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Universal scaling of fluid permeability for sphere packings
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Results from the numerical simulation of Stokes Sow through random packings of nonoverlapping
or overlapping spheres and a scaling ansatz are used to obtain universal curves for the Suid perme-
ability. The scaling ansatz is motivated by previous analysis of rigorous bounds on the permeability.
Excellent agreement was found for a variety of model microstructures of porous media in the low
and high porosity regimes. Experimentally obtained permeabilities of several sandstones were found
to agree well with our universal curve.

PACS number(s): 47.55.Mh

I. INTRODUCTION

Here V is the average Buid velocity, g is the Buid s vis-
cosity, and I is the length of the sample porous medium
across which there is an applied pressure difference AP.

There has been a great deal of effort devoted to predict-
ing Buid permeability based on knowledge of the porous
medium's microstructure. Such calculations are difficult
because the permeability depends on a large n~~mber of
factors such as the porosity, typical pore size, connec-
tivity of the pore space, and the tortuosity of the Bow
paths. Probably the most widely used empirical formula
to predict permeabilty is the Kozeny-Carmen [3] relation

k = P~/2s, (2)

where Pq is the porosity and s is the specific surface (ra-
tio of the pore surface area to the total volume of the
sample). The rescaling of a porous medium by a fac-
tor of n will preserve its porosity but change the per-
meability by a factor n2 (i.e. , s decreases by a factor of
n) Thus, an im. portant role of the specific surface in
the Kozeny-Carmen equation is to properly scale per-
meability data obtained from porous media described
by difFerent intrinsic length scales. It is also physically
reasonable that increasing the surface area per unit vol-
ume, for a 6xed porosity, should decrease the permeabil-
ity since the Buid velocity must vanish along a surface.
While the appeal of the Kozeny-Carmen relation is in
part due to its simplicity, it breaks down in the high and

The Bow of Buids through random porous media plays
an important role in a wide variety of environmental and
technological processes; examples include the spread of
hazardous waste in soils, the degradation of building ma-
terials such as concrete, the extraction of oil from porous
rocks and separation processes such as chromatography
[1,2]. The key parameter describing the macroscopic fiow
of a viscous Buid in a porous medium is the Buid perme-
ability, k, defined by Darcy's law [3]
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low porosity regimes [4, 5]. Other more elaborate ap-
proaches to estimate or bound the permeability include
the usage of cross-property relations based on pore space
diffusion, electrical measurements and percolation ideas
[6—8, 4, 9—11],and [5].

In this paper, we study the permeability of different
classes of random three-dimensional porous media via di-
rect numerical simulation of Stokes fiow. A simple scaling
ansatz, based upon previous analysis of rigorous bounds
[10], is applied to the numerically determined fiuid per-
meabilites. This scaling [which is a function of specific
surface, volume fraction of solids ($2 ——1 —Pq) and the
critical porosity, gP~, at which the pore space first perco-
lates] causes the collapse of nearly all of the data onto a
universal permeability curve. Results will be compared
with other data obtained &om experiment [12] and lat-
tice gas [13] simulations of fiuid fiow in random porous
media.

In Sec. II we describe the models of porous media and
the method of Buid Bow simulation. In Sec. III we discuss
the scaling ansatz and show the collapsed data. We also
deduce the functional form of the»mversal function. Sec-
tion IV includes further discussion and our conclusions.

II. NUMERICAL SIMULATION:
MODEL POROUS MEDIA AND STOKES PLOW

A. Madel porous media

We simulate viscous Bow through eight models of ran-
dom porous media: models A—H. Except for model D,
all porous media were constructed using periodic bound-
ary conditions. Models A—D consist of various types
of overlapping spheres, models 8—G consist of differ-
ent kinds of nonoverlapping-sphere packings, and I is
a model of sintered porous media.

In model A, 500 monosized spheres of diameter 15 (in
units of lattice spacing) were placed at random (with-
out regard to overlap) on a 100s grid. The porosity was
decreased by increasing the sphere diameters from 15.0
to 21.0 in steps of 2.0. In model B we again begin with
randomly placed monosize overlapping spheres (diameter
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15.0) in the 100 lattice, but the porosity is reduced by
simply increasing the number of spheres from 500 to 1500.
The third model, C, is constructed from different diame-

ter spheres placed at random in a three-dimensional box
of length 100. The sphere diameters were chosen &om the
values (3, 7, ll, 15) with equal probability. The porosity
for model C was varied by uniformly adding more spheres
and the Buid Bow equations were solved on the 100 grid.
Model D is a sphere packing model used in Schwartz et al.
[5] where spheres of three different diameters are dropped
into a box and allowed to move about until a local equi-
librium position is found. The radii of the spheres are
1, 10 ~3, and 100 ~ and each sphere specified contributes
equally to the total volume. The porosity is then varied
by allowing the radii of the spheres to uniformly increase
or decrease. An interesting feature of this porous medium
is that as the spheres consolidate (increase in radius), the
permeability becomes more anisotropic in contrast to the
other pore models described in this paper which are in-
herently isotropic.

We also considered models of porous media composed
of spheres which do not overlap. In model E, 10000
spheres of diameter 5 are randomly placed in a 100s sys-
tem. Here, Pq

—0.62. In model F, 141 spheres each of
diameters (3, 7, ll, 15j were placed at random in a three-
dimensional box of length 100. As in model E, Pr = 0.62.
We also simulate Bow in a similar system with 173 spheres
each &om the same set of diameters but with Pr = 0.53.

In model G the nonoverlapping-sphere system is gen-
erated using the Metropolis algorithm [14]. Spheres are
initially placed in a cubical cell on the sites of a body-
centered cubic lattice. The cell is surrounded by periodic
images of itself. Each particle is then moved randomly
(by some small amount) to a new position which is ac-
cepted or rejected according to whether or not hard cores
overlap. Periodic boundary conditions are imposed (i.e.,

anytime a particle exits the face of the central cell its
periodic image &om a replicated cell enters the oppos-
ing face of the central cell) to simulate an infinite system
(i.e. , a statistically homogeneous medium). Equilibrium
is achieved after moving each of the particles a suKcient
number of times. This is checked by measuring the radial
distribution function for the hard spheres at contact and
comparing it to well-established values [14].

Model H is generated from simulations of recon-
structed and sintered [15] porous media. The initial sys-
tem (before being sintered) was actually a reconstruction
of model A or B based on the autocorrelation [16] anal-
ysis of two-dimensional slices from these models. Once
the three-dimensional image was created, a sintering al-
gorithm [15], which in effect reduces the magnitude of
local surface curvature gradients without changing the
total porosity, was utilized to vary the specific surface
until it matched the original sphere model s specific sur-
face from which the two-dimensional slice was taken. A
characteristic feature of this sintering model is that the
pore space percolates at relatively high porosities. For
the sintering model, Pr = 0.09 as compared to Pr —0.03
for the overlapping sphere models.

Our study also includes data &om lattice gas (LG)
simulations of Stoke's fiow due to Cancelliere et oL [13].

They determined the permeability of a system of ran-
domly placed overlapping spheres of diameter 8 within
a cube of volume 643. This model of porous media is
similar to that of model B.

B. Numerical determination of Quid Aom

v(r) = 0, (3b)

where v and p are, respectively, the local velocity and
pressure fields, and g is the Quid viscosity. The Quid ve-

locity must vanish at pore-solid interfaces and a pressure
difference is applied at the inlet and outlet faces. To
numerically solve the Stokes equations, we used a finite-
difFerence scheme in conjunction with the artificial com-
pressibility relaxation algorithm [4], [17], and [5]. The
pore space is discretized into a marker-and-cell mesh [17],
where pressures are defined at the nodes and Quid ve-

locity components are defined along the center of bonds
connecting nodes. Each voxel, a unit cube representing
either pore or solid, is centered on a node. Near the pore-
solid interface, noncentered difference equations are used
to improve the accuracy of the solution and to force the
Quid velocities to zero at the pore-solid interface. As a
result, velocity profiles across voxels are accurate to at
least second order [18]. In Fig. 1 we show a gray scale
image of the fiuid speed in Model A with Pq = 0.4. The
Quid speed has been thresholded so as to reveal more of
the pattern of Bow.

FIG. 1. Gray scale image of Quid How in packed sphere
model with P 0.4. The spheres have been made transparent
so that the fiovr pattern is easier to see. The lighter the ixnage
the greater the 6uid speed.

In the limit of slow incompressible How, steady state
Quid fIow is described by the linear Stokes equations

tlat v(r) = Vp(r),



50 UNIVERSAL SCALING OF FLUID PERMEABILITY FOR. . .

The permeability of the porous medi»m is calculated
by volIIme averaging the local fiuid velocity and apply-
ing the Darcy equation (1). To account for fiuctuations
in permeability in the low porosity regime, we averaged
the permeability of 8—10 realIzations of each porosity in-
vestigated for models A and B to obtain a representative
value. In addition, the average permeability of five sam-
ples for each porosity was determined for model H.

III. RESULTS
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Figure 2 shows the»»scaled permeability data as a
function of porosity. The main factor contributing to the
variation in permeability for a given porosity is the spe-
cific surface. However, at lower porosities fiuctuations
in the permeability increase as the critical porosity is
approached. Figure 3 shows the standard deviation of
permeability normalized to the mean value of permeabil-
ity for models A, B, and H. At porosities greater than
0.3, the relative fiuctuations are small. As the critical
porosity is approached from above the relative fiuctua-
tions begin to diverge. Note also that Fig. 2 shows the
anisotropy in permeability in model D. While the ef-
fect of anisotropy is small at the highest porosities, at
very low porosities, such as pI ——0.101, the permeabiltiy
varied up to a factor of 2.

%e first consider a scaling scheme suggested by
Torquato and Lu [10] to determine the universal behav-
ior of an upper bound on the permeability derived by Doi
[19]:

k„=— r
~
F„„(r)— F,„(r)+ F„(r)—

~

dr. (4)
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The functions F,„(r),F,„(r),and F„(r)are the void-
void, surface-void, and surface-surface two-point correla-
tion functions, respectively. Torquato and Lu evaluated
this bound for porous media composed of overlapping
spheres with a continuous size distribution. For a dilute
bed of polydispersed spheres, the bound gives

FIG. 3. The ratio of standard deviation of permeabilities
to average permeability versus porosity. The relative Suc-
tuation of permeabilities diverges as the critical porosity is
approached.
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FIG. 2. The logarithm of the unscaled permeabilities for
models described in text versus porosity.

Here (R") is the nth moment of the sphere size distri-
bution. Torquato and Lu found that, to an excellent
approximation, a»»Iversal curve for the upper bounds
could be constructed by scaling k„with k for each poros-
ity.

In a similar manner, we rescaled our numerically deter-
mined permeabilities by k for the models A D. Figure—
4 shows that the rescaled data indeed collapses onto a
universal curve.

One would like to be able to extend these scaling ideas
to more complex microstructures (e.g. , structure not con-
structed by spheres) in which determination of k may be
more problematic. Toward this end, we note that for a
dilute bed of polydispersed spheres k is simply equal to
2/2/s [10],where P2 is the solid vol»me fraction and s is
the specific surface. In Fig. 5 we scale the permeabilities
of all of the models by 2/2/s2 and find the remarkable
result that for Pq ) 0.3 nearly all the data collapses onto
a single curve. At lower porosities, the only data that
does not collapse onto a single curve is that &om the lat-
tice gas (LG) simulations and the permeability data of
Bow through the sintered systems.

For porous media constructed by randomly overlap-
ping spheres, as was used in the LG study and in all
our simulations except for the sintered medi»m, the pore
space should become disconnected at gP~ —0.03. While
our simulation data is consistent with this value of 4~,
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els A. and B in Fig. 5 because the sintering model has
a higher gFz

—0.09 and, therefore, should produce con-
siderably lower permeabilities at a given porosity and
speci6c surface. In fact, at the lowest porosity tested,
there was a factor of 20 difference in the permeabilities.
To account for the difference in ItIt of these porous media
models, we adjusted the porosity used in the scaling so
that pt ——p~ —ItI~ (and $2

——1 —Qt). We now find that
all the data collapses onto a single curve.

Fitting data in the lower porosity regime, we found the
following relation for permeability:

'
(4 —y')f

82

logio(Ai)

FIG. 4. The log of Io/Io vs log PI.

the LG simulation obtained relatively large values of per-
meability for pI ——0.02. We believe this nonzero perme-
ability value to be a finite-size effect in their generation
of the porous media. Accordingly, we will henceforth not
consider the LG data in the low porosity regime.

In Figs. 2 and 5 permeability data from model H
and a subset of data from models A and 8 can be com-
pared. Note that systems with the same porosity also
have matching s. We do not expect the permeability
data from model H to overlap with results from mod-

0 I I I

where f 4.2 (see Fig. 6). It is not clear whether we are
close enough to the critical porosity to accurately deter-
mine f How. ever, it appears that this scaling is universal
for a wide variety of porous media and is valid over many
decades in permeability. The physical interpretation of
Eq. (6) is that since 1/s is in general a length scale as-
sociated with a typical pore size, the power-law portion
is accounting for the tortuosity and the connectedness
of the pore space. The scaling in Eq. (6) is consistent
with experiments [21] relating the permeability of glass
bead packs, composed of a narrow distribution of bead
diameters, with its conductivity. In these experiments
k oc oz oc P, where m 4. We also point out that
the permeability critical exponent we obtain is consis-
tent with that obtained by Halperin et aL [20] for the
"Swiss cheese" model, which is the same as model 8

Included in Fig. 6 is experimental permeability data
obtained from a variety of natural sandstones due to Blair
et ul. [12]. Here we have taken

(FAN
——0 for the sandstone

data where we are assuming that sandstone can be mod-
eled as a packed aggregate. Again, there is reasonably
good agreement between. the experimenta1 data and the
universal curve.
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FIG. 5. The log of Ios /2ps vs log QI. The solid line is
the prediction of Kozeny-Carmen.

FIG. 6. The log of Ios/2/2 vs log of pI —pI. The straight
line corresponds to f = 4.2.
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to relate k to more complex microstructures.

IV. SUMMARY AND CONCLUSIONS
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Correcting the data scaled by It/k for the critical
porosity as was do ne for the previous scaling by 2p&/s2,
we obtain the relation

k = k (pj —gp~)s. (7)

In this case, we find g —4 (Fig. 7).
Why do both scaling ansatze produce universal curves

(i.e., scaling permeability by 1/k or s2/2/2)'? We found
that for 0.5 ( p1 ( 1, there is only a 4% difference at
most between the calculated values of s /2/2 and 1/k .
As a result Figs. 4 and 5 should appear very similar.
These scaling ansatze begin to differ more strongly as
porosity is further decreased (by about 30% at the lowest
porosites studied). Regardless, for the studied case of
overlapping spheres, 1/k = f(Pq)s /2$z, where f is a
function of Pq only, so that data will still collapse onto
a single curve. While rescaling data with s2 /2/2 or 1/k
works very well, the former may be more useful in that it

FIG. 7. The log of h/h, vs log of pz —gP~. The straight

line corresponds to g = 4.

In this paper, we have demonstrated the validity of a
&&mversal scaling ansatz for a variety of porous media and
over a wide range of porosity. The utility of this scaling
ansatz is that one need only know the specific surface,
critical porosity and porosity of the material and then
refer to the universal curves in Figs. 5 and 6 to obtain
a reasonably good estimate of permeability. This scal-
ing behavior is of course not expected for all realizations
of porous media. For example, porous media with ex-
tremely convoluted (or rough surfaces) or large regions
of disconnected space (voids) may not work as well since
a considerable fraction of the pore space may not be dy-
namically connected to the main fiow paths. At mini-
mum, calculations of s would have to carefully take these
regions into account. Moreover, as shown by Halperin et
aL [20j, there exist several universality classes of porous
media (such as the inverted Swiss cheese model) where
the scaling of permeability would not be the same as
that in our study. A natural scaling parameter to try
next is the aforementioned two-point bound 1/h„, since
it is more general than 1/k . Such scaling of perme-
ability will be the subject of future studies. Further re-
search is needed to improve our understanding of the
scaling of permeability near the critical regime in other
classes of porous media and to understand fiow in highly
anisotropic materials.

Finally, we note that for the class of porous media for
which our scaling relations are valid, a measurement of
the permeability k along with a knowledge of any pair of
the triplet pq, s, p1 can yield an estimate for the single
unknown morphological parameter.
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