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The synchronous interaction between a light pulse and a pulsed relativistic electron beam in a
hole-coupled resonator free-electron laser (FEL) is investigated. The spatial structure of the light
pulse inside the cavity and the fraction of power lost through the aperture are strongly influenced
by the overlap between the light and the electron beam pulses, both in the transverse and in the
longitudinal directions. The pulse shape is determined by the competition between power loss and
scattering at the aperture, by the gain due to the resonant interaction with the electrons, and by
the slippage with respect to the electron pulse. At the back of the optical pulse, where the main
interaction with the electron pulse occurs, gain and the associated focusing are dominant. The
front of the optical pulse tends to overtake the electrons and will finally propagate in vacuum. In
this front region of the pulse, the on-axis field intensity is reduced only due to scattering. The
influence of these competing mechanisms on the intracavity field distribution and the extracted
power is analyzed. The full spatial structure of the optical pulse is taken into account, whereas the
electrons are considered to move in a density averaged ponderomotive potential. The emittance and
betatron oscillations of the electron beam are included insofar as they lead to a variation of the
beam envelope. The phenomena are demonstrated numerically for FEL parameters close to those
of the free-electron laser for infrared experiments.
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I. INTRODUCTION

The free-electron laser (FEL) is a versatile source of
coherent radiation, opening up many new applications
because of its high output power and wide range of tun-
ability [1]. In this paper, a resonator FEL is considered,
such as the free-electron laser for infrared experiments
(FELIX), which operates with a pulsed electron beam
and in which an on-axis aperture is used to extract the
radiation from the cavity [2]. Compared to other outcou-
pling schemes, such as a Brewster plate, hole coupling
provides a broadband extraction of radiation.

In a resonator FEL, multiple round-trips are required
for the optical field to reach saturation. During each
round-trip, the radial profile is influenced by two counter-
acting processes. On the one hand, power is lost through
the aperture which tends to reduce the field intensity on
axis. This will be partially compensated by scattering of
the electromagnetic field in subsequent reflections on the
mirrors [3]. On the other hand, the optical field, in par-
ticular on axis, is amplified by the resonant interaction
with the electron beam. Thus the transverse profile of
the radiation alters from pass to pass [4,5].

The overlap between the radiation and the electron
pulses in the longitudinal direction is determined by their
difference in velocity, the synchronization, and the gain.
The pulses are synchronized when the round-trip time
of the optical pulse matches the repetition rate of the
electron pulses, such that they overlap completely at
the entrance of the undulator. Due to the exponen-
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tial character of the amplification process in the linear
regime [6], the signal is largest at the back of the opti-
cal pulse. This means that the light pulse is effectively
slowed down. When the length of the electron pulse is
comparable to the slippage length, the longitudinal over-
lap between the pulses is reduced. This lethargy effect
decreases the pulse-averaged gain [7]. The gain can be
restored by shortening the laser cavity. This desynchro-
nization of the cavity leads to an effective synchronization
of the light and the electron pulses, which holds for many
round-trips as long as the gain is sufficiently large. Dur-
ing this phase, gain dominates over losses and scattering
and determines the transverse structure of the optical
field.

When the laser reaches saturation, the effective veloc-
ity of the light pulse will increase. The pulse begins to
overtake the electrons and will eventually run ahead of
the electron pulse. As a consequence, the radial profile
of the light pulse will finally be dominated only by power
loss and scattering at the aperture. It will be shown that
the resulting radial structure yields a “screening” of the
mirror aperture. Behind this pulse, a second pulse will
grow as in the linear phase. Upon reaching saturation,
this peak will overtake the electrons and the cycle starts
again.

This process implies that the intracavity field distribu-
tion consists of pulses tied to the electrons and of freely
propagating pulses. These contributions have an entirely
different transverse structure. For long wavelengths, the
radial profile of the light pulse is mainly determined by
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transmission loss due to a finite mirror size.

In recent years, considerable effort has been put for-
ward in the development of simulation codes and of an-
alytical methods describing a wide range of phenom-
ena. For instance, the generation of sideband modes and
slippage related effects such as superradiance and laser
lethargy [8,9] can be explained by a time dependent, spa-
tially one dimensional model [10]. Several spatially three
dimensional models [11-17] include gain-induced focus-
ing of the optical field and describe a realistic electron
beam by solving the complete set of the electron equa-
tions of motion. However, most of them do not include
finite pulse effects.

In order to investigate the combined influence of the
forementioned effects, a model that is suitable for the
investigation of pulse propagation in a hole-coupled res-
onator FEL is presented in Sec. II. The radiation field is
expanded into a set of transverse vacuum modes. Unlike
the forementioned three dimensional models, only the av-
eraged transverse motion of electrons is accounted for by
treating the electrons as moving in a density-averaged,
ponderomotive potential. “Warm” beam effects, such as
emittance and betatron oscillations, are included insofar
as they lead to a variation of the beam envelope. The
model is valid as long as the transverse gradient of the
optical field over the electron beam is small. Solutions
are obtained with a computational effort comparable to a
spatially one dimensional model. In Sec. III, the model is
applied to an axisymmetric resonator configuration using
an on-axis hole for power extraction. Numerical results,
demonstrating the combined effect of slippage and of the
radial mode structure on the energy density distribution
of the radiation pulse, are presented in Sec. IV. Section
V summarizes the conclusions.

II. DESCRIPTION OF THE MODEL

The discussion is restricted to the Compton regime
of FEL operation. The undulator is either helical or
planar, with strength A,(«) and wave number k,, and
consists of N, periods. The radiation field is assumed
to be dominated by a single longitudinal mode A4, =
uexp[i(koz — wot)]|, where wg = cko, such that the com-
plex amplitude u is slowly varying in both time and space.
The potentials and momenta are normalized to units of
e/mc and mc, respectively.

The starting point for the description of the model is
the paraxial wave equation

}u(m, z,Z)

{V'i + 2iko [(1 - “";“)65 + 0,
= S(=,2,2), (1a)

which can be derived from Maxwell’s equations under the
assumptions that the radiation field propagates mainly
along the z axis and that its spectral width remains small.
To emphasize the pulsed character, the position in both
the optical and the electron pulses are labeled by the
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coordinate Z = z—wpont, where vpon = wo/(ko+ky) is the
phase velocity of the ponderomotive wave. The reason for
this is that the electrons have a natural tendency to slow
down the radiation pulse in the exponential gain regime
and that their velocity is close to vpon.

The source term S is of discrete nature and is averaged
over a ponderomotive wavelength Apo, = 27/(ko +k,,) in
the coordinate Z in order to be consistent with the slowly
varying amplitude approximation

wZ Ny
S(@,2,2) = —fg-cg,wz)% Y b - 2i)Au(=)
% =1

xe [1 - ﬁ} (2,2), (1b)

where ¥ = (ko + ky)2z — wot is the ponderomotive phase
and vy = v — 7, is used to denote the electron en-
ergy rather than « itself. The resonant energy <, is
the energy at which the associated longitudinal velocity
c\/72 — p2 /v, equals the velocity of the ponderomotive
wave Vpon. Here p? is the effective mass of a warm elec-
tron beam which will be defined later, wf, = e2ng/eom 7y,
ng is the peak density in the electron pulse, and fp is the
usual function which arises from averaging the equations
over an undulator period [1]. The longitudinal electron
density profile is given by

1 N;
o ’\pon

X(z) =

) (2)

where N; is the number of electrons within a Z segment
of size Apon. As can be shown from the electron equations
of motion, N; is approximately constant for all values of
the energy detuning of practical interest. This implies
that besides the radiation pulse, the electron pulse also
may be thought of as being divided into Z segments of
length Apoy.

The transverse behavior of the radiation field is mod-
eled by decomposing the field into a complete set of trans-
verse basis functions ¥,,,, with (z,Z) dependent coeffi-
cients

W@, 2,2) = Y tnm (2, 2) Unm (2, 2, 7). (3)

n,m

The basis functions ¥, satisfy the homogeneous wave
equation and are orthogonal with respect to integration
over the transverse coordinates. The practical applica-
bility of such an expansion lies in the fact that basis
functions exist which satisfy the natural boundary condi-
tions of the cavity mirrors of interest [18]. Substitution of
Eq. (3) into Eq. (1) leads to a set of differential equations
for each of the coefficients u.,,,, that are coupled through
the source term

[(1 - ﬁ’:-“) 9 + a,] U (2, Z)

11
T 2iko w2,

/dzcc oS (2,2), (4)



30 SLIPPAGE AND SCATTERING OF LIGHT PULSES IN HOLE- . ..

where the transverse cross section w2,, = [d?x|¥,,|?
is the normalization factor and an asterisk denotes com-
plex conjugation. This result can also be obtained from
Eq. (1) using a Green’s function method or from the Huy-
gens integral in the Fresnel approximation [19,20].

The electron trajectories, given by the well known six
dimensional equations of motion [21], are calculated in a
way which can be viewed upon as a compromise between
a fully three dimensional (3D) description and a thin
electron beam model in which the electrons experience
only the on-axis radiation and undulator fields. This is
achieved by taking into account only the averaged trans-
verse motion of the electrons rather than calculating each
individual electron separately. The main assumption is
that the transverse dependence of the electron beam can
be described by a Gaussian density profile

e—[2/2X+y*/2Y?]

2r XY ’ (5)

n(e, z,2) ~ noX(2)

Here X(z,z) = 4/(«?) is the transverse profile of the
electron pulse in the = direction. The brackets

(z?) = /dzscmzn(z,z,f) / /dza:n(:c,z,z':) (6)

denote a density average over the transverse dimensions
of a Z segment in the electron pulse. The electron den-
sity is assumed to be constant over a segment, as men-
tioned earlier. The z dependence of the beam envelope
X is governed by the focusing effect of the undulator
and the natural divergence of the beam due to a finite
emittance. The undulator strength is approximated by
AZ(=) ~ AZy(1 + k22® + k2y?), where the second and
the third term in the parentheses are small compared to
unity. This describes an undulator with a linear focusing
force. The values of k, and k, depend on the geometry
of the undulator, i.e., k, = k, = ku/\/i and k, = ky,
ky = 0 in the case of a helical and a planar undulator,
respectively. It can be shown that X satisfies the differ-
ential equation [22] 82X + k3, X — (e;/47v,)? X% =0,
where kg, = Ayok:/7vr is the betatron wave number
and €;(z) = 4n[(z?)(P2Z) — (a:Pz>2]1/2 is the normalized
emittance of the electron pulse. To obtain this result,
the small variation of the longitudinal momentum 43, in
the equations of transverse motion is neglected such that
they can be solved independently from the longitudinal
motion. The differential equation can be solved exactly
with the result [23]

X(2,2) = Xo(2)[1 — (1 — r3,) sin? (kgo2)], (7

where X(Z) is the minimum spot size at z = 0 and
T82(Z) = (€2/4m Aok, X2) determines the amplitude of
the betatron motion for each segment in the electron
pulse. A similar equation describes the evolution of the
envelope Y in the y direction. The case r, =3, =1
corresponds to a matched beam.

The averaged transverse motion is taken into account
by application of density average Eq. (6) to the source
term and to the longitudinal equations of motion. Since
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all radial profiles are known, the averages can be calcu-
lated analytically. The wave equation can be written as

[(1_ Upﬂ)ai"'az
c
N,

2Aw0 I* 1 ) S
_ se2Wpfuo Lo, s\ _+ —i; _ =
=ifp ok v X(2) N, Ze [1 o (2,2)
(8)

and the average longitudinal equations of motion for each
electron in a Z segment of the electron pulse are given by

Unm (2, Z)

i=1

d’(/) wo [l.z 3 5')’ 'YrAuO i
— = —= 5 1—-—— I mUnm
dz ¢ 8 23.) * Tt 2 (mteme
+I$.mu¢.me""”)] : (9a)
d(S’)’ .Wo AuO i
5 =1 Inm nm W
dz “2¢ Yr nE':n( tinme
_I;mu:zme_i‘l,) (1 - 67_’)1) ’ (gb)

where the function Inm(z,2) = ((1+ k2z% + k2y2)¥},,,.)
is used to denote the density average. The terms propor-
tional to dv/v, and the second term within the square
brackets in Eq. (9a) are taken into account since they
influence the growth rate of the radiation in the linear
regime [6]. The quantity 1 + A2 + |P, |2, which enters
the non-density-averaged longitudinal equations, is an
approximate constant of motion for each electron. Upon
averaging over the density, it can be expressed in terms
of the electron beam envelope and emittance

1+ A2+ P |*) =1+ AZ1 +k2X2(1 +13,)
+E2YZ (1 +13,)] = p? (10)

and is used to define the effective mass u? of a warm
electron beam. The system of averaged equations (8)
and (9) can be solved numerically with a computational
effort comparable to a spatially 1D model.

The justification of the assumptions made in the model
is related to the radial inhomogenity of the radiation and
undulator fields. Off-axis electrons satisfy a different res-
onance condition than electrons close to the longitudinal
axis since they experience a different undulator and radi-
ation field. The main difference between the model and a
fully 3D description of the electron beam is that this ef-
fect, which enters the source term indirectly, is taken into
account in a density-averaged way. The electrons may be
considered to move in an effectively 13D ponderomotive
potential. Consequently, the model will be referred to as
the I%D model in the remainder of this paper. As shown
in [23], the model is valid as long as transverse gradients
in the radiation field over the cross section 2r XY of the
electron beam are small. Estimating the gradient length
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of the radiation field by the cross section w2,,, this im-
plies that the surface ratio & = 2w XY /w2, should be
typically smaller then unity. Although the model has
a wider range of applicability, in the next section an ax-
isymmetric resonator configuration is considered in which
an on-axis aperture is used to extract the radiation from

the cavity.

III. APPLICATION TO A HOLE-COUPLED
AXISYMMETRIC RESONATOR

The resonator comsists of two circular, spherically
curved mirrors, which are perfectly aligned. The hole
is in either one of the mirrors. The radiation field can
be considered to be axisymmetric u(r, z,Z), r being the
cylindrical radius, when the interaction with the elec-
tron beam does not give rise to asymmetries. To this
purpose, a FEL with a helical undulator is considered
(kz = ky = ky/v/2). The electron pulses have equal
emittance in both transverse directions ¢ = ¢, = ¢, and
an axisymmetric Gaussian density profile proportional to
e~ /R where X =Y = R/\/f Note that also a planar
undulator can be considered as long as betatron oscilla-
tions remain small.

Vacuum solutions of the paraxial equation can be
obtained in terms of orthogonal Gauss-Laguerre (GL)
modes [24] with common Rayleigh length [z and waist
position z,, (index m = 0 because of axisymmetry)

S N .
Uno(€,2) = e re 12 (g), (1)

where L,(£) is the nth Laguerre polynomial with ar-
gument £ = 2r%/s?, s = s2(1 + a?), s = 2g/ko
is the minimum spot size, a(z) = (z — z,)/lg, and
¢n(2) = (2n + 1)arctana. The GL solutions describe
an optical field with a spherical phase front. The ra-
dial extension of the GL modes is an increasing function
of the mode number n. All GL modes are peaked on
axis. Since the basis functions are explicitly known, the
density-averaged function I,o and the normalization w2,
which enter the set of averaged equations (8) and (9), can
be calculated. The result is

Lo — 1 1—ia—&\"
T T ia+ &\l tia+&

kZR? (1+ a? — &(1 — 2n — i)
2 ( 1+ a2 — € + 2iag, )] (12)

x[1+

with w2, = ws2/2. The normalization is indepen-
dent of the mode number and is equal to the mini-
mum cross section of the optical field. The surface ratio
& = 2R?(z,z)/s% should be smaller than unity for the
model to be valid. The second term in the square brack-
ets in Eq. (12) arises from the radial dependence of the
undulator field.

The reflection and transmission of the optical field by
the cavity mirrors play an important role in a resonator
FEL since multiple round-trips are required to reach sat-
uration. When an aperture is used for power extraction,
the radial structure of the optical field alters from pass
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to pass and affects the interaction between the optical
field and electron beam by a change in the radial overlap
of them. The reflection can be calculated analytically
from the Huygens integral in the Fresnel approximation
by expansion of both the incident and the reflected ra-
diation fields into GL modes with Rayleigh length and
waist position chosen such that the optical phase front
exactly matches the radii of curvatures R, and Ry of the
“upstream” (z = 0) and “downstream” (z = L.) mirrors

(4]
(Rd - Lc)Lc

w = 5 B ar = w — 2w) 13
= Ret Ra—2L, BT VawlBu-z), (13)

L. being the cavity length. After reflection by the down-
stream and the upstream mirror, respectively, the radial
profile of a radiation pulse at the exit of the undulator
{ug} is “scattered” into the radial mode structure {ui"}
at the entrance of the undulator according to

uld = rurg Z e (k) R (0) R (L) ul,

n
k=0,m=0

(14)

where the real coefficients r,, and r4 account for absorp-
tion loss due to a finite conductivity of each mirror and
the round-trip phase

Lc T cw
#"T (n, k,m) = 2koL, — 2(m + k + 1) arctan (———l———z——)
R

—2(n + k + 1) arctan (;—;’) (15)

is related to the Guoy shift [5]. For both mirrors, po-
sitioned at 2 = 0 and z = L., scattering of the mode
structure is determined by the reflection matrix

EMR
Rom(2) = /E dE €€ L (€) Lon (), (16)

MA

where the integral over £ is calculated analytically us-
ing the recurrence relations of the Laguerre polynomials.
The normalized aperture and radius of the mirror are
given by &ma = 2r¥,/s? and éur = 2r¥g/s?, respec-
tively. For given a resonator geometry, they depend on
the radiation wavelength through the spot size of the op-
tical field.

Note that when transmission loss is absent (éma — 0
and {&Mr — 00), e.g., in a closed resonator, the reflection
coefficients reduce to R, = dnm-. As a result, Eq. (14)
simplifies to

uy = rurge'® ("’"’")u‘,’l“t, (17)

which demonstrates that, although the radiation am-
plitude changes according to the round-trip phase and
the absorption coefficients, the distribution of radiation
power proportional to |u,|? over the radial modes is con-
stant.

The extracted radiation power P, is calculated from
the energy density proportional to |u|? incident on the
aperture rather than by using a transmission matrix ap-
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proach similar to Eq. (14) since a large number of GL
modes are required to described the outcoupled field.
The result is

Ema . . . 2
Py (18%/2) / d¢ E ul, fﬁe—lcne—(l—ta)E/Z’Ln
0 n=0 8
=(ms3/2) D Ramubuir, (18)
n=0,m=0

where {u} } is the radiation field incident on the aperture
and R, is given by Eq. (16) with {Ma and {Mmr set to
zero and to the aperture size, respectively.

IV. NUMERICAL RESULTS

In this section, results are presented that demonstrate
the combined influence of the radial mode structure and
of slippage effects on the evolution of an optical pulse in
a hole-coupled, axisymmetric resonator FEL. The sim-
ulations are performed for the FEL parameters of Ta-
ble I which are characteristic for FELIX [2]. The elec-
tron pulse has a parabolic profile X o< 1 — (2/2Lp)? in
the longitudinal direction, where L; is the pulse length.
The initial optical pulse is assumed to have the same lon-
gitudinal profile. For reasons of simplicity, the electron
beam envelope R, the emittance €, the initial energy de-
tuning 6+, and the energy spread o, are assumed to be
constant over the electron pulse. A matched beam is con-
sidered, €/2wAyokyR2 = 1. For a given emittance, this
relation defines Ry. Furthermore, the energy detuning is
optimized for the highest linear gain.

The electron beam consists of a train of electron pulses.
The repetition rate of the electron pulses is such that the
generated optical pulses do not interact and evolve inde-
pendently. The cavity consists of two mirrors at distance
L.. A total power loss of 2.5% is assumed for absorp-
tion on both mirrors. This implies that r, = ry = 0.994.
The aperture is in the upstream mirror. Furthermore,
the center of the undulator is shifted with respect to the

TABLE 1. Parameters used in the simulations.

Parameter Symbol Value
Basic FEL
Undulator period Au 0.065 m
Number of undulator periods N 38
Initial electron energy Yo 46.3
Energy detuning v/ 1%
Energy spread o 0.35%
Normal emittance € 707 mm mrad
Peak current I 75 A
Electron pulse length Ly 0.60 mm
Cavity geometry
Cavity length L. 6.00 m
Mirror curvature (upstream) R, 4.00 m
Mirror curvature (downstream) Ry 3.00 m
Mirror radii T™MR 2.5 cm
Upstream mirror aperture T™A 1.5 mm
Undulator shift A 0.90 m
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center of the cavity by an amount A,,, toward the down-
stream mirror.

A. Cold cavity simulations

In the absence of an electron beam, the influence of the
aperture and finite mirror size on the transverse structure
{u,} of the radiation field is investigated by simulating
an optical pulse which undergoes multiple reflections in
the “cold” cavity. The radial profile of the optical pulse
that evolves after a number of round-trips depends on
the reflection matrix and on the initial radial mode struc-
ture. Convergent and reliable results are obtained with
maximally five GL modes. The radiation wavelength is
Ao = 27 /ko = 20 pm. Because transmission losses due to
the finite mirror size (edge losses) are small at this wave-
length, the off-diagonal elemients of the upstream mirror
originate mainly from scattering at the aperture. The
reflection matrix of the downstream mirror is equal to
a unity matrix Rgm(L:) = 0km, to a good approxima-
tion. The initial optical pulse is chosen to be the n = 0
Gaussian radial mode.

The evolution of the radial mode structure is shown
in Fig. 1. The initial Gaussian mode is scattered mainly
into the even transverse modes n = 2 and n = 4. The
energy scattered per pass into odd modes is as large as
the one that is scattered into even modes. However, after
a number of scattering events, their contribution is much
smaller. This is related to the round-trip phase Eq. (15).
For the specific geometry considered in this paper, the
scattering of each mode n into itself yields a phase change
that is proportional to 37n. Since the scattered energy
originates from the Gaussian mode (n = 0), odd modes
experience destructive phases each round-trip. There-
fore, they alternately gain and lose energy. As a result,

— — 1 0»1
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round trip number

FIG. 1. The distribution of pulse-averaged energy over the
radial modes and the extraction ratio n as a function of the
round-trip number, showing the scattering of the initial radial
profile into higher-order radial modes. Only the even modes
n = 0, 2, and 4 are shown since the contribution of other
modes is much smaller.
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the net energy transferred to odd modes is much lower
than to even modes, which are in phase each round-trip
and add up coherently.

After approximately 50 round-trips, a nearly station-
ary configuration is reached in which the extraction ratio
7, i.e., the ratio of extracted and intracavity pulse ener-
gies, is strongly reduced with respect to its initial value.
In Fig. 2 the energy density distribution of the optical
pulse at the beginning of the first round-trip and in the
stationary region is shown. The results show that the
mode composition of the optical field is changed such
that the field intensity on axis is strongly reduced at the
upstream mirror.

For longer wavelengths, edge losses become more im-
portant. These losses result in a reduction of the diag-
onal elements in the reflection matrix. The reduction is
stronger for higher radial mode numbers n. Since at least
two modes are required to create zero field intensity on
axis, the screening of the aperture is effective as long as
the reflection coefficient of the lowest even radial mode
n=2 (besides n=0) is sufficiently large. For the param-
eters in Table I, the reflection coefficient R,2 should be
larger than 0.90, i.e., for A\g < 40 pym, as will be shown
in Sec. IVB. For longer wavelengths, the radial mode
structure consists mainly of the Gaussian mode, since all
other modes are strongly reduced.

00

FIG. 2. The energy density of the optical pulse as a func-
tion of position z — ct (in units of a wavelength Ao) and ra-
dial coordinate ¢ = 2r?/s? (a) at the beginning of the first
round-trip and (b) in the stationary region. The pulse is mon-
itored just before the upstream mirror. The normalized radii
of aperture and mirror are éma = 0.057 and {mr = 16.0,
respectively.
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B. Multielectron simulations

In the presence of the electron pulse, the transverse
and the longitudinal structure of the light pulse are deter-
mined, besides by aperture loss and scattering at the mir-
rors, by the amplification process due to the interaction
and by the slippage with respect to the electron pulse.
As pointed out in the Introduction, a shortening of the
cavity leads to an effective synchronization of the light
and electron pulses. The simulations presented here are
performed at a fixed desynchronization AL = —2.0),
where AL = 0 corresponds to synchronization. For this
slightly shortened cavity, the gain of the optical field is
close to its maximum value, as shown in Fig. 3. The
effect of other values of AL will be discussed in a later
stage.

The optical pulse has a parabolic longitudinal profile
and consists of the Gaussian radial mode (n = 0). The
wavelength is A\g = 20 pm, as in Sec. IV A. Starting
from an initial power level of 0.1 W, the FEL operates
in the linear regime up to approximately 50 round-trips.
In this regime, a typical example of the energy density of
the optical pulse and its decomposition into GL modes is
shown in Fig. 4. The main fraction of the optical power
overlaps with the electron pulse, which is located in the
region [0,60]\,on. Since there is a finite desynchronism,
this implies that the group velocity of the optical field is
reduced. The radial mode structure of the pulse consists
mainly of the first three even-n GL modes of which the
Gaussian mode (n=0) is dominant. Due to the gain, the
energy density is concentrated near the axis. The largest
values occur slightly off axis. This is due to the same
mechanism that leads to screening of the mirror aperture
when the electrons are absent. From a comparison with
the cold cavity results in Figs. 1 and 2, one can conclude
that, for the same number of round-trips, the transverse
profile is dominated by the gain due to the interaction
with the electron beam rather than by scattering due to
the aperture.

0.85
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0.75 /

0.70 | /

oes |/

0.60 | /

0.55 : : : . :
8 -7 6 5 -4 -3 -2 -1 0
AUA,
FIG. 3. Pulse-averaged linear gain (per pass) as a func-

tion of the desynchronization AL/)\o. The wavelength is
Ao = 20 pm.
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gain




50 SLIPPAGE AND SCATTERING OF LIGHT PULSES IN HOLE- . ..

The evolution of the optical pulse in the saturated
regime can be described as follows. First, due to the
small gain, the effective velocity of the light pulse is in-
creased. As a result, the optical pulse runs away more
and more from the electron pulse, as shown in Figs. 5(a)
and 5(b). In the subsequent round-trips, the electrons
within a slippage length behind this first peak are af-
fected by its high power level. In this region, a secondary
peak is created, which consists mainly of the n=2 radial
mode. The intracavity power of this peak remains much
lower than the first peak because of a limited interaction
time. Nevertheless, it gives a comparable contribution to
the extracted power.

A slippage length behind the first peak, a new peak
is generated which eventually grows as large as the first
peak, as is shown in Figs. 5(c) and 5(d). The longitudinal
and radial structure of this pulse is quite similar to those
shown in Fig. 4. This is explained by the fact that the
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FIG. 4. (a) The energy density of the light pulse after ten
round-trips, where the FEL operates in the linear regime, as
a function of the longitudinal position Z = z—vpont (in units
of Apon) and the radial coordinate ¢ = 2r%/s®. The pulse
is monitored just before the upstream mirror. (b) Distribu-
tion of the radiation power over the radial modes and the
extracted power as a function of the position in the pulse.
The electrons are located in the region [0,60]Apon. Only the
dominant modes are shown (n = 0,2, and 4). The radiation
wavelength is 20 um and the normalized radii of aperture and
mirror are as in Fig. 2.
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electrons near the trailing edge of the electron pulse have
experienced only a low optical field and therefore radiate
as if they were in the linear regime.

This process is repeated periodically and leads to
“limit-cycle” oscillations in the outcoupled power [25].
Figure 6 shows the energy density of the optical pulse
near the end of the third cycle. The first two pulses
are completely decoupled from the electron beam and
propagate as in a cold cavity. The first pulse is already
strongly reduced in amplitude due to mirror absorption
loss. Their radial structure is influenced by mirror scat-
tering only. In agreement with the results of the cold
cavity simulations, a radial profile develops in which the
on-axis field intensity is reduced. The radial mode struc-
ture of the two pulses differs from the result in Fig. 1,
since they arise from radial profiles generated by the elec-
trons.

For a desynchronization length with a more negative
value, the separation between the pulses becomes larger.
This implies that mirror scattering becomes more impor-
tant. When the gain decreases, i.e., for AL < —4)¢, an
additional narrowing of each pulse occurs.

These results are compared with results of a spatially
1D model [10], in which the radial profile of the optical
pulse is characterized by a single number, the so-called
filling factor. This factor is calculated assuming a Gaus-
sian radial profile. In our model, which includes the full
transverse structure of the optical field, it is found that
the intracavity pulse energy is higher, although the ex-
tracted energy is considerably lower than in the 1D simu-
lation. This is explained by the fact that a large fraction
of the energy density is located off axis, as shown in this
paper.

The scattering of the radial mode structure and the
gain depend on the radiation wavelength. For the wave-
length ranges 18 —40 ym and 40—70 pm, Fig. 7 shows the
extraction ratio 7 in comparison with the corresponding
value from the 1D model. In the latter, 1 is equal to the
Roo = 1 — e~¥MA element of the matrix in Eq. (18). The
wavelength scan is obtained by changing the undulator
strength A,o while keeping other parameters fixed. The
calculations are performed for a fixed desynchronization
length AL, optimized for maximum gain at the lowest
wavelength in each range. The extraction ratio is sig-
nificantly lower than that of the 1D model, for wave-
lengths up to approximately 32 pym. For these short
wavelengths, the extraction ratio depends strongly on
the radial mode structure of the light. The irregular-
ity in this range is related to the radial profile, which
is due to the combined effect of the undulator strength,
slippage, desynchronization, and scattering at the mir-
rors, which all depend on the wavelength. These effects
can result in small changes in the relative phases of the
radial mode structure inside the cavity and can lead to
significant changes in the outcoupled power. For longer
wavelengths A\¢ > 40 pm, the mode structure consists
mainly of the Gaussian mode, which is due to the in-
creased losses of higher-order modes. As a consequence,
the effective screening of the aperture is strongly dimin-
ished. Higher-order GL modes are still residually present
since they are generated by the electrons each pass.
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FIG. 5. First two cycles (a) and (b) after 60 round-trips and (c) and (d) after 70 round-trips of the pulse evolution after
saturation is reached. The large peak energy density of the first pulse in (a) and (c) is cut off artificially. All parameters are

similar to Fig. 4.

V. CONCLUSIONS

In a hole-coupled resonator FEL, which employs a con-
tinuous electron beam as gain medium, the radial profile
of the optical field inside the cavity is determined by the
amplification process, by power loss through the aper-
ture, and by scattering at the mirrors. In pulsed beam
operation, the additional effect of slippage couples the
radial and longitudinal structure of the light pulse.

In this paper, we have analyzed the spatial structure
of the optical pulse inside the cavity and the fraction of
power lost through the aperture. In the linear regime of
FEL operation, the optical pulse is confined to the elec-
tron pulse. The transverse field structure consists mainly
of the n = 0 Gaussian radial mode with its maximum am-
plitude on axis. After saturation has been reached, the
light pulse overtakes the electrons and eventually does
not interact with the electrons any more. In this cold cav-
ity region, a substantial fraction of the radiation intensity
of the Gaussian mode is transferred to the higher-order
GL modes n = 2 and n = 4. For the cavity geometry

investigated in this paper, the contribution of odd modes
is small. The mode composition yields a radial profile in
which the on-axis field strength is significantly reduced.
Consequently, this screening of the aperture leads to a
decrease of the extraction ratio as compared to the ex-
traction ratio of the Gaussian mode created by the am-
plification process. Behind this first pulse, a new pulse is
generated by the electrons as in the linear gain regime.
In subsequent round-trips, the new pulse will saturate
and evolve in a similar manner as the first pulse. After
a number of such cycles, the field consists of a train of
pulses. Only the energy density of the last pulse, which
partially overlaps with the electrons, is concentrated on
axis.

The effective screening of the mirror aperture can re-
duce the extraction ratio by one order of magnitude as
compared with the extraction ratio of a Gaussian radial
profile. The creation of higher-order GL modes, leading
to the screening effect, can only occur for small values
of the wavelength such that transmission losses due to
the finite mirror size are small. For longer wavelengths,
the higher-order GL modes lose most of their energy at
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FIG. 6. Energy density and radial mode structure of the
optical pulse after 110 round-trips, near the end of the third
cycle. All parameters are similar to Fig. 4.

the mirror edge since the radial extension of the modes
increases with the mode number. Eventually, only the
Gaussian profile remains and the simulation results ap-
proach those obtained with a spatially 1D model.

0 Il L 1 1 L |
10 20 30 40 50 60 70 80

A, [um]

FIG. 7. The extraction ratio 7 relative to the corresponding
value from a spatially one dimensional model, as a function of
wavelength. The open and solid circles correspond to different
initial electron energies vo = 46.3 and o = 34.5, respectively.
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FIG. 2. The energy density of the optical pulse as a func-
tion of position z — ¢t (in units of a wavelength )y) and ra-
dial coordinate £ = 2r®/s? (a) at the beginning of the first
round-trip and (b) in the stationary region. The pulse is mon-
itored just before the upstream mirror. The normalized radii
of aperture and mirror are {ma = 0.057 and émr = 16.0,
respectively.
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FIG. 4. (a) The energy density of the light pulse after ten
round-trips, where the FEL operates in the linear regime, as
a function of the longitudinal position Z = z—wpont (in units
of Apon) and the radial coordinate £ = 2r®/s*. The pulse
is monitored just before the upstream mirror. (b) Distribu-
tion of the radiation power over the radial modes and the
extracted power as a function of the position in the pulse.
The electrons are located in the region [0,60]Apon. Only the
dominant modes are shown (n = 0,2, and 4). The radiation
wavelength is 20 gm and the normalized radii of aperture and
mirror are as in Fig. 2.
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FIG. 5. First two cycles (a) and (b) after 60 round-trips and (c) and (d) after 70 round-trips of the pulse evolution after

saturation is reached. The large peak energy density of the first pulse in (a) and (c) is cut off artificially. All parameters are
similar to Fig. 4.
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FIG. 6. Energy density and radial mode structure of the
optical pulse after 110 round-trips, near the end of the third
cycle. All parameters are similar to Fig. 4.



