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Light yrop~+tion in a cylindrical waveguide with a complex, metallic, dielectric function
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Motivated by problems in scanning near-field optical microscopy, we discuss light propagation in cir-
cular dielectric waveguides with finite aluminum cladding. In order to understand the origin of the
different solutions, optical modes are first investigated for the dielectric waveguide with infinite alumi-

num cladding and for the aluminum cylinder. For aluminum a plasma dispersion law is assumed, lead-

ing to complex dielectric constants with negative real parts and to generally complex propagation con-
stants. The dependence of the dispersion on the geometry and on the frequency is discussed for the vari-

ous kinds of modes. We find that the existence of most of the modes is limited to certain frequencies and

geometries, i.e., the solutions have a cutoff in the complex propagation constant plane. Contrary to
dielectric waveguide theory, where cutoff describes the abrupt transition from propagating to evanescent

modes, no other solution is generated when cutoff of a mode is reached. Surface modes and other kinds

of modes, such as guided or bulk modes, can either couple between each other or transform into each
other.

PACS number(s): 42.25.Bs, 03.50.De, 41.20.Bt, 41.20.Jb

I. INTRODUCTION

Metal coated optical fibers find an important applica-
tion in scanning near-field optical microscopy (SNOM)
[1,2]. This technique uses a metal coated tapered fiber
with an aperture at the end as light emitting probe. It is
well known that only a small amount of the input light
power reaches the end aperture of the probe. The investi-
gation of this unfavorable effect and the design of opti-
mized SNOM probes require the understanding of light
propagation in metal coated optical waveguides.

In this paper we investigate the propagation of guided
optical waves in circular waveguides made of concentric
layers of glass, aluminum, and vacuum. Although this
structure is relatively simple, the classification of the
modes and the understanding of the observed effects is far
from being trivial. Therefore we reduce the complexity
in a first step and discuss (1) guided optical waves of the
aluminum cylinder in vacuum and (2} solutions of the
dielectric waveguide with infinite aluminum cladding.
These two simpMed cases are obtained from our initial
structure (1) by setting the radius of the glass core equal
to zero and (2) by assuming an infinite thickness for the
aluminum cladding. The modes found for the simplified
structures are used for the classification and discussion of
the modes of the initial structure. Two main aspects are
emphasized: (1) dependence of the propagation constant
on geometrical parameters and (2) frequency dispersion.

For glass, we assume a real, frequency-independent,
dielectric constant; whereas for aluminum, we allow for a
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complex dielectric constant that obeys a plasma disper-
sion law. At optical wavelengths, the real part of the
dielectric constant of aluminum is negative and has there-
fore a surface active character which leads at certain fre-
quencies to plasmon excitations (resonant density oscilla-
tions of the electron gas [3,4]). These resonances depend
on the material, frequency, and geometry. Surface
modes, such as surface plasmon modes, are localized at
the interfaces between different media. In surface and
thin film physics, surface plasmons find an important ap-
plication as sensitive surface probes (optical sensors) for
the investigation of surfaces [5].

Several authors discussed solutions of the wave equa-
tion for the infinite cylinder with negative dielectric con-
stant. Their attention was mainly focused on cylindrical
surface polaritons [6—10]. One of the first experiments to
excite optical modes on an aluminum cylinder was per-
formed by Miziumski [11]using light scattering. Pfeiffer,
Economou, and Ngai [8] explained these results by means
of virtual radiative modes which have a complex frequen-

cy and thus a finite lifetime. Virtual radiative modes with
frequencies greater than the plasma frequency were inves-
tigated by Martinos and Economou [12]. For the case of
a lossy metal cylinder irradiated by a plane wave at nor-
mal incidence (vanishing propagation constant} they
show that the eigenfrequencies correspond to peaks in the
absorption spectrum. Recently a systematic classification
of all possible guided modes in cylindrical geometry with
two concentric media, one of them having a negative
dielectric constant, was given by Prade and Vinet [13].
Lossy waveguide structures have been described mainly

by means of transmission line theory [14] leading to ap-
proximate solutions based on perturbation theory.

In this work, attenuation is associated with the imagi-
nary part of the dielectric constant of aluminum. The
propagation constants of the waveguide modes wiH there-
fore be complex. A distinction of pure propagating and
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pure evanescent modes is no longer possible. Instead
there is a transition from more or less propagating to
more or less evanescent modes. The coupling between
electromagnetic and other forms of energy makes the
physical interpretation much more di%cult since the
analysis must be done with complex parameters. Graphi-
cal representation becomes extensive since real and imag-
inary parts have to be shown simultaneously.

The paper is organized as follows. Section II outlines
waveguide theory and the methods used for this work.
For a waveguide with dielectric core and infinite alurn-
num cladding we investigate in Sec. III the dependence of
the propagation constant on the core radius and frequen-
cy. A similar study is done in Sec. IV for an aluminum
cylinder surrounded by vacuum. Finally we discuss in
Sec. V the modes of a waveguide with dielectric core and
finite aluminum cladding by using the results of the
preceding sections.

II. THEORY

Throughout this paper we assume a real frequency,
determined by the time-harmonic excitation. Pseudonor-
mal modes, obtained by other authors for complex fre-
quencies [8], are therefore not investigated here. The
solution of Maxwell's equations in cylindrical structures
is well documented in the literature [15]. Therefore we
emphasize only some aspects of the derivation of the
waveguide modes. The field FC I E,H] prOpagates along
the waveguide axis z as

k, =P+ia . (2)

In Eq. (2) p is the phase constant and a the attenuation
constant. Real and imaginary parts of dielectric con-
stants will be denoted as

c.=c'+ ic", (3)

where v s is the index of refraction. In the (p, y) plane,
we consider two or three concentric domains from which
only one has a complex dielectric constant. The azirnu-
thal dependence of the fields in each domain is described
by harmonic functions sin(nor), cos(ny) of order n and
the radial dependence by cylinder functions that fulfill a
second order Bessel differential equation. In the inner
domain only a Bessel function of the first kind, J„,ean be
used in order to have a finite solution along the
waveguide axis. For the outermost domain, on the other
hand, only a Hankel function of the first kind, H„",may
be applied in order to fulfill the radiation condition at
infinity. A closed domain which does not contain the
waveguide axis is described by two linearly independent
cylinder functions.

The argument of a cylinder function in domain D;
reads (a;p }where a; is the transverse wave number. n; is
related to ~, by

F(p, y, z) =F(p, g)e

where k, is the propagation constant and p, y are polar
coordinates in the transverse plane. For the complex
propagation constant we use the following notation:

]c;=ko2 2

2

ko
(4)

where ko is the free space wave number: ko=co/c.
When taking the square root of (4} we obtain two values
for ~;. It is important to note that for H„'"in the outer-
most domain, the value of a; with positive imaginary part
must always be taken in order to satisfy the radiation
condition.

On each boundary separating two domains D;,D at
p=R;. , four continuity conditions for the tangential com-
ponents of the electric and magnetic fields can be formu-
lated. Imposing that the determinant of the resulting
homogeneous system of equations must vanish, we obtain
the transcendental equation

det[M(k, ) ]=0 (5)

for the eornplex propagation constant k, . M is the result-
ing matrix of the system of equations. For a physical sys-
tem with L layers, the size of this matrix is 4(L —1). For
order n =0 the matrix can be split into two independent
submatrices of size 2(L —1) corresponding to TE and
TM solutions. For complex dielectric constants the value
of the determinant is complex too and Eq. (5) must be
fulfilled for real and imaginary parts simultaneously. In
that case, ~det[M(k, )]~=0, which can be used as a cri-
terion for the determination of k, .

We have used two independent procedures for the
determination of the propagation constant. In the first
one we wrote a code to determine the minima of
~det[M(k, )]~ as a function of k, . This code is based on
routines of the NAG FORTRAN library [16]. A minimum
with a value at least 20 orders of magnitude smaller than
the average value of ~det[M(k, ))~ was identified as a
mode. The second procedure relied on the two dimen-
sional (2D) multiple multipole program (MMP) for waves
on arbitrary cylindrical structures [17]. In this method
an overdeterrnined system of equations is used. The error
in the boundary conditions is evaluated as a function of
k, and a mode is associated with the minimum of this er-
ror. The results of both methods agreed up to the eighth
digit.

A. ClassiScation of modes and idealization of models

A general purpose computer code such as 2D MMP can
easily find a large number of modes propagating in a cy-
lindrical structure. For the code there are no essential
differences between the modes. Therefore a simple
enumeration seems to be appropriate; but a classification
containing some interesting information is helpful for un-
derstanding the mechanisms of wave propagation in cy-
lindrical structures. Such a classification is usually based
on a complete analytic solution that is known for
suf6ciently simple geometries only. Here it is important
to note that "analytic" solutions usually lead to transcen-
dental equations that cannot be solved analytically. In
order to distinguish this kind of solution from pure nu-
merical solutions based on a discretization, we keep the
term "analytical. "
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The classification of modes on geometrically compli-
cated structures that cannot be determined analytically is
tricky and somehow ambiguous. Since one often is in-
terested in the coupling of a complex structure with a
simpler one, one tries to establish classification on the
complex structure based on the known classification of
the simpler structure. The same is done even in our case
of a cladded circular fiber, where analytic solutions are
known. Therefore we start with the examination of the
two special cases (1) zero diameter of the dielectric core
and (2) infinite cladding. Afterwards, we use the
classification of the special cases to describe the modes of
a structure with finite core and finite cladding.

For a dielectric waveguide with a loss-free metal clad-
ding (hollow metal waveguide) one distinguishes TEnm
and TMnm modes. The index n of the circular structure
denotes the angular symmetry of the mode and the index
m denotes the radial dependence of the field. For the
modes of the corresponding rectangular waveguide one
has the same notation with a difFerent meaning of the in-
dices n and m. On an ideal step-index fiber most of the
modes are hybrid and only the n =0 modes are trans-
verse. Since hybrid modes are often almost TM or almost
TE modes, one distinguishes EHnm and HEnm modes.
This distinction can be misleading because the dominance
of some field components strongly depends on the materi-
al properties, on the geometry, and on the frequency.

Loss-free models are often used for the classification of
modes for reasons of simplicity. To obtain such a model,
one can either neglect the conductivity of a material or
one can assume an infinite conductivity. The solutions
and classifications obtained in both cases are completely
different. When a complex model with finite conductivity
is studied, one usually uses the same classification as in
the ideal case that is closer to the actual situation. For
frequency-dependent materials this can cause transitions
from one mode into another one. Such a transition is
somehow fictitious as it is the name of the mode rather
than the mode itself which changes. We will study such
transitions in Sec. V.

Ignoring losses has another consequence: most of the
modes have a finite cutoff frequency. Their propagation
constant is real above the cutofF frequency, which indi-
cates that the waves propagate without any attenuation.
The propagation constant becomes imaginary below the
cutoff frequency and the modes are called evanescent. In
the following sections we will observe a transition from
"propagating" modes to "evanescent" modes in an area
where the loss-free model shows cutoff. Surprisingly, we
find another "true" cutoff for most of the modes. This
cutoff is usually considerably below the cutoff of the
idealized model. Below the idealized model cutofF there
is still a solution (the evanescent wave) of the problem
posed, but below the "true" cutoff there is no solution at
aH. It can be shown that the "true" cutofF frequency
tends toward zero if the losses tend toward zero.

In models with frequency-independent materials, the
scaling of the geometric data is equivalent to the scaling
of the frequency. The plots of the propagation constant
versus the radius of a fiber and the plots of the propaga-
tion constants versus the frequency are almost identical.

Consequently, one obtains a cutoK radius corresponding
to the cutoff frequency. An explicit computation of the
dependence on the radius is not required. The mode in
our investigation is neither loss-free nor frequency in-
dependent. Therefore, we will separately consider the
dependence of the propagation constants on the radius
and on the frequency.

B. Frequency dispersion

For wavelengths shorter than X=800 nm, the dielec-
tric function of aluminum is very well described by the
plasma dispersion law [18]

where the plasma frequency is given by fuush
=15.565 eV

and the damping constant by Ay=0. 608 eV. At X=800
nm experimental aluminum data deviate from the disper-
sion law (6) because of interband excitations of inner core
electrons. With an additional Lorentzian resonance su-
perposed to (6) it is easy to account for this bound elec-
tron efFect. Although we could directly use an interpola-
tion of measured data in our numerical analysis, we will
use (6) for reasons of simplicity. For glass we assume a
real, frequency-independent dielectric constant
=2.16. Although in this paper we sometimes consider
structures smaller than 10 nm, we do not take spatial
dispersion into account, i.e., the electron gas has no
compressibility. It is therefore assumed that energy is
transported completely by electromagnetic waves and by
no other mechanism. A nonlocal discussion of cylindri-
cal surface modes based on a hydrodynamic model can be
found in Ref. [7].

III. MODES OF A DIELECTRIC WAVEGUIDE
WITH INFINITE METAL CLADDING

A. Dependence on core radius

In this section we consider a dielectric core with vari-
able radius R surrounded by an infinite aluminum clad-
ding. Although a strict distinction between propagating
and evanescent modes cannot be achieved, we will never-
theless use these expressions. Figure 1 shows P and a for
the first 12 modes as a function of R at a fixed wavelength
of A, =488 nm. At this wavelength the dielectric constant
of aluminum is c,&„=—34.5+i8.5. Note that a logarith-
mic scale is used in Fig. 1(b). As R decreases the modes
run continuously from a propagating through a transition
to an evanescent region. In the propagating region the
attenuation of some modes decays faster than those of
others. At R =300 nm, for example, the TE01 mode
shows the lowest attenuation. The modes in the propaga-
ting region are similar to those of the hollow metal
waveguide for which completely transverse modes are ob-
tained. The sequence of modes of the hollow metal
waveguide starts with TE11, TM01, TE21; whereas for
the aluminum coated waveguide we obtain the sequence
HE11, TM01, HE21. The next two modes of the hollow
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metal waveguide, TM11 and TE01, are degenerate. The
corresponding modes of the aluminum waveguide, EH11
and TE01, are not degenerate but similar. Especially in
the transition region they have almost identical values of
k, (Fig. l). For all modes the attenuation changes rapid-
ly from =0.07ko to =0.7ko in the transition region and
becomes more or less an exponential function of R in the
evanescent region.

10

1. Small core radius

An interesting result is that all the modes, with the ex-
ception of the HE11 modes vanish when R becomes
smaller than a critical value, i.e., they have a cutoff (Fig.
l). Note that cutoff in dielectric waveguide theory de-
scribes the abrupt transition from pure propagating to
pure evanescent modes. When damping is included, this
transition becomes continuous and the term cutoff be-
comes vague. In the following we therefore distinguish
between cutoff and transition of a mode. The disappear-
ance of a mode shall be denoted as cutoff.

The situation near cutoff can be better analyzed when
looking at Fig. 2, which shows a parametric plot in the
complex k, plane with R taken as parameter. All TM
and EH modes, i.e., modes with a large magnetic field in
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FIG. 1. Propagation constant as a function of core radius R.
For decreasing R the modes run from a propagating through a
transitional to an evanescent region. The modes disappear
when they reach cutofF. Wavelength A, =488 ~m infinite alum&-
num cladding e,=—34+i8.5; dielectric core a, =2.16. HE
modes, solid lines; EH modes, dashed lines; TE modes, dash-
dotted lines; TM modes, dotted lines.

FIG. 2. Parametric plot of the propagation constants (the
core radius is the parameter). The thick solid line indicates
Im(a;,„I=O. Wavelength A, =488 nm; infinite aluminum clad-
ding c= —34+i8.50; dielectric core a=2. 16; HE modes, solid
lines; EH modes, dashed lines; TE modes, dash-dotted lines;
TM ides, dotted lines.

the transverse plane, have a cutoff when P=0.
Mathematically, these solutions would continue with neg-
ative values of P but since such solutions do not fulfill en-

ergy conservation, they are excluded from the discussion.
At cutoff, the propagation constants of all the investigat-
ed TM and EH modes are close to k, =i4kc (the devia-
tion is less than 2.5%). This cutoff value depends only
slightly on cz& but is rather sensitive to e&„.For each
TM and EH mode, we calculated the cutoff radius (R, ),
i.e., the radius for which k, =k, ~««s~ crosses the imagi-
nary axis. We then calculated k, for a lossless structure
(ImIs„„J=0) with the same radius R, . Rather surpris-
ingly, the obtained k, value was always within 0.025%
identical with k, ~„«+. In other words, at cutoff, TM
and EH modes are almost identical to the corresponding
modes of the lossless waveguide. Note, however, that for
increasing values of ImIs&„I the deviation between the
two k, also increases.

TE and HE modes, i.e., modes with a large electric
field in the transverse plane, have on principle a different
behavior. In the evanescent region, before reaching
cutoff, their phase constants increase for decreasing R.
Cutoff is reached when k, reaches the curve described by

2aP=E,'I„kc and P —a &e,'&„kc .

This is the curve where Im I a;&„I=0 and the arguments of
the Hankel functions describing the radial dependence of
the fields in aluminum become real. This means that near
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fP —a~ = k,e'

ltd, v;"v, r, , FIG. 3. Transformation from transverse
wave number a to propagation constant
k, =a+i@

::':~..=-;:=:=:;-',""'2a ($
—k,e'

~

cutofF the fields in the aluminum cladding have oscillato-
ry behavior in the transverse plane and decay with p
Hankel functions are discontinuous for negative real ar-
guments [19). Since the negative and the positive real a.

axis are transformed on the same curve (7) in the k, plane
(Fig. 3) the modes reach cutoff when the Hankel func-
tions become discontinuous. The transformation from
the complex ~ to the complex k, plane is sketched in Fig.
3. In Fig. 4 the absolute value of the determinant (5) is
evaluated in the complex k, plane for R =20.5 nm. The
minimum in the figure corresponds to the HE21 mode
when reaching cutoff.

The HE11 mode asymptotically approaches
k, =kodes, ]„,which is equivalent to ]r,]„=0.We suppose
that the HE11 mode has no cutofF. This is not easy to
verify numerically since for R ~0 also ~,&„tends to zero
and the argument of the Hankel function becomes very
small. However, it is interesting to note that below a cer-
tain R no other mode or no other homogeneous solution
to Maxwell's equations than the HE11 mode exist. In a
metal coated tapered waveguide one solution after the
other will therefore vanish as the radius decreases. At
the end only the HE11 solution will still exist. This is not
the case in the theory of loss-free dielectric waveguides

where always an infinite set of evanescent solutions is pre-
dicted and cutoff of a pure propagating mode is accom-
panied by the creation of a pure evanescent mode that
has no cutofF.

2. Large core radius

In loss-free waveguides it is possible to distinguish be-
tween oscillatory modes (guided modes) and surface type
modes [13]. The field amplitudes of the latter are max-
imum at the interface. To obtain such a field distribution
in the core, the Bessel functions must monotonically in-
crease towards the interface. This is obtained for imagi-
nary arguments. Real arguments lead to radially oscillat-
ing modes. In the lossy case it is no longer possible to
distinguish between pure oscillatory and pure surface
types of modes because the arguments are always com-
plex. The classification into these two types of modes
turns out to be a problem similar to the distinction be-
tween evanescent and propagating modes. At a planar
interface between a dielectric and a metal described by a
complex dielectric constant with negative real part, non-
radiative surface modes (lossy Fano modes) are obtained
if the condition

ls ] I +~EQ]e]

is satisfied. At A, =488 nm the cylindrical configuration
fulfills condition (8) so that for certain R the existence of
surface modes may be expected. Indeed, for large R, we
find two different asymptotic limits for k, (Fig. 2). As ex-
pected from the theory of optical waveguides, most of the
modes tend towards the limit

k, =koQe„„.
However, the TM01 mode and HEn 1 modes have a limit
at

1/2
glass alu

z 0
~glam+ ~su

(10)

57
0

FIG. 4. Lines of constant
~
det[M(k, )]~. Core radius

R =20.5 nm; wavelength A. =488 nm; in6nite aluminum clad-
ding c=—34+i8.5; dielectric core a=2. 16. The minimum cor-
responds to the HE21 mode when reaching cutoH'. The discon-
tinuity indicates Im j]r„„I

=0.

which is the dispersion relation for surface plasmons at
planar interfaces [4]. At the plasmon frequency, where
c.,»= —cgl~, k, becomes very large; in the absence of
damping even infinite. Note that before reaching the lim-
iting value (10), the parametric k, curves of the Han1
and TMO1 I.odes intersect in a&most the same point. In
the limit R ~~ surface modes have finite attenuation
whereas guided modes propagate without losses. The re-
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suit that some guided modes become surface modes when
R is increasing is rather surprising. Moreover, for a
given order n there is only one existing surface mode.
This uniqueness was also observed in Ref. [13] in the ab-
sence of damping. No TE surface mode can exist since
the electric field of TE modes is oriented circularly
around the waveguide axis and therefore parallel to the
interface. For TM modes, on the other hand, the electric
field in the transverse plane points toward the waveguide
axis and is perpendicular to the interface. A net surface
charge can thus be generated. As we will see in Sec. IV,
the same types of surface modes are also found for the
aluminum cylinder. Note that the power in the cladding
can flow in opposite direction to the power in the core.
The direction of the net power flux, however, is always
determined by the core.

B. Frequency dispersion

For the following discussion we use the plasma disper-
sion law (6). At frequencies below co=0. leo the results
will not be representative for aluminum since the
influence of bound electrons is neglected. According to
the discussion above, the modes can be categorized into
two different groups: HEn1 and TM01 modes which be-
come surface modes for increasing R and guided modes.
In the following we discuss frequency dispersion for a
mode of each group. The propagation of light in a homo-
geneous space consisting of the core material is represent-
ed in Figs. 5(a) and 6(a) by the dash-dotted core line.

In Fig. 5 dispersion curves for the HE12 guided mode
are shown for five different radii R. Two regions can be
distinguished: a propagating and an evanescent one. For
high enough frequencies all modes are propagating and
asymptotically approach the core line from the left side.
Their phase velocity, defined as co/P, is therefore higher
than the phase velocity of light propagating in an infinite
core medium. The larger R is, the closer the dispersion
curves to the core line are. For low co, in the evanescent
region, the propagation lengths of the modes, defined as
1/a, become very short. A mode has a cutofF if condition
(7) can be fulfilled. Note that the behavior of the HE12

mode is representative for all the other modes that
remain guided for large radius R.

Dispersion curves of the HE11 modes are shown in
Fig. 6. For comparison, the dispersion curves for a pla-
nar interface (10) are shown by dotted lines. Since we al-
low for damping, these curves deviate considerably from
the familiar dispersion curves in the literature. Account-
ing for damping causes continuous transition from nonra-
diative surface modes (Fano modes) to radiative surface
modes (Brewster modes). As a consequence, the disper-
sion curve bends back at frequencies near the plasmon
frequency. This backbending effect was verified experi-
mentally with measurements using the attenuated total
reflection (ATR) technique [20] and discussed by several
authors [21,22]. Over its entire spectrum, a HE11 mode
passes through different characteristic states. For low m

it behaves like an evanescent mode. As ~ increases it be-
comes a propagating mode. Rather surprisingly, the
dispersion curve then crosses the core line and becomes a
nonradiative surface mode approaching the plasmon fre-
quency. Then, the dispersion curve bends back and a in-
creases, causing a very short propagation length. For all
R the surface modes couple back into evanescent modes,
which is characterized by the near-circular a curves.
This coupling can be rather abrupt as seen for R =200
nm when following the a curve. For some values of R
the modes at large co become propagating modes, for oth-
er values they run into cutoff and disappear. Note that
the curve for R =200 nm is already close to the plasmon
dispersion curve of the planar interface. The smaller the
radius R is, the higher the resonance frequency is. Other
modes which become surface modes for large R behave
similarly to the HE11 mode.

IV. OPTICAL MODES OF A METAL CYLINDER

Modes propagating on the surface of a metal wire
characterized by a small dielectric constant and finite
conductivity were investigated already at the beginning
of the century [23]. These Zenneck type modes extend in
the surrounding vacuum over large distances, i.e., k, is
close to ko. At optical wavelengths where metals are
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FIG. 8. Propagation constants of the first few bulk modes as
a function of cylinder radius R. Wavelength A. =488 nm; alumi-

num cylinder c=—34+i8.5; surrounded by vacuum. Phase
and attenuation constants are drawn in the same figure.

modes it is observed that the smaller R is, the higher the
attenuation is. The contrary could be expected since the
absorbing area is smaller for smaller R.

&aalu

k, =ko

' 1/2

(15)

For R~~ bulk modes asymptotically reach the value
(Fig. 10)

k, =koQs„„. (16)

0.008

0.006 '
TMO

0.004.
5

0.002

1.01 1.02 1.03 1.04

FIG. 9. Parametric plot of the propagation constant for the
lowest four surface modes (the cylinder radius is the parameter).
%'avelength A. =488 nm; aluminum cylinder c= —34+ i8.5; sur-
rounded by vacuum.

2. large radius

In Fig. 9 a parametric plot of the Srst four surface
modes is shown. In the asymptotic limit the surface
plasmon solution must be recovered. Therefore, for
R ~~ all the curves end in the same point, given by

/ko

FIG. 10. Parametric plot of the propagation constant for the
first few bulk modes (the cylinder radius is the parameter).
Wavelength A, =488 nm; aluminum cylinder c= —34+ i8.5; sur-

rounded by vacuum.

B. Frequency dispersion

Below the plasmon frequency the surface modes of the
aluminum cylinder are very similar to those of the planar
interface (Fig. 11). For low co they asymptotically ap-
proach the light line which describes propagation of light
in free space. For co close to the plasmon frequency
co~/~2 the surface modes become strongly localized at
the interface. The thinner the cylinder, the larger the
propagation constant at the plasmon frequency. Note
that these surface modes are much less sensitive to
geometrical alterations than those which were obtained
for the metal coated dielectric waveguide. Above the
plasmon frequency, the surface modes convert very
abruptly into bulk modes which have a cutoff when they
become purely evanescent, i.e., P~O. If the cylinder is
thick enough, a bulk mode can convert into a propagat-
ing mode above the plasma frequency m~. This is shown
in Fig. 11 for R =500 nm. The propagating mode then
asymptotically approaches the light line. Bulk modes are
characterized by a very short propagation length and two
peaks in their P curves (Fig. 12). The shorter the propa-
gation length, the larger the peak near the plasmon fre-
quency and the smaller the peak at low frequencies.
Since bulk modes are to the left of the light line (radiative
modes) they can simply be excited by light scattering.

Surface modes of different orders are shown in Fig. 13
for a fixed R of 100 nm. Whereas the TMO and the HE1
mode have no cutoff for low frequencies, higher order
modes all have a cutoff determined by the condition (11).
Before reaching cutoff, surface modes cross the light line
and become radiative. In Fig. 13, cutoff is described by
(13) for surface modes with orders lower than n =7 and
by (12) for surface modes with n =7 or higher. For high
values of n and small radius R several authors observed a
minimum in the dispersion curve [8,13]. Such a
minimum, which gives rise to a region with negative
group velocity, was not observed in the present investiga-
tion. We suppose that the absence of this minimum is
due to damping which is taken into account in our
analysis.



4102 L. NOVOTNY AND C. HAFNER 50

1.2

1.0

0.8

0.6

0.4

0.2

0
0.5 1 1.5

cP/m

a)

2.5 0.5 1.5

c a/co

2.5

FIG. 11. Frequency disper-
sion of the HE1 surface mode
for different cylinder radii. The
numbers specify the cylinder ra-
dii in nm. The surface plasmon
dispersion of the corresponding
planar interface is indicated by
dotted lines. Aluminum
cylinder fico~ = 15.565 eV,
fiy =0.608 eV; surrounded by
vacuum.
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FIG. 12. Frequency disper-
sion of bulk modes of order
n = 1 for a cylinder radius
R =50 nm. The HE1 surface
mode is shown for comparison.
The surface plasmon dispersion
of the corresponding planar in-

terface is indicated by dotted
lines. Aluminum cylinder
fico~ =15.565 eV, fiy=0. 608 eV;
surrounded by vacuum.
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V. MODES QF A DIEI.EC1RIC %AVEGUIDE
%"ITH METAL CLADDING OF FINITE THICKNESS

8

The results of the preceding sections were obtained for
waveguides consisting of two concentric materials. In
this section we shall combine these results by considering
a dielectric core arith an aluminum cladding of finite
thickness D. For this structure three diferent types of
modes may be expected to exist: guided modes concen-
trated to the interior of the dielectric core, interface
modes localized on the boundary between core and clad-
ding, and surface modes tied to the surface of the clad-
ding. As we will see, coupling between the different kinds
of modes occurs when their propagation constants come
close to each other. 0.2 0.4

/

0.6 0.8

A. Dependence on geometry

For the discussion below we again assume a fixed wave-
length of iL=488 nm. The infiuence of finite cladding is
presented in Fig. 14 where parametric plots for infinite
cladding and 50 nm thick cladding are shown. Contrary
to Fig. 2 we use here a linear scaling. For large R the
curves of the two cases are almost identical. However,
for small R a different behavior is observed. This is not
surprising since in the limit R ~0 the waveguide consists
of an aluminum cylinder with a radius of 50 nm, whereas
in the case of infinite cladding the limit consists of a
homogeneous aluminum space. %hile for R~O the
curves of the TE and HE modes of the infinitely cladded
waveguide tend to Im[a„„]=0, those of a finitely cladded
waveguide are attracted by

10

0
0.2 0.4

/

0.6 0.8

FIG. 14. Comparison between a finite cladding a=50 nm
and an infinite cladding for the aluminum cladded dielectric
waveguide. The figure shows parametric plots of the propaga-
tion constants (the core radius is the parameter). The HE and
TE modes of the finitely cladded waveguide are attracted by the
line P=O. The EH and TM modes are almost insensitive to the
cladding thickness. Wavelength A, =488 nm; aluminum clad-
ding c= —34+ i8.5; dielectric core e,=2.16; surrounded by vac-
uum.

FIG. 15. Inhuence of cladding thickness on the HE11 mode.
The Sgure shows parametric plots of the propagation constants
of the HE11 mode (the core radius is the parameter). The num-

bers indicate the cladding thickness in nm. Wavelength A. =488
nm; aluminum cladding a= —34+ i8.5; dielectric core a=2. 16;
surrounded by vacuum.

1m[x„„I=0 . (17}

HE and TE modes with Snite cladding therefore have
cutoffs if the condition (17) can be fuilled. Modes for
which (17) cannot be fulfilled converge into the corre-
sponding bulk modes of the aluminum cylinder. In Fig.
14 HE41 and higher modes have a cuto6; whereas HE11,
HE21, and HE31 become bulk modes for R ~0. Figure
15 shows a parametric plot of HE11 modes for different
cladding thicknesses. For R ~0 the propagation con-
stants converge toward the corresponding bulk mode
value, which is visualized by the dashed line taken from
Fig. 10. If the cladding is too thin, the HE11 mode runs
into cutoff at P=O since the bulk mode has a low cutoff.
In Fig. 16 the inhuence of finite cladding on the field dis-
tribution is shown for R =8 nm and D =50 nm.

EH and TM modes remain almost unaffected by the
finite cladding, as seen in Fig. 14. Their propagation con-
stants again cross the imaginary axis at k, =i4ko which
determines their cutoff for small R.

Surface modes of the finite cladding waveguide have in
principle the same behavior as discussed for the metal
wire. For certain values of R, however, the phase con-
stants of a surface mode and a guided mode can come
close to each other. If in addition both of them have the
same symmetry, i.e., the same order n, coupling between
these modes can be observed in an analog way to the cou-
pling between dielectric waveguides [15]. For the slab
waveguide the coupling between guided modes and lossy
surface plasma waves is reported in Ref. [25]. It was
shown that this coupling sensitively depends on layer
thickness and that it is accompanied by a resonant ab-
sorption peak. Since there are two independent geometri-
cal parameters for the present cylindrical structure, core
radius R and cladding thickness D, we consider in the fol-
lowing a constant value for D. In Fig. 17 the coupling
between surface and guided modes is shown for n = 1 as a
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FIG. 16. Influence of finite cladding on the
power distribution of the HE11 mode. Con-
stant factor between successive contour lines.
Core radius R =8 nm; wavelength A, =488 nm;
aluminum cladding c, = —34+ i8.5; dielectric
:ore e, =2.16. (a) Infinite cladding; (b) cladding
thickness D =50 nm; surrounded by vacuum.

'2 '

. a)

1.2-

0.8 .

04' HE11

/
/

/
/

/
/

I
I

EH11
I

I

I I
I

/

HE12
I

EH12

0
I I

.~ ~

100 200

R [nm]

500

0.03

0.02

HE11

rl . ~

1

(
)

EHl1 HE12

l

EH12

function of R at a fixed cladding thickness D =50 nm.
Near R =109 nm the P curve of the HE1 surface mode
crosses the p curve of the HE11 guided mode. For this
value of R the attenuation of each mode is far from each
other. Nevertheless, a slight response due to coupling
with the HE11 guided mode can be observed on the at-
tenuation curve for the HE1 surface mode. Mode cou-
pling becomes more pronounced for R =255 nm, where
the phase constants of the HE1 surface and the EH11

guided modes intersect. In this case the attenuation con-
stants are closer to each other than before and a much
higher response can be observed. Finally at R =376 nm,
a new, rather surprising coupling mechanism can be ob-
served: the HE1 surface mode transforms into the HE12
guided mode and vice versa. This mode conversion is
shown in more detail in the closeups of Fig. 17. For a ra-
dius R =490 nm, the HE12 guided mode which has now
the characteristics of the HE1 surface mode transforms
into the EH12 guided mode. This procedure continues
for all higher guided modes of order n =1. A guided
mode therefore transforms into the surface mode and
finally transforms back into the next higher guided mode
of the same order.

For orders n ) 1 similar behavior is observed. For
n =2, for example, the HE2 surface mode cannot couple
with the HE21 and EH21 guided modes because of its
cutoff for R ~0. Instead, it couples with the HE22 and
then transforms into the EH22 guided mode. TE and
TM modes for n =0 cannot couple since they are orthog-
onal to each other. The TM surface mode couples with
the TM01 guided mode and then transforms into TM02
guided mode. For all mode conversions it is observed
that the phase constants do not intersect whereas the a
curves intersect twice (see inset in Fig. 17).

For large R, three different asymptotic limits are
found, which are the same as those previously obtained in
Secs. III and IV [cf. Eqs. (9), (10), and (15)].These limits
correspond, respectively, to guided, interface, and surface
modes.

B. Frequency dispersion

0.01 ~

0
200 300

R fnm]

500

FICz. 17. Propagation constant as a function of core radius R
for the modes of order n =1. The HE1 surface mode couples
with the HE11 and EH11 guided modes and transforms into the
HE12 guided mode (insets). Cladding thickness D=50 nm,
wavelength A, =488 nm; aluminum cladding c= —34+i8.5;
dielectric core c=2.16; surrounded by vacuum.

So far, couphng between modes was limited to a fixed
frequency. Of course, the same analysis can be done by
varying the frequency and keeping R and D fixed. The
frequency dispersion for n =1, R =100 nm, and D =50
nm is shown in Fig. 18. Although a large number of
guided modes exists, only one is shown in the figure. This
guided mode transforms at co=0.4' into the HE1 sur-
face mode and vice versa. The HE1 interface mode, lo-
calized between core and cladding, remains unafFected.
The mode conversion is shown in more detail in the inset
of Fig. 18. In the nonradiative region, the behavior is
very similar to frequency dispersion of a double-interface
system. Interface modes could therefore be excited by
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FIG. 18. Frequency disper-
sion of the HE1 surface mode,
the HE1 interface mode, and a
guided mode of order n = 1. The
HE1 surface mode and the guid-
ed mode (solid and dashed lines)
transform into each other (in-
sets). Core radius R =100 nm,
cladding thickness D=50 nm,
aluminum cladding %co~ = 15.565
eV, Ay =0.608 eV; dielectric
core c=2. 16; surrounded by
vacuum.

the ATR method, in a way similar to that in experiments
on metal layers of finite thicknesses [26].

Strong coupling between the two surface waves may be
expected when the layer thickness becomes comparable
to the radial decay lengths of the surface mode fields in
the aluminum cladding. However, to keep the discussion
in bounds, the infiuence of R and D on frequency disper-
sion is not further investigated. Note that mode conver-
sion as a function of frequency behaves on principle simi-
larly to mode conversion as a function of R: the phase
constants repel while the a curves intersect twice.

VI. CONCLUSION

To understand light propagation in circular dielectric
waveguides with finite metal cladding, three different
waveguide structures have been discussed. The con-
sideration of the finite damping of the metal leads to a
continuous transition from propagating to evanescent
guided modes. For large core radius or high frequencies,
some guided modes become surface modes localized be-
tween dielectric core and metal cladding. Other surface
modes are localized on the boundary between metal clad-
ding and surrounding vacuum. For every order n, both
types of surface modes are found to be single valued.
Below the plasmon frequency they behave similarly to the
Fano modes of a planar interface. Above the plasmon
frequency, they convert into evanescent modes with very
short propagation lengths. Surface and guided modes
can either couple between each other or transform into
each other. The latter occurs when in addition to the
phase constants, the attenuations of both modes also
come close.

With the exception of the HE11 guided mode and the
HE1 surface mode, all the modes exist only above a criti-
cal frequency or a critical core radius. This cutoff
behavior is on principle different from cutoff in dielectric
waveguide theory, where it is associated with the abrupt

transition from propagating to evanescent modes. In
waveguides with lossy media no other modes are generat-
ed when cutoff is reached. When the core radius de-
creases, one solution after the other vanishes, until only
the HE11 guided mode and the HE1 surface mode
remain as solutions. At cutoff the argument of the Hank-
el function becomes real, indicating that the modes be-
come purely radiative. The finite cladding mainly
influences HE and TE modes; EH and TM modes remain
almost unaffected.

Surface plasmon modes may be of importance for
SNOM improvements. Near the plasmon frequency the
HE1 surface mode is strongly localized at the surface of
the metal coating. In addition, it has no cutoff, is only
slightly sensitive to geometrical alterations, and has low
attenuation. Instead of a tapered metal coated dielectric
waveguide a simple metal tip with suitable material prop-
erties could be used as SNOM probe. How to excite such
a mode near the plasmon frequency remains an open
question. On the other hand, the HE1 surface mode at
the interface core/cladding could be excited by ATR
techniques. This mode, however, is rather sensitive to
the core radius and is transformed into the HE11 guided
mode below a certain radius or frequency.

Future work will concern the investigation of addition-
al waveguide structures such as waveguides with two me-
tallic domains. Transmission line theory predicts no
cutoff for such a configuration. In addition, an arrange-
ment operating with the plasmon mode localized between
the metallic domains would be able to strongly focus light
and would therefore represent a powerful SNOM probe.
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