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Transport integral: A method to calculate the time evolution of phase-space distributions
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An analytical technique using integral equations for the transport of ion-optical intensity distributions
through magnetic systems is described. It can serve as an alternative to Monte Carlo simulations to cal-
culate the time evolution of phase-space distributions of any given shape. Under the assumption of
linear optics, the solution of the integral equations can be reduced to convolution products. One major
application of this approach is the fast calculation of the transmission and purification of radioactive nu-

clear beams produced by projectile fragmentation.

PACS number(s): 41.85.Ew, 41.85.Ja, 29.30.Aj, 25.70.Mn

I. II4+acODUCrxON

The time evolution of a phase-space distribution under
a given set of constraints is often needed in a broad
variety of simulation problems. We describe in this paper
a transport integral which analytically defines such an
evolution between initial and final phase-space distribu-
tions. It can be evaluated directly in some simple cases,
but most of the time an analytical solution is not possible,
and a sampling simulation of the system has to be per-
formed using Monte Carlo techniques.

One application of the transport integral is related to
beam optics, where the knowledge of the evolution of the
phase-space distribution is needed at any time or, which
is equivalent, at any position on the beam line. For exam-
ple, the uniform irradiation of a tumor requires a flat-
shaped distribution as a function of position, whereas
typical beam profiles are usually closer to a Gaussian
shape. The transport integral was used to calculate the
conditions under which a Gaussian distribution could be
transformed into a square one [1]. For that particular
problem, the intensity distribution at the final position x
is assumed to depend solely on the initial angle distribu-
tion Io(8) and the transport integral can be written

I(x)=fIc(8)5(x f(8))d8, — (1)

where the function f(8) describes how the optical system
transforms the initial coordinate (8) into the final one (x).
Using the identify 5(x —f(8))=g;1/[(8f /88)5(8—8;}], where the 8; are the zeros of the function
(x —f(8)), Eq. (1) becomes

I(x)=y fI,(e)/[(af/ae)5(e —8,. )]de . (2)

Equation (2) tells us that in order to have I(x) constant,
the function f(8) has to be chosen to keep the ratio
Io(8)/(Bf /88) constant. Assuming a Gaussian shape for
the initial distribution Io(8) and expanding it into a Tay-
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lor series, we see that the most important term to be
matched by df /de is of order 8, therefore of order 8 in

f (8), which is accomplished by octupole magnets. These
results were confirmed by a TURTLE [2] Monte Carlo
computer calculation. In the case where f (8}is propor-
tional to 8, its derivative becomes constant and the shape
of the distribution is not changed by the system, but
merely scaled.

If in some cases the primary phase-space distribution is
simple enough to deduce the result analytically for linear
optics, as, for instance, with a Gaussian shape, in the case
of an arbitrary or more complicated shape the mathemat-
ical form of the integral cannot be disentangled. This is
the case when considering the phase-space distribution of
secondary beams produced by projectile fragmentation
where the nuclear reaction mechanism as well as the elec-
tron slowing down in the target are responsible for its
shape.

In the following we shall derive a first-order reduction
of the transport integral which leads to an elegant and
fast way to perform the calculation for any given shape of
the initial phase-space distribution. This method has
proven to be very efBcient when many simulations are
needed in a short time and under various initial condi-
tions such as the one encountered during the tuning of an
experiment.

In its general form the transport integral is written as

D'(q'„. . . , q„' ) =f f dq', dq„'D (q„.. . , q„)
1 n

X g5(q —f;(q&, . . . , q„)),

where D is the initial phase-space distribution at time t
and D' is the resulting phase-space distribution at time t .
The q &, . . . , q„and q &, . . . , q„' represent the phase-space
coordinates at t and t', respectively. The core of this in-
tegral is the set of functions f;(q&, . . . , q„), which de-
scribe how each of the final coordinates depends on the
initial ones. The Dirac 5 function merely selects the com-
binations of initial coordinates, which give a contribution
at the final coordinate q .
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For calculation purposes it is more practical to consid-
er the projections of the final phase-space distribution.
Such a projection is obtained by summing all contribu-
tions of the phase-space distribution for each point on the
projection axis:

p'. (q'. )=f . . . f gdq, 'D'(q', , . . . , q„'), (4)
lAJ lXJ

where the integrals run for every coordinate except q',
where the projection takes place. Injecting the definition
of the transport integral gives

n

P,'(q,') jf f II. dq,
"

f, f dqj dq. D(q„'q. }II 5(qk fk(qi
l9 J

and rearranging the integrals

P,'(q,')= f f dq& dq„D(q„. . . , q„)

X 5(qj f (q &, .—. . , q„))

n

Xg f dq 5(q f;(q—, , . . . , q„)) .
lAJ

The integration of the 5 functions for each q coordinate
except q' a11 give a result equal to unity

n

g f dq 5(q,
' f;(q, , .—. . , q„))=1i'

and one is therefore left with the following n-dimensional
integral:

P (q )=f f D(q„. . . , q„)

X 5(q,
' —f, (q, , . . . , q„)}dq, dq„.

(5)

A schematic view illustrating this integral is shown in
Fig. 1. The projections P (q ) of the phase-space distri-
bution D'(q&, . . . , q„) at time t' on the q axis is the
weighted sum of the points of the distribution
D (q&, . . . , q„) at time t which transform into q through
the function f;(q&, . . . , q„). The 5 function ensures that
only ti ose points which transform into q,

' are taken in the
integral.

%hen the shape of the initial phase-space distribution
D (q„.. . , q„) is not known analytically, the calculations
cannot be performed by means other than the usual sam-
pling methods such as Monte Carlo, where the accuracy
of its determination depends on the statistical errors due
to the sampling of the primary distribution. However,
given two simplifying assumptions on the primary
phase-space distribution and the coordinate transforma-
tion functions, this integral can be reduced to convolu-
tion products, which in turn can be easily calculated us-
ing Fourier transform techniques.

An alternative method [3] also uses convolution prod-
ucts to calculate the transformation of phase-space distri-
butions. It is based on the concept of generating func-

tions that describe the system and are successively convo-
luted to the primary distribution. In this formulation, a
generating function must be constructed for each element
in the direction of the phase space where it modifies the
distributions.

II. SIMPLIFYING ASSUMPTIONS

%e first assume that the initial phase-space distribu-
tion D(q&, . . . , q„) at time t can be decomposed into its
projections on the q; axis. This means that the variables

q, , . . . , q„are noncoupled and the distribution can be
written as the product of its projections

f;(qi, . . . , q„)= g Ra, qk .
k=1

Therefore, Eq. (5) becomes
ll n

P (q }=f " f gP, (q, }5 q gR;kqk—
1 "j=i k=1

Xdqi ' ' ' dq„ (S)

where the R k coeScients are the elements of the first-
order transport matrix

Rim

R„i

In the following section, we show that with those two as-
sumptions Eq. (S) can be reduced to convolution prod-
ucts.

III. REDUC=I1ON TO CONVOLUTION PRODUCTS

Given the variable changes pk =Rlkqk ~dpk =R;kdqk
and P, (q~)=P~ (pj/R; )=P~(p },.Eq. (S}can be written

D(q„. . . , q„)=gP~(qj. ) .
j=1

In the second assumption we take a first-order approxi-
mation for the transport function f, (q„.. . , q„). Hence
it can be written as a linear combination of the q;

o(qI -- q.)

P(q )=
R;k

k=1

f . . . f fIP, (p, )5 q,' —Xp
"J=1

Xdp 1 dp~

FIG. 1. Schematic representation of the transport integral. anting ti=Xa=jpk pi =ti Xk=2pk»d dpi
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P(q )=
R~k

k=1

n
~ ~ 0 P t p

1 k=2

P(q )=
gRk
k=1

n
~ ~ 0 P q

.
p

2 n k2
J

XP2(p2) . .P„(p„)dp2 dp„.

We then perform the same kind of variable change

r2 —Q Pk ~P2 =f2 Q Pk, dP2 =Ck2,
k=2 k=3

P(q )=

k=1
R;k

n

XP t —$p
k —3

xP„(p„)dr2 dp„,

and so forth, one finally ends with the formula

X g P.(p )5(q —r, }
1=2

Xdt, dp2 . .dp„.
The 5 function is nonzero only for t

&
=q; therefore

r

IV. GENERAL ALGORIrHM

The implementation of an algorithm to calculate the
time evolution of a given phase-space distribution can be
described as the succession of the following steps (see Fig.
2). Given the projections of the initial phase-space distri-
bution and the first-order transport matrix, the calcula-
tion simply consists of convoluting those projections after
they have been scaled by the matrix coeScients. The con-
volution products are performed using the Fourier and
inverse Fourier transforms, which reduce the calculations
to a multiplication of distributions.

A simple example may illustrate this algorithm. Con-
sider the first-order matrix of a drift space in two dimen-
sions R=[0 f], where L is the length of the drift space
and the coordinates are the position x and angle 8. For
any initial phase-space distribution of light rays, for in-
stance, we can calculate the effect of the drift space on
the final phase-space distribution using the transport in-
tegral. Naming the two initial projections P„(x} and
Pe(8), we scale the latter to Ps(x) by interpolation:
Ps(x) =Ps(x/L), and obviously P„(x)=P„(x). The pro-
jection of the final phase-space distribution on the x coor-
dinate is then given by the convolution product
P„'(x)=[1/(I+L)][P„P&](x). If, for instance, the two

Obtain the projections of the inital phase space

distribution on its uncoupled axis

Obtain the transport matrix R

P(q )= P, q
—t2P2t2—

n

k=1

XP» —t(t» t t»)—
XP„(r„)dk2 Ck„.

P(q )=
R~k

k=1

f P, q
—t2P2t2 —t

n —1

X [P„,P„](t„, )

Xdt2 ' ' ' dt»

Each integral is now independent and corresponds to a
convolution product

Scale projection Pj(qj) relative to coordinate q&' by interpolation.

The resulting projection is:
Pj(qj)=pj(pj+ij)=pj(pj)

Fourier transform Pj(p&)

Finally, the result is given by the convolution product of
all P. functions

P(q )=
Rg,

k=1

[P,eP2e eP„](q,') . (10)

The convolution products are calculated using Fourier
and inverse Fourier transforms. Fast Fourier transform
algorithms can increase greatly the speed of the calcula-
tions, the best results being obtained when the number of
points in the distributions is a power of 2.

Multiply all Fourier transforms

Inverse Fourier transform to obtain the final projection p (q )

FIG. 2. Algorithm of the transport integral calculation. See
text for details.
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initial projections were assumed to be Gaussian with
widths o.„and o &, respectively, we see that the resulting
position distribution would have the width cr„+o eL,

which shows, as expected, that the size of the position
distribution increases linearly with the length L. The an-
gular projection of the final phase-space distribution
remains unchanged, as can be seen from the coefBcients
on the second line of the matrix R(P&(8)=Ps(8)). This
very simple example illustrates the power of the algo-
rithm since the amount of calculations does not depend
on the shape of the initial projections and only linearly on
the number of dimensions and the complexity of the
first-order matrix describing the system.

V. APPLICATION TO BEAM OPTICS

One application of the result obtained in Sec. III is the
nrst-order calculation of secondary radioactive beam
transmission and purification through a recoil spectrome-
ter. The fragmentation of intermediate and relativistic en-

ergy heavy ion beams has recently become one of the ma-
jor methods used to produce radioactive beams [4]. In
this method, the projectilelike fragments are emitted in a
forward cone centered on O'. The radioactive beam is
produced by collecting these fragments in a 0' magnetic
spectrometer.

Because of the reaction mechanism by which the frag-
ments are produced, their spacial and energy distribu-
tions cannot be reproduced by simple mathematical for-
mula. Furthermore, in most cases the acceptances of the
spectrometer are not big enough to transmit all the frag-
ments produced and the distributions have cuts. Finally,
the use of thick targets to optimize the production rate
and wedges to improve the purification broadens the en-

ergy distributions and produces angular and energy strag-
glings which have to be accounted for.

The commonly used variables for beam optics are
(x,8,y, y, dp), where (x, 8) and (y, qr) are the positions
and angles in horizontal and vertical planes, respectively,
and dp the momentum variation. The first condition for
using the reduction of the transport integral is fulfilled at
the target position, which is an achromatic focal point,
which means that the variables (x, 8,y, y, dp) are not cou-
pled. The initial phase-space distributions of the frag-
ments emerging from the target can be calculated using a
fragmentation model and energy loss and straggling for-
mula. Then, given the first-order transport matrix at any
position on the beam line, their phase-space distribution
can be deduced via the transport integral. This method is
applied in a computer program called LIsE [from the
LISH spectrometer at Grand Accelerateur National
d'Ions Lourds (GANIL) [5]],which simulates the perfor-
mance of any magnetic spectrometer set in a doubly
achromatic mode in order to produce high energy ra-
dioactive beams.

Among the various experimental results which have
been compared to this program, one was particularly
testing the trans~i@sion of phase-space distribution with
abnormal shape. The aim of this experiment was to study
the possibility to produce a 5-MeV/u "Bebeam from an
incoming ' 0 beam at 63 MeV/u, in order to study the
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FIG. 3. Calculated rate of "Be (in particles per second}
transmitted through LIsE as a function of the Be target thickness
for an incoming beam intensity of 2 @Ac and a momentum ac-
ceptance of 0.12%. The optimum thickness is found around 600
mg/cm .

dependence of sub-Coulomb barrier fusion reactions
cross section on uranium as a function of the isospin of
the projectile [6]. Because of such a tremendous
dimerence between the incoming and outgoing energies,
very thick targets had to be used to slow down the frag-
ments. Increasing the target thickness has two opposite
effects on the final rate of fragments collected in a recoil
spectrometer. On the one hand, it increases the number
of nuclear reactions in the target and therefore the num-

ber of fragments produced; but, on the other hand, their
energy and spacial distributions are broadened by elec-
tron slowing down, as well as angular and energy strag-
glings. Those last effects tend to reduce the transmission
of the spectrometer which is limited by its acceptances.
As a result, there is an optimum target thickness for
which the compromise between the two tendencies gives
the best rate. The determination of this optimum for the
production of "Beon the LISE spectrometer is shown in

Fig. 3.
When the target gets even thicker, the energy of the

projectiles becomes too low and the reaction cross section
begins to drop until it finally vanishes. It is not possible
to take this effect into account in the calculations since
the energy dependence of fragmentation cross sections is
not known. As a rough approximation, one can assume
that it drops sharply to zero at a given energy, which still
remains to be determined. In the following simulation,
we have supposed that the only active thickness, i.e.,
where nuclear reactions actuaHy take place, is equal to
the optimum thickness. The remainder of the target is
passive and only slows down the fragments. We have
compared the calculations for the five target thicknesses
used in the experiment: 370, 740, 1100, 1480 and 1850
mg/cm of Be. The second target corresponds roughly to
the calculated optimum thickness and it is indeed for this
one that the highest rate of "Behas been observed. The
comparison is shown in Fig. 4, where the points corre-
spond to the data taken from [6] and the lines to the cal-
culations performed by LIsE. The Sve ealcu1ated energy
distributions have been normalized to the data by a single
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FIG. 4. Comparison between measured and calculated "Be
rates with different target thicknesses x as a function of energy.
The points represent the data and the lines the renormalized
calculations.

coeilcient, which indicates that the transmission of the
spectrometer is fairly well simulated by the calculation
and the disagreement is due to a bad determination of the
total reaction cross section. This cross section has been
calculated using the empirical parametrization of
Siimmerer et al. [7], which gives 1.77 mb. The renormal-
ization of the calculation by a factor of 4.4 allows one to
determine the total cross section tr~, (' 0+Be ~"Be)
=0.4 mb. The discrepancy observed at the low energy
part of the distributions for the three thickest targets is a
clear indication that our assumption on the behavior of
the cross section at low energy is not realistic and it
indeed decreases smoothly towards zero.

In the first part of this paper, we have presented an
analytical way to calculate the time evolution of phase-
space distributions. However, the number of cases where
the transport integral can be solved analytically is very
limited, due to its mathematical form, and only when

simple configurations are considered can it be disentan-

gled. Two numerical ways to directly calculate this in-

tegral are first using numerical integration algorithms
and second by sampling methods such as Monte Carlo,
but those are either time consuming or imprecise and
therefore not well suited when fast calculations are need-

ed. Under the assumption of noncoupled variables in the
initial phase-space distribution, and taking a first-order
approximation of the transport functions, we have shown
that the transport integral can be reduced to convolution
products, which in turn are easy and fast to calculate us-

ing fast Fourier transform algorithms.
This result has been applied to the simulation of secon-

dary radioactive beam production using the technique
which combines projectile fragmentation reactions and a
recoil spectrometer to collect and purify the beam. The
calculations produced by the program called LIsE have
been compared to experimental data taken on the spec-
trometer of the same name at GANIL, on the production
of a "Be beam from the fragmentation of ' O. The
transmission of the spectrometer is indeed we11 repro-
duced by the calculation, with some discrepancies due to
the assumptions made on the cross section energy depen-
dence. The full description of this program will be the
subject of a future publication.
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