)

0

-0.002

0.01

0.008-

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6
t (s)

4.8 5
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the apparatus can be found in Refs. [38,39). The experi-
ment is monitored by a camera that moves horizontally, at
a regular pace, in front of the cell. The display is lighted
using a stroboscopic flashing light tuned to a frequency
slightly diferent from the excitation frequency. In this
way, we obtain a {false) slowing down impression. An
image processing device hooked to the camera records
and accumulates the traces of the beads' centers of mass.
One thus observes the positions of the beads as a function
of the phase of the excitation. In Fig. 6{a}we show such
a picture for an acceleration of a=2 and a frequency of
f=10 Hz. The column appears to stay clustered in all
cases considered by us. In Fig. 6(b) we present a MD
simulation for the trajectory of the centers of mass of the
beads for the same parameters. The MD calculation may
lead to large separations in the positions of the beads. On
the other side an ED algorithm leads to clustered dynarn-
1cs.

e
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C. The behavior of a coltnnn of beads under strong agitation

We now turn to the question of strong agitation. This
will lead to a large separation between the particles,
o »1, which means large dilatation and a long time of
free Sight so/Uc between the collisions. This allows us to
choose quite long contact times as long as a »1. So the
simulations should lead to corn.parable results in the
high-energy and low-dissipation regime (HLR). The
computer time needed for event-driven algorithms is pro-
portional to the number of events; these algorithms are
therefore most effective in HLR. MD algorithms con-
sume computer time proportionally to the simulated time
and are therefore less efFective in HLR. Furthermore, the
detachment effect wi11 be strongest in the low-energy
high-dissipation regime, because there the particles are
almost always in contact.

In Ref. [39] a scaling behavior for the center of mass

h, was found in the case of high agitation a, low dissi-

pation (1 —e}«1, and large number of particles N [i.e.,
N(1 —s ) & 2.8]:

4 {~o~)' q(X)
c.m. c.m. o+

3 g' X
(10a)

y(X) =1—a,X—a2X2, (lob)

with a, =0.098 and a2=0.073. In Fig. 7 we display re-
sults of ED and MD simulations of %=10particles with
a=0.92 and f=20 Hz. In Fig. 7 the crosses denote the
ED and the circles denote the MD results. Furthermore
we compare the results with Eq. (10a), depicted as a
dashed line. Note that we are here in the regime of
strong agitation so that we find o & 10, much larger than
unity. In fact, in such a situation our requirement that t,
be close to its experimental value is no longer stringent
and can be relaxed. The MD values in Fig. 7 were ob-
tained with t, =—10 s by averaging h, over more than

where h, o is the height of the center of mass at rest, X
is the efFective dissipation X=N(1 —E), and y(X) is
defined through
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FIG. 6. {a) Experimental result of a 1D column of %=10
aluminum beads under vibration with f=10 Hz, and a=2.
Plotted is the vertical position as a function of the vibration

phase. QI indicates the position of a reference bead, glued

some 14 bead diameters above the bottom plate. Q& indicates
the position of the center of mass (dark dot) of the seventh bead.
Q3 indicates the bottom plate. (b) Results of MD simulations
under the same conditions as in (a). The trajectories of the par-
ticles are represented as a function of time. The parameters
used are a=0.6 and t, =3.6X10 s.
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FIG. 7. Behavior of a 1D column of N=10 particles with

e =0.92 under vibration with f=20 Hz, and varying amplitude.

%e compare the MD {circles) with the ED simulations (crosses)

and with the expression Eq. (10) (dashed line). Here a is the re-

duced acceleration a = Aoco /g.
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100 periods. In fact, using smaller t, does not change the
picture. As a result we find that for cr))1 the MD
methods reflect in a reliable way the ED and experimen-
tal results without having to require extensive computa-
tion.

The above simulations in 1D show that when the ac-
celeration is high and the dissipation is low both the MD
and the ED results are reliable. Problems with the simple
MD simulations with large t, become apparent when the
dissipation (or the number of dissipative contacts) gets
high and the acceleration a gets to be low. Then it is irn-
perative to get to lower t, values, by a judicious choice of
the interaction parameters; the price to be paid is longer
computation times.

VI. CONCLUSIONS

In this paper we have shown that MD simulations
based on linear interactions and which use parameters
which lead to large contact times t, run into problems
when they are used to determine the behavior of dense
packings of beads. When the number of dissipative con-
tacts is large, the MD calculations imply a too-low ener-
gy dissipation in the system considered. This means that
the MD simulations overestimate the density and energy
fluctuations. The effect is most obvious for linear interac-
tion laws but also subsists for nonlinear interaction laws.
As a measure for the occurrence of such effects, one can
use the ratio cr between the time of free-flight and the
contact time t, . For o &&1 the MD simulations underes-
timate the energy dissipation and lead to large fluctua-
tions. Such computation-induced phenomena can be in-
hibited by using physically reasonable, small values for
the time t, As will b. e shown by us elsewhere [42], such
t, values often suppress much of the convection shown in
MD calculations; hence we infer that convection may be
a spurious effect. On the other hand, for o.))1 no partic-
ular precautions are necessary and we find that the re-
sults of MD and ED simulations agree with each other.
Evidently, more work is necessary in order to determine
optimal parameters for MD simulations. For the study
of effects such as heaping, size segregation, and convec-
tion one may have to include, besides reasonable contact
times, also the static friction and the rotation of the parti-
cles. For the microscopic interactions, possibly aspects
like memory (hysteresis) may be important [47,48].
Maybe even the idea of pairwise interactions must be
reconsidered in situations when, as a rule, a particle is in
contact with several of its neighbors.
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APPENDIX

In the following we consider nonlinear interactions be-
tween particles. Using Eq. (8) we present estimates for
the contact time t„the maximal penetration x,„,and
the coeScient of restitution c..

The elastic energy is E,i
=Ed' ~x +,g /(2+p}, as can

be found by setting rt =0 in Eq. (8) and integrating it in
standard fashion, after multiplication by x. Here x

„

is
the maximal depth of penetration. Suppose that the ini-
tial kinetic energy Ek =muo/2 is completely transferred
to elastic energy. This leads to a maximal penetration
depth of

xm,„=1+—
1/(2+P)

m
Ed'-p

' 1/(2+P)
)2/(2+P)

t, =I(p)
Vp

=I(P) 1+—
2

' 1/(2+P) 1/(2+P)

x(u )
t'"'+t" (A2)

In Eq. (A2) I(P) is

I(p) =
1

2+P

(1+P/2) I' 4+p
4+2

for P=O
2.94 for P= —,',

where I'(z) is the gamma function. From Eq. (A2) one
infers that the contact time follows t, ~vp ' for the
Hertz interaction law (p= —,'}; Eqs. (Al) and (A2) lead to
the expressions of Ref. [44], valid for two spherical parti-
cles, when one sets E=Y/[3(1 —o }]; here Y is the
Young modulus and o the Poisson ratio. We tested, us-
ing the MD formalism for binary collisions, that x,

„

and t, obey the above Eqs. (Al} and (A2) within O. l%%uo, as
long as the dissipation is weak (i.e., s)0.9). One test
consists of simulating the pairwise collisions of 200 parti-
cles, while varying the initial relative velocity vp of each
pair. This leads to a set of data that agrees with Eqs.
(Al) and (A2) over more than 15 orders of magnitude in
vp.

Now we approximate the dissipated energy (in the
weakly dissipative regime) through

diss dissX max ( ) 0 )X max

which leads to
' (1+y)/(2+P)

m
Ed'-p

X V
(2+y+P/2)/(1+P/2)

Vp (A3)

(A 1)

Separating the energy conservation equation into t- and
x-dependent terms and integrating from t =0 to t, /2 or
from x =0 to x,

„

the contact time t, follows:
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For a loss coeScient 1 —s ~ 1 —Q 1 E—d;„/Eowe obtain

I g (x U(2y —p)/(2+p)QQcUO (A4)

For the Hertz-Kuwabara-Kono model (p=y= —,'), one
finds a slow increase of 1 —c. with the velocity, i.e.,
1 —s ~ v o~ . Note also the behavior in the case p= —,

' and
y=0 for it was considered in Refs. [28,29] one finds
1 —e, ~ uo ', i.e., beads are more elastic at higher veloci-
ties. %'e suggest that this might be one reason why no
steady state for a system of particles on an inclined chute
is found [28]. Due to gravity the particles are accelerat-
ed; if there is less dissipation at higher velocities, there is
no reason for a steady state to build up. On the other
hand, if the dissipation increases with the velocity one
has two effects which balance each other. In Table I we
summarize the findings and give the corresponding refer-
ences. Note that the penetration depth and the contact

V) Vp

1

5
1

5

5

0
1

5
1

5
1

5

0

Refs.

[24-27]

[28-30,32]

[43]
[45]

time depend only on P, while the behavior of 1 —s can be
varied by changing the exponent y. Most nonlinear MD
simulations [28-30,32] were carried out using y =0; this
means that 1 —s is proportional to vc '~ (i.e., at higher
velocity one has less dissipation}.

TABLE I. The exponents v&, v2, and v3, %which give the uo

dependence of x ~ uo', t, ~ uo, and 1 —e. ~ uo in the limit of
low dissipation (sl small). The interaction law is Eq. (8) of the
main text.
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