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The betatron difference resonance, Q —2Q, = —6, where the Q,, are the number of betatron
oscillations per revolution, was studied at the Indiana University Cyclotron Facility cooler ring.
Measurements of both vertical and horizontal coherent betatron oscillations were made, at a non-
linear resonance, after a pulsed dipole kick. We found that the Poincare surface of section for the
nonlinear resonance could be described by a simple Hamiltonian. The resonance strength and phase,
as well as the tune shift, as a function of betatron amplitude, were deduced from the experimental
data. Attempts to deduce the amplitude and phase of the time dependent Quctuations around the
time averaged Poincare surface of section will also be discussed.

PACS number(s): 29.27.Bd, 41.75.—i, 03.20.+i, 05.45.+b

I. INTRODUCTION

Modern storage rings routinely store particles for 10
revolutions. In order to prevent b~minosity degradation
over these "cosmic" tixne scales, the mechanisms that
cause the amplitude of the transverse oscillations to in-
crease, must be understood. One such mechanism, which
is related to the nonlinearities in the xnagnetic Gelds,
has attracted considerable interest. Of particular interest
have been the magnetic Geld errors in the superconduct-
ing magnets as the magnetic field strength is pushed to
the limit.

Several methods have been developed to study the
nonlinear dynamics of circular accelerators analytically.
These methods include the Lie algebraic method [1],per-
turbation techniques [2,3], and the differential algebraic
method [4,5]. These works have led to important ad-
vances in nonlinear beam dynamics. These studies high-
lighted the detrimental eH'ects of resonant conditions on
the luminosity and the beam lifetime. For example,
a strong isolated resonance can cause rapid amplitude
growth and overlapping resonances in phase space can
lead to stochastic motion.

Experimental studies [6—10] of resonant behavior are
useful in determining the vahdity and lixnitations of the
approximations used in the coxnputational studies. The
majority of these experiments studied particle motion
near a one-dimensional (1D) betatron resonance. Since
the resonances that drive the growth in amplitude of be-
tatron oscillations are often two dimensional (2D), exper-
ixnental xneasurements of 2D resonances are called for.
The eKort to observe the efFects &om a 2D resonance ex-
perimentally has achieved only limited success [10]. The
main diHiculty that experimenters have faced is the rapid
decoherence of the coherently kicked bunch. The experi-
ment reported in Ref. [10], for example, was greatly hin-

dered by the rapid decoherence inherent in an electron
machine. In order to determine a 2D nonlinear Hamil-
tonian unambiguously, the invariant surface of the 2D
resonance should be reconstructed. Towards this goal,
the cooler ring at the Indiana University Cyclotron Fa-
cility (IUCF) has a natural advantage [ll]. The IUCF
cooler nng has an electron cooling system which can re-
duce both the transverse and longitudinal emittance of
the proton beam to small values. The 95% transverse
emittance can be cooled to 0.3 (smm mrad) in about
1 s while the 95% longitudinal phase space area can be
cooled to about 2 x 10 4 eV s. A beam with such a small
emittance can closely simulate single particle motion in
a synchrotron. Our previous experiments [7—9,12] have
clearly demonstrated this advantage.

This paper details a two-dimensional experimental
tracking of particle motion near a nonlinear resonance
condition in a proton machine. Section II gives a brief
overview of the derivation of the Haxniltonian assum-
ing sextupole nonlinearities. Section III details how the
Haxniltonian for the cooler ring was empirically deter-
mined, and highlights the correspondence between the
theoretical predictions of the simple Haxniltonian analysis
and the experimental observations. Attempts to deduce
the time dependent terms in the Hamiltonian will also be
addressed in this section. Section IV compares the val-
ues of the resonance strength and its phase to the values
predicted &om the known sextupole nonlinearities. The
conclusion is given in Sec. V.

II. THE HAMILTONIAN OF THE NONLINEAR
RESONANCE

For particle motion in a circular accelerator, the hori-
zontal and vertical deviations &om the closed orbit x(s)
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with

AB, +iDB = ) (b„+ia„)(z+iz)",
n)2

where 6 and a are the normal and the skew multi-
pole components, respectively. The focusing functions
are given by K (s) = ~ —

& and K, (s) =
& where

B' = "&,Bp is the magnetic rigidity, and 8 is the longi-
tudinal particle coordinate which advances &om 0 to C,
the circumference, as the particle completes one revolu-
tion. Hereafter, the subscript y designates either the x or
z plane. Both K„(s)and the field error term b,B„(s)/Bp
are periodic functions of 8 with period C

For a linear machine, for which b,B„(s)= 0, a solution
to Hill's equation exists [13],which constitutes a pseudo-
harmonic oscillation

2 y 8 Jycos y + (2)

and z(s) in the presence of magnetic field errors EB
are given by Hill's equation

d'2: b,B,(s) d'z &B (s)

where P„is the betatron amplitude function, (J„,P„)are
the conjugate action-angle variables, Qs(s) = j'
Q„8is the "flutter" of the betatron phase with the tune
Q„=2 $ &—

' as the number of betatron oscillations in
p

one revolution, and 8 = s/R as the orbital angle where
B is the average radius of the accelerator.

Since we are studying the Q —2Q, = —6 resonance, we
will only consider the Hamiltonian for an accelerator with
sextupole nonlinearities. After the transformation to the
action-angle variables outlined above and with 8 being
the independent or "time" variable, the Hamiltonian is
given by

BIII
H = Q.I.+ Q,I, + ) (2I.P.)'~'

~

I 6Bpj

BI/ $
x cos (P + g ) —(2I P ) ~ (2I,P, ) i

x cos(P + g ) cos (P, + g, ) b(8 —8~),

where the sum over j contains all the sextupole fields
in the accelerator, B" = d2B, /dx2, and t is the length
of the sextupole. The nonlinear perturbation term can
be expanded into a Fourier series, and the Hamiltonian
becomes [2]

H = Q I + Q, I, + (2I ) ) [Asp cos(3$ —m8+ Asprn) +3Alprncos(P —m8+ (110~)]

—(2I ) (2I,) ) [Bq2~ cos(P + 2P, —m8+ Pq2~)

+ Bz 2~cos(P —2P, —m8+Pq 2~)+2Blprncos(g —m8+P, p )]

where the sum over m extends &om —oo to +oo with

(4)

iasP ~ g (3$ +m8)~ g iCX1P g g (Q +m8)~3o~e ~e ) rome ~e
2 2

&Pi +~~ x gr (0~+2/, +vn8) ~ B eip1p~ + ~ e(/~+me)zze ) rome ze
2 2

Here the harmonic amplitudes A;~g, B;~I, and the phases u,il„P;~gare real numbers.
We can remove the time dependence &om the Hamiltonian, to 6rst order in the strength of the perturbation, by a

canonical transformation with the generating function

Gg(Q~, J~, Q„J,) 8) = P~J~+ P,J —(2J~) ~ Z + (2J~)'~ (2J,)Zg,

where

Z = ) [fop sin(P —m8 + o!q ) + fsp sin(3$ —m8 + a3 )],

Eb = ) [F12 sin((4 + 2f ™+ P12 ) + Fl 2 sin(Q —2f ™+ Pl 2 ) + Exp sin(4 ™+ Pz )] . (7)

The new action-angle variables become
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I = = J —(2J) l +(2J) ~ (2J,), I, = = J, +(2J) ~ (2J,)

—3(2J) ~ Z +(2J) ~ (2J,)Zs, 7, = =Q, +2(2J) ~ Zs. (8)

Writing the old Hami&tonian in terms of the new action-angle variables, expanding it in a Taylor series, and retaining
terms up to second order in the strength of the perturbation, the new Hamiltonian becomes

H, = H+ = Q.J.+ Q,J, + "J.'+ A.,J.J.+ "J.'
+(2Jn) ). [A30na f30na(3Qn m)] cos(3pn m8+ a30m) + [3A10~ —fop~(Q —m)] cos(p —m8+ a10~)

—(2J )' (2J,)) [B12~ —F12~(Q +2Q, —m)]cos(4 +2/, —m8+p» )
m

+[B1 2~ —F1 2~(Q —2Q, —m)] cos(p —2p, —m8+ p1 2~)

+[2B10 —F10 (Q —m)] cos(p —m8+ p10 )

where A;z are both 8 dependent and second order in sex-
tupole strength. Finally, by appropriately choosing the
+lslnaa flalnaa

3+10m A30
f10na = ~ a f30na =

a—m 3+~ —m
2B10m

1+2na —
Q + 2Q

a 1pna (10)

we obtain a Hamiltonian with new action-angle variables,
Eq. (8), where the new actions J and J, are, to first
order in the sextupole strength, constants of motion.

Note here that (p, J ) and (p„J,) are new conjugate
phase space coordinates. However, the betatron phase
angle coordinate p„canbe approximated by P„.Approx-
imating p„by P& is allowable since we only keep terms
up to second order in the strength of the perturbation
and

H1 ——Q.J.+Q.J.+ "J.'+a..J.J, + "J.'
2

+2 BJ ~ J, c o(staa —2Q, + 68+ p), (12)

where the detaining parameters o.;~ are the average of the
A;z found in Eq. (9) over 8 in one complete revolution
(see Appendix A), B = B1 2 s and p = P1

The Hamiltonian of Eq. (12) will be used to de-
scribe particle motion near the single dominant reso-
nance Q —2Q, = —6. This Hamiltonian can be trans-
formed to a time independent form by performing one
further canonical transformation into a "rotating refer-
ence kame" with the generating function

G2(gn, g g, J1,J2) = J1(g n —2g g + 68+ P) + J2q, . (13)

The new coordinates are, $1 ——Pn —2P, +68+p, P2 = P»
J1 ——J, and J2 ——J + 2J . This new Hamiltonian
becomes

c s(f(&s)) = o (f(lt'„)+O(e)) —cos(f(P„))+O(e),

(11)

where e represents the sextupole strength. Thus we will
use (P„,J„)as the conjugate phase space coordinates.

Experimentally, we measure P„and I„,the action-
angle variables (p„,J„)after the canonical transforma-
tion can be obtained from the filtering method, i.e.,p„=(4„)and J„=(I„).In some of our data analy-
sis, a 10-revolution average method was applied to filter
the time dependent terms.

Note that the canonical perturbation diverges when a
particular resonance is encountered. Thus, when the be-
tatron tune is close to a resonance, that particular har-
monic cannot be treated perturbatively. For exaxnple,
when the betatron tunes are near the Q —2Q, = —6 res-
onance, we can perform a canonical transformation for all
El,l~, foal~ except E1 2 s. Transforming all the harmon-
ics except E1 2 0, the Haaaaa&tonian of Eq. (9), including
the sextupole perturbation, can then be written as

H2 = b1J1 + J1 + 2 BJ1 (J2 —2J1) cosp11

+ Q.J, + "J,',
2

(14)

where the resonance proximity parameter is

b1 ——Q —2Q, +6+ (a, —2a„)J2,

and the effective nonlinear det»~ing parameter is a11 ——

—4o. ,+4a . This new Hamiltonian is independent
of 8 and P2, thus H2 and J2 are constants of motion which
determine the particle xnotion coxnpletely. Hamilton's
equations of xnotion are given by

b1J1 pp + a11J1pp + 2 B(J2 —6J1,FP)
1/2 3/2 1/2 (18)

J = 2 BJ1 (J2 —2J1) sin/1, (16)

$1 ——b1 + a11J1 + 2 BJ1 (J2 —6J1)cosp1. (17)

The stable and aaaastable fixed points (SFP and UFP, re-
spectively) are given by the solutions of



M. ELLISON et al.

where the + and —signs correspond to $1 Fp = 0 alld
vr, respectively. For this 2D resonance, there are two
additional unstable 6xed points located at

(Jl,UFP 4'1,UFP) =
2

2l~l + o'll J2

8BJ,"' )
(19)

Here, the particle trajectory follows the path of two cir-
cles in the map of

(/2P Jl cosgl, /2P Jl sin/1).

If these two circles intersect, the circle 2J1 ——J2 can be
dissected by an arc of the circle describing the nonlinear
coupling (see Appendix B). The circle 2J1 ——J2 is called
the "launching" circle, while the circle

11 3 2 1/2 b1 O, 11Jl —2 ~ BJ cospl + —+ J2 ——01 2 8
(21)

is the nonlinear "coupling" circle. The intersection of
these two circles are the UFP's of Eq. (19), where the
launching circle and the coupling arc form a separatrix
orbit of the Hamiltonian Bow.

Thus, the particle motion near a 2D resonance can be
transformed to an invariant surface which is described
by the intersection of two circles. Matching the mea-
sured particle trajectories with the contours of constant
H2, we can determine B,a11, and b1 up to an arbitrary
multiplicative constant. One parameter must be known
independently for the scale to be Bxed and H2 uniquely
determined. The method by which this was accomplished
is described in the next section.

Since Hamiltonian tori cannot cross each other, parti-
cles with identical b1 and J2, will form nonintersecting
tori around the stable 6xed points limited by the launch-
ing circle 2J1 ——J2 and the coupling arc. For particles
with difFerent bl and/or Jz, the coupling circle is trans-
lated along the horizontal axis in the phase space of the
resonance rotating &arne with diff'erent radius of curva-
ture (see Appendix B).

III. EXPERIMENTAL METHOD AND DATA
AND ANALYSIS

A. Experimental method

Protons were injected into the IUCF cooler ring at 45
MeV on a 10 s timing cycle. The beam was bunched
at harmonic zu~mber 6 = 1, with the rf cavity operat-
ing at 1.03168 MHz. The bunched beam was electron
cooled for 3 s reducing its 95% emittance to less than
0.3 (vr mm mrad). The motion of a beam bunch with
such a small emittance has been observed to remain co-

The Hamiltonian Bow for a particle with the initial
conditions J,o

——0, and J2 ——2J o, is given by

(2Jl —J2) Jl —2 BJl cos $1 + —+ J2 = 0.O'1 l 1/2 b1 a11
4 1 2 8

herent for 10 revolutions.
The linear coupling resonance was found to be impor-

tant in our previous studies [7,8], it was first corrected by
using a pair of skew quadrupoles. To study the 2D be-
tatron difference resonance the betatron tunes were ad-
justed to be near the resonance line Q —2Q, = —6.
Although the dynamical aperture was slightly smaller, it
was possible to store the beam with the betatron tunes
on the difference resonance since J2 ——J, + 2J is invari-
ant. Thus, the resonance did not cause excessive beam
loss since the action in both planes of oscillation was
bounded.

A coherent transverse oscillation was imparted to the
bunch by 6ring single-turn pulsed kicker magnets. The
subsequent coherent betatron motion was obtained &om
signals from the beam position monitors (BPM), where
the betatron amplitude functions were measured to be
P~l —— 10.2 m, P~2 —— 7.4 m, P, l —— 14.1 m, and

P, 2
—— 14.0 m, respectively. These transverse beta-

tron oscillations were recorded on a turn-by-turn basis
[9] for a complete grid of horizontal and vertical kicker
strengths. The gain of the data acquisition system was
calibrated against the beam position monitoring system
in the cooler ring which itself was calibrated against a
wire scanner. The uncertainty in position gain is esti-
mated to be +10%%uo. The rms position of the BPM system
was found to be about 0.1 mm. The conversion &om two
position measurements (yl, yz) in each plane to normal-
ized position and momentum coordinates (y, P„),where

P„=—/2P„J„sin(P+Q„)is the conjugate molnentum
variable to the coordinate of Eq. (2), have been described
in some detail in a previous paper [9].

B. Data reduction

An example of the raw data is shown in Fig. 1 which
displays the position measured at each revolution in both
the horizontal and the vertical planes of oscillation as a
horizontal kick occurred. The particular characteristics
of the betatron oscillations near a nonlinear resonance are
clearly visible in Fig. 1, where the off-'phase amplitude
oscillation arises from the fact that J2 is a constant of
motion and the sharp rise in vertical amplitude is due to
a nonlinear dependence in the Hill's equation. The fast
Fourier transform (FFT) of the position measurements
are also displayed in Fig. 1, where the sidebands result-
ing &om the nonlinear coupling are evident. The two
position measurements, in each plane of oscillation, were
first converted to the normalized coordinates. The top
two plots in Fig. 2 display the Poincare maps in (x, P )
and (z, P, ) of the same kick shown in Fig. 1, where the
smear in the Poincare maps is due to the nonlinear cou-
pling. Then the phase space coordinates P, P„J I
and J, I, were computed for each revolution &om the
normalized Poincare map. The resonance phase $1 can
then be derived. The bottom plot in Fig. 2 shows the
Poincare map in the resonant precessing frame derived
&om the data in the top two plots, where the phase p of
Eq. (13) was determined to be p = p, = —2.13 rad so
that the coupling line is adjusted to the upright position.
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positions at each revolution in
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nonlinear coupling are evident.
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Since the data set displayed in the lower plot of Fig. 2
was obtained solely &om an initial horizontal kick, there
was no coherent motion from which P, could be mea-
sured. The resulting data points in the Poincare surface
of section were observed to fill the entire launching cir-
cle. When some of the action was coupled into the ver-
tical betatron plane so that P, could be measured, the
measurement of Pq first stabilized, as expected, at the
intersection of the launching and coupling circles. The
data then traced several loops around the coupling arc
and the right side of the launching circle until the kick
finally decohered.

to better than 6 1 x 10 4 by tracking and averaging the
phase in (y, P„)phase space over 50 turns for coherent
betatron oscillations larger than 1 mm. Using this tune
tracking method, we observed a tune modulation in Q
of +0.0005 and in Q, of +0.002. An example of this
tune modulation is shown in Fig. 3 where the amplitude
of the tune modulation is about 0.002. The &equency
components of the tune modulation are harmonics of 60
Hz. Since the expected nonlinear detuning is of the same
order of magnitude, it is difficult to measure the nonlinear

detaining coefficients.

X. Measurement of the detaining parameters
g. Measurement of the detaining parameters

ueing a "ttvo-kick" method

It was thought that measurements of the tune shift
with amplitude parameters o.;~ could be made directly.
With o.qq known, H2 could then be uniquely deterxnined.
To measure the o. parameters, one needs only to find
the slope of the betatron tunes vs the betatron actions.
However, our measurements were complicated by two fac-
tors. First, the resonance stop band was larger than an-
ticipated so that even with IQ —2Q + 6I ) 0.05 the
effect of the resonance was evident, which complicated
the measurexnent of the detuning parameters. Second,
the unperturbed betatron tunes of the cooler ring are
not stable.

Since our BPM system has position resolution of about
0.1 xnm, one can measure the tune, assuming a pure tone,

Due to a power supply ripple, it was not possible to
measure the nonlinear detuning parameters o.;~ by mea-
suring the betatron tunes as a function of the betatron
oscillation axnplitude. However, it was later found that
a two-kick procedure allowed for the measurement of the
o. parameters even when the base tunes were not sta-
ble. Since there was only one vertical kicker available in
the IUCF Cooler Ring, the two-kick method was made
possible by first using the rf knockout system and then
followed by a coherent vertical kick. This method is ac-
tually used for both horizontal and vertical planes.

The bunch was first given a small coherent oscillation
by applying an rf voltage, at a betatron sideband &e-
quency, to a transverse BPM. This knockout imparted
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a coherent transverse oscillation to the beam, which al-
lowed the phase of the betatron oscillation to be tracked
and thus, the base tune to be measured. The bunch was
then given a larger kick with one of the pulsed kicker mag-
nets 500 revolutions later. In this way the tune change
resulting kom the change in betatron actions could be
accurately measured.

The results of this procedure are shown in Fig. 4, where
both the position and tune measurement are plotted. By
inspecting both Fig. 3 and Fig. 4 one observes that the
change in tune due to the change in action, is small com-
pared to the change in tune resulting from the power sup-
ply ripple. The a parameters were measured using the
two-kick procedure when q —2Q, +6 = —0.08 in a differ-
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FIG. 2. The top two plots display the Poincare maps in

(x, P ),(z, P ) of the same kick shown in Fig. 1. The bottom
plot in Fig. 2 displays the Poincare surface of section in the
resonant precessing frame derived from the data in the top
two plots. The resonance phase p of Eq. (12) was determined
to be —2.13 rad so that the coupling arc is in the upright
position.

FIG. 3. Plot, at 10 revolution intervals, of both the mea-
sured vertical fractional tune v and the position measure-
ment at the 6rst vertical BPM vs revolution number. The
discontinuity near revolution number 2000 is explained in
Sec. IIIB1. Until coherent motion develops in the vertical
plane, which occurs at about revolution number 1200, it is
not possible to measure the vertical fractional tune. The vari-
ation in the tune v is about 6 0.002 which is probably due
to a power supply ripple.

ent run. The fact that the value of aqua
———455 (arm)

determined at this tune location, difFered Rom the value
of nqq ——2100 (7rm) (see Sec. IIIC), determined from
the resonance data, is not surprising. This is because the
detuning &om sextupoles is a second order eKect and so
depends sensitively on the betatron phase advance be-
tween sextupoles in the cooler ring. Nevertheless, the
technique of using two kicks will be useful in improving
the correspondence between the measured and the cal-
culated values of the resonance strengths and detuning
parameters in the future.
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FIG. 4. Plot of both the measured vertical fractional tune
v and the position measurement at the first vertical BPM
vs revolution number. This is a subsection of the same data
displayed in Fig. 3. The change in tune near revolution 2000
results from the change in action I. The change in tune due
to the change in action, of about 0.0003 was small compared
to the tune change resulting from a power supply ripple of
about 0.004
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C. Pitting the nonlinear resonance strength

While the contours of constant H2 can be used to de-
termine resonance parameters, B,aii, and bi up to a
scaling constant, there is, however, an interesting trick
to obtain the absolute scaling factor by using the time
derivative of the resonance phase Pi. The resonance
phase advance per turn APi can be obtained from the
Hamilton s equation of motion by difFerentiating H2 in
Eq. (14), i.e.,

b,pi BH2
2z 8Ji

= bi + aii Ji+ 2 B —6Ji +,]2 costi.
(

(22)

coupling circle (see Sec. III D 1) to the experimental data
when only a horizontal kick was applied. The efFective
nonlinear detuning was found to be aii ——(2100 + 300)
(arm)

D. Fitting the nonlinear Hamiltonian

Drawing contours of the constant Hamiltonian for the
difFerence resonance of Eq. (14), in resonance phase space
(/2P Jicosgi, /2P Jisingi), allows one to visualize
the agreement between the measured data and theory.
In this section, experimental data of the Poincare sur-
face of section will be compared with the Hamiltonian
tori.

Using bi, aii, and B as adjustable parameters with
the measured phase p = p fixed at —2.13 rad (see
Sec. III B), the phase advance per revolution b,Pi, was

fit to Eq. (22). Some typical results are shown in Fig. 5.
Here a 10-turn running average was used for both J and

Pi, so that the features of the nonlinear coupling reso-
nance could be seen more clearly.

By Stting 25 difFerent kicks, we found that the
mean resonance strength was given by B = (1.100
+0.325) (arm) i~ . Since the phase advance of Pi was not
very sensitive to the value of o.qq, the value of aqua was
found instead by matching the curvature of the nonlinear

X. Ho&sontal kick

When only a horizontal kick was applied, Eq. (20) was
used to draw both the launching circle and coupling arc.
The data was inspected to find J2 I, + 2I while bi
was adjusted for each kick. It was necessary to adjust bi
for each kick because the base tunes were not constant.
Three data sets with difFerent values of Jz are shown in
Fig. 6. The curvature of the coupling circle was used
to determine the value of aii to be aii ——(2100 6 300)
(s.m)
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I I I
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I I I I
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FIG. 5. Plot of measured
{open circles) and predicted
{solid lines) APq per revolution
for 4 of the 6 data sets shorn
in Fig. 7.
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5.0

0.0

—2.5

—2.5 0

/2P, Jq eos Pq

-4

I

l I I I I I I I I i I I I l I I l I I I .' I

-2 0 2 4

/2P& Jx cos P&

FIG. 6. The Poincare surface of section plot of data (sym-

bols) and fit (solid lines) to the Hamiltonian fiow of Eq. (20)
for three difFerent values of Jq. There was no vertical kick and

both the launching and coupling arcs are shown. The scales

are in mm. The curvature of the coupling arcs was used to
obtain axx = (2100 6 300) (z m)

FIG. 7. The Poincare surface of section plot of data (sym-

bols) and fit (solid lines) to the tori of the Hamiltonian of
Eq. (14). The vertical kick was held constant and the strength
of the horizontal kick was varied. The scales are in mm. Be-
cause Jq of all tori are different, the corresponding SFP also
moves. Each torus in this Sgure can be enclosed by the corre-

sponding launching and coupling circles with the appropriate
bq and Jq values.

2. Both homsontal and ver'tical kicke

When there were both horizontal and vertical kicks,
the data of the Poincare maps in the resonance rotating
frame were fit to the tori of the Hamiltonian of Eq. (14).
The values of B, o.qq, and p, were again held constant,
while the value of bz was adjusted for each kick. The
value of J2 used was the sum of the maximum of 2I and
the minimum of I, both of which were obtained &om the
data. The sharpness of the transition &om the launching
to the resonance circle is sensitive to the minimum value
of I, . By using the value of J2 obtained by this prescrip-
tion, the minimum value of I was not overestimated.
The value of the constant H2 —[Q,J2 + a„Jz/2] was
determined by the requirement that cosPx was equal to
+I when I was a maxixnum. Whether cosPx was set to
+1 or to —1 depended upon which side of the separatrix
the beam bunch was on.

In Fig. 7, six data sets are shown for which the strength
of the vertical kick was held constant while the strength
of the horizontal kick was incremented. The tori of the
Hamiltonian fiow of Eq. (14), which fit these data, are
also displayed as the solid lines in Fig. 7. The move-
ment of the coupling circle &om kick to kick is due to the
modulation of the base tunes. For a constant kick am-
plitude, the resonance proximity parameter bq was found
to vary by about +2 x 10,which is consistent with the
expected tune modulation of the betatron tune due to a
power supply ripple.

8. Slope of bx es Js

A further prediction of the resonance Hamiltonian is
that the value of bx should depend upon J2. From the
definition of 8x in Eq. (14) it follows that

Obg
xz 2o!zz ~ (23)

I9J2

The experimentally measured dependence of b~ on J2 is
shown in Fig. 8. From the slope of bq vs J2 the quantity
a, —2a„was found to be (—1278 + 150) (zxn) . The
zero intercept, Q —2Q, + 6, was about —5.0 x 10

Locking tnnes on resonance

One additional prediction of this Hamiltonian analysis
concerns the effect of the resonance strength on the be-
tatron tunes. Depending on the initial values of Jq, J2,
and bz two qualitatively different responses of the beta-
tron tunes can be seen. If the contour of constant H2
does not loop around the origin in resonance phase space
then the time average of b,Px, in Eq. (22), is zero. For
these cases, shown as data sets 1, 4, 5, and 6 in Fig. 7,
the time average of Px is identically zero. One particular
example of the betatron tunes locking to resonance har-
monic is shown in the top half of Fig. 9 which plots Px
vs the revolution number for data set 6 in Fig. 7. Here,
the tunes were measured by tracking the phase advance
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20 E. EfFect of averaging

0

-20

-40

-60

-80
0.0

I

1.0
I I

2.0 3.0

J2 (~ mm mrad)

I

4.0 5.0

The Hamiltonian analysis presented here isolates the
dominant resonance. However, it should be noted that
the experimentally measurable conjugate variables were

(I„,P„),while the resonance Hamiltonian has been trans-
formed to the conjugate coordinates (J„,7„).The rela-
tionship between these coordinates is given in Eq. (8),
which shows that for J~ to be approximately invariant,
I„must carry information of all nearby resonances. Re-
call that the resonance data, displayed in Figs. 5, 6, and
7, was filtered by using a 10-turn ru~~ing average. While
this averaging did serve to minimize the difFerence be-
tween the two sets of coordinates it is tempting to try
to measure the time dependent Buctuations in the un-
filtered data. In particular, it is clear from inspecting
Eq. (4) that it should be possible to deduce the values of

FIG. 8. Plot of b& vs Jz. The large scatter is presumably
due to the modulation of the base tunes. Asp cos(3$ —m8 + a3Q ),

as explained in Sec. IIIB1. The bottom half of Fig. 9
displays the tune information for data set 3 in Fig. 7. It
is worth noting that the tune, in the rotating reference
kame, approaches zero for this data set as well. Tracking
the beam centroid in the same phase space map as shown
in Fig. 7, the "particle" is seen to cross over the separa-
trix and begin to rotate counterclockwise, after about
1700 revolutions, as was the case from the beginning for
data set 6. It is not clear if this crossing of the separatrix
was made possible by the base tune modulation in the
cooler ring, which moved the location of the separatrix
or if it was possible due to the time dependent terms in
the Hamiltonian. This latter condition can only occur
for orbits near the separatrix in chaotic motion.

) Bq2 cos(P + 2P, —m8 + Pg2~),

Byp cos(P —m8 + Pqp ),

) Bz 2 cos(P —2P, —m8+ Pa —2rra) (24)

2.
E
8 p

&om the unfiltered data. This information might be use-
ful in the implementation of a scheme to reduce the harm-
ful efFects of the nonlinearities.

The effort to deduce the parameters in Eq. (24) from
the unfiltered data is complicated by nonlinearities in

0.04

Data Set 6

t I
I
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', '
I ' I ' s P s ' P)P+
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I
I I
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FIG. 9. Example of the betatron tunes "locking" to the
resonance. The top plot showers the tune in resonance rotating
frame for data set 6 in Fig 7. The bottom plot is for data
set 3. The tunes frere measured by tracking the phase of the
particle in the resonance rotating phase space.

FIG. 10. Plot of position measurements, at each revolution,
at xq, zq, and zq. At the time of the initial horizontal kick the
position measured in the Srst vertical BPM (bottom plot)
begins to oscillate, at the horizontal tune. This is clearly
evidence for a tilted vertical BPM.
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the electronics, imperfect conversion to normalized coor-
dinates, and coupling between the two planes of betatron
motion.

Coupling between the two planes of motion in the mea-
sured data can result from resonant linear coupling [12],
misalignment in the transverse kickers or misalignment in
one of the BPM's. Evidence of misalignment in a verti-
cal BPM can be seen in Fig. 10 which shows the position
measurements in the vertical plane, at the time of a hori-
zontal kick. The motion that appears in the 6rst vertical
BPM at the time of the kick, before significant motion is
evident in the second vertical BPM, presumably results
&om a misalig~~ent of that BPM. Due to the difficulty
in accounting for and removing all the sources of system-
atic error in the measurements, it has not yet been possi-
ble to deduce unambiguously the amplitude and phase of
the remaining time dependent terms in the Hamiltonian
of Eq. (9).

IV. COMPARISON BETWEEN MEASURED AND
CALCULATED PARAMETERS

A. Comparison of measured and calculated
resonance strength

Since sextupoles drive the diHerence resonance it is
possible to calculate the resonance strength froxn their
known distribution. A simple computer program was
written to evaluate B in Eq. (5) using the Courant-
Snyder parameters obtained &om the methodologic ac-
celerator design (MAD) computer program with the same
quadrupole values used during the experiment. Sex-
tupole contributions included in the calculation of Bwere
the 14 chromaticity correcting sextupoles which were en-

ergized during the run as well as the end sextupole fields
of the 12 main dipole magnets. The strength of the sex-
tupole contribution at the end of each dipole magnet was
deduced previously [8] from the measured chromaticities
C and C, . The calculated resonance strength was found
to be 2.93 (mm) ~z. This calculated value of the reso-
nance strength is larger than the measured value by a fac-
tor of about 2.7. The reason for this discrepancy presuxn-
ably lies with the relatively poor linear optics modeling of
the cooler ring. The measured and calculated tunes are
in good agreement but this masks the fact that the mea-
sured and calculated P functions often difFer by as much
as a factor of 2. It should be kept in mind that while the
particle motion is in resonance with the Q —2Q, +6 har-
monic, the resonance strength contributed by individual
sextupoles do not generally add coherently. It is not sur-
prising that the xneasured resonance strength was some-
what smaller than the calculated value. When setting up
for the experiment, individual sextupoles were adjusted
to maximize the beat period of energy exchange between
the x and z planes of oscillation. For a given bq and
Jx, Px is proportional to the resonance strength Eq. (22),
thus, maximizing the beat period served to minimize the
resonance strength.

B. Comparison of the measured and calculated
resonance phase

Some care needs to be taken concerning the relation-
ship between the phase factor measured in our experi-

ment p, which was added to the xneasurement of Px so
that the oscillation occurred about Px ——0, and the phase
factor p = Px 2 s calculated from Eq. (5). Recall that

—2P, +68+ p, where p„hasbeen approximated
by P„,which simply ignores the high frequency fluctua-
tions. With this approximation, it is easy to show that

—2P, + p, where Pz are the betatron phases
of the bunch at 8 = 0. Since the measured phases, P„
in this approximation, are given by P„=P„+f' "

o P„'
where s(y) is the location at which the measurement was
made, it follows that the measured phase angle p, should
be given by

8(x} d e{z)
p, = ——2 —+p

Using the calculated value of Px 2 s from Eq. (5) of
—2.43 rad together with the phase advances in each plane
of oscillation obtained Rom MAD, p was found using
Eq. (25) to be —2.53 rad, which agrees well with the
measured resonance phase of —2.13 rad. The determina-
tion of whether this rather good agreement was due to
coincidence or accurate modeling of the nonlinearities in
the cooler ring must await a more re6ned linear optics
model.

C. Comparison of the detuning parameters

Comparison of the detuning parameters is more diffi-
cult than comparison of either the resonance strength or
the phase factor. This is because sextupoles, as explained
in Appendix A, contribute to tune shifts with action only
in second order and possible contribution to the detuning
parameters &om octupole Gelds have not been included.
Until the linear optics of the cooler ring are accurately
modeled, and the octupole 6elds accounted for, it is not
expected that there will be good agreement between cal-
culated and measured detuning parameters.

V. CONCLUSION

The betatron difFerence resonance, Q —2Q, = —6,
was investigated at the IUCF cooler ring. It was found
that a single resonance Hamiltonian can accurately de-
scribe the coupled motion. The complicated motion in
the 4D phase space can be reduced to invariant tori in
the resonance rotating kame. It was possible to match
both the phase advance per turn of Px and the contour
traced in the map of (/2P Jx cosPx, /2P Jx sinPx) with
the predictions from the Hamiltonian Eq. (12). We have
developed a systematic method for deducing the reso-
nance Hamiltonian &om particle motion near a 2D reso-
nance. Such measurements are important for improving
the performance of high brightness storage rings.

The resonance strength B and phase factor p are com-
pared with the calculated values. As our understanding
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of both the linear optics and cooler ring nonlinearities
improves, the performance of the cooler ring will be en-
hanced. We have pointed out some of the difBculties,
such as tune modulation and BPM misalignment, in non-
linear experiments. Extreme care is needed to achieve the
goal of understanding nonlinearities in synchrotrons.
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APPENDIX A: NONLINEAR DETUNING

The A;I. in Eq. (9) are given by

A = 24 ) [A3p cos(3$ —m8+ a3p ) + 3AIp~ cos(p —m8+ aip~)],
fTl

(A1)

A, = —12 ) [Asp cos(3$ —m8+ aip~) —
~

4 —8
~ ) [BI2~cos(p + 2p —m8+ p12~)

gP . (Bg Bg &

8$
+2BI 2 cos(p —2p, —m8+ pi 2~) + 4Blorncos(4'e m8+ plpm)]&

A„=+8 ) [B12 cos(p +2/, —m8+ p12~)
~23

ftl

+2BI 2~ cos(p —2p, —m8 + pi 2~) + 4Bio~ cos(4e —m8+ piom)].

The nonlinear detuning parameters a;~ can now be found by averaging the A;~ over one revolution of the accelerator:

A2a..= —36)

8&a, =8~g8)
m

. .Q. + 2Q.

3&io~+
Q —m

B

+ +
B 4B,',

—m Q —2Q, —m Q —m
(A2)

The sum over m contains all integers except those for
which the betatron tunes are close to a resonance condi-
tion.

5.0

APPENDIX B:THE PARAMETRIC
DEPENDENCE OF RESONANCE CONDITION 0.0

The Hamiltonian (14) depends only on two parame-
ters,

—8.5

d=4 , b=8
ail J2 ail ~J2

where d and b signify, respectively, the effective proxim-
ity parameter to the resonance line and the effective reso-
nance strength for particles with an identical J2. Defining
the normalized phase space coordinates as

—5.0

—75

—10.0

((p 'l7) = COS QI ) Siil QI
)

(B2)

f'+ Il' = 1, (( —b)'+ rj' = (b' —d —1). (B3)

the launching and the coupling circles are, respectively,
given by

FIG. 11. The parametric dependence of the Sxed points
bifurcation for the 2D resonance Hamiltonian. The UFP's of
Eq. {19)exist in the shaded region. The coupling circle exists
vrhen d & b —1. The circle symbols are parametric conditions
of the experimental data presented in Sec. III.



M. EI.I.ISON et al.

d —2b & —2 and d+2b& —2 if b&0
d —2b & —2 and d+2b & —2 if b(0, (B4)

shown as shaded area bounded by two straight lines in
Fig. 11. Particles, which satisfy the condition (B4), are
strongly perturbed by the coupling resonance. The bi-
furcation of the UFP's of Eq (1.9) occurs at d+2b = —2.

Here, the radius of the launching circle is one, and the
coupling circle exists only when d & b —1. Thus the
resonance bifurcation occurs at d = b —1, shown as the
parabolic curve in Fig. 11. Now, the condition for the
coupling circle to intercept the ( axis within the launch-
ing circle is given by

The circle symbols shown in Fig. 11 correspond to exper-
imental conditions discussed in Sec. III.

In the limit of a small detuning parameter o.yq, the
system depends on a single parameter d/2b. The coupling
circle becomes a vertical line in the phase space of the
resonance rotating frame. In the parametric range d/2b F
[
—1, 1], the resonance line intersects the launching circle.

Thus the bifurcation of the UFP's of Eq. (19) occurs at
d/2b = kl.

To evaluate the effect of the resonance on the particle
motion. of a beam, one can plot the parametric distribu-
tion of the beam on Fig. 11. Particles lying inside the
shaded area will be affected strongly by the coupling res-
onance.
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