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Evolution of the electron distribution function in intense laser-plasma interactions
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We report a numerical investigation of the time evolution of the electron distribution function (EDF)
in a laser-embedded, fully ionized plasma. A distinctive feature of the calculations is removal of the fre-

quently adopted assumption of small anisotropy of the EDF in velocity space. This requires solving a
two-dimensional partial differential equation for the EDF. Within the adopted range of parameters, the
EDF undergoes significant changes. An initially isotropic EDF transforms rapidly into an anisotropic
one characterized by a longitudinal velocity scale larger than the perpendicular one. This longitudinal
stretching persists for several cycles of the radiation field, implying the establishment of a two-

temperature EDF. We also investigate the time behavior of moments of the EDF for different initial
conditions.

PACS number(s): 52.40.—w, 52.50.Jm

I. Ibi+RODUc:rxON

The laser-plasma interaction is one of the most impor-
tant radiation-matter interactions, which continues to at-
tract considerable attention. The permanent interest in
laser-plasma interaction is a result of the fundamental
character of the processes it makes possible and the pros-
pects for important practical applications. Moreover, the
availability of increasingly intense short pulse sources of
laser radiation continually allows the laser-plasma in-
teraction to acquire qualitative new features. Under the
infiuence of intense laser radiation, plasma electrons may
strongly depart from equilibrium conditions. Therefore
only accurate knowledge of the electron distribution
function (EDF) ensures an adequate description of the
plasma properties and behavior. Unfortunately, the
correct description of an EDF for a plasma embedded in
an intense laser radiation field remains a diScult prob-
lem.

A number of recent theoretical papers [1—6] have ad-
dressed this problem generally by assuming a small an-
isotropy of the EDF in velocity space in order to apply
the spherical harmonics expansion. This expansion does
not take into account the angular dependence of the
EDF. As a rule, the procedure based on spherical har-
monics expansion is useful when the electron quiver ve-
locity, VE=eEo/(mao) is much smaller than the thermal
velocity, Vz =(T, /m)'~ . Here, e and m are the electron
charge and mass, Eo and co are the electric field ampli-
tude and the frequency of the external high-frequency
laser radiation, and T, is the electron temperature. VE
may be much smaller than Vz, even in the case of very
powerful laser sources, provided that the frequency co is
appropriately high. If the criterion Vz / Vr « 1 is
fulfilled, all the information about the plasma properties
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( VE/Vr }'»3/Z (2)

with Z the ion charge.
A more general self-similar EDF than Eq. (1), corre-

sponding to the case for which electron-electron (e-e)
collisions are taken into account self-consistently, has
been derived in Ref. 6. When terms that account for e-e
collisions are retained, the equation for the isotropic part
of the EDF is nonlinear, and further approximations are
required for its solution. Nevertheless, comparison of the
approximate, analytical, self-similar EDF and the numer-
ical solution reported in Ref. 6 has shown that sufBciently
accurate EDF can be obtained with e-e collisions includ-
ed. Interesting contributions to the elort to construct an
EDF in laser-embedded plasmas have also been reported
recently in Ref. 4. Thus, on the whole, for cases in which
laser radiation interacting with fully ionized plasmas pro-
duces EDFs with small anisotropy, these EDFs can be
determined with good accuracy, and basic plasma prop-
erties and processes can be studied with confidence. For
the case in which the laser radiation is expected to pro-
duce a strongly anisotropic EDF, the available informa-
tion is sparse, and the study and solution of the related
equations is still an open problem.

Very intense laser sources are becoming increasingly
available in laboratory practice. It is therefore
worthwhile to extend investigation of laser-embedded

is contained in the isotropic part of the EDF, f (v), where
v is the length of the velocity vector. Investigations in re-
cent years [1—7], restricted to the case of a uniform plas-
ma dominated by Coulomb collisions, have provided
sufBcient and reliable information on the evolution and
characteristics of the small anisotropy EDF. For in-
stance, applying a high-frequency electric field to a fully-
ionized plasma, after a state of relaxation [6],an arbitrary
initial distribution transforms into the self-similar distri-
bution [1,2]

lnf (v)= —v

if, for the plasma parameters, we have
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EDFs to the case of an arbitrary degree of anisotropy in
order to study plasma properties and processes under
more general conditions. The present work is a contribu-
tion to the analysis of the EDF behavior and evolution
without the limitation of the small-anisotropy assump-
tion. Here we address only the case of a uniform, fully
ionized plasma with a value of the ion charge Z that al-
lows us to disregard e-e colhsions. This requires solving
a two-dimensional partial difFerential equation using a
modified version [8] of the alternating direction method
[9].

In Sec. II we concisely outline the theoretical frame-
work used and define the quantities which are the object
of our calculations. Section III is devoted to selected nu-
merical calculations and the related discussion of the re-
sults. Concluding remarks are given in Sec. IV.

II. MASTER EQUATION

The evolution of the velocity EDF in a uniform, fully-
ionized plasma dominated by Coulomb collisions is de-
scribed by the well known equation [10]

af (v) eEO
cos(cut}

a (v)
av

[v„.(u)[u 5
&

—u u&]], (3)
uj ui

where UJ is the jth component of the electron velocity,
v„=4nZe N, lnA/(m u ) is the electron-ion collision
frequency, X, is the electron density, and ln A is the
Coulomb logarithm. The laser field is assumed to be
monochromatic and linearly polarized along the z direc-
tion. Equation (3}does not contain terms to account for
the e-e collisions. Equation (3) is valid provided that con-
dition (2) is fulfilled. Silin [10] showed that Eq. (3) may
be used to describe fast time-varying processes, such as
the interaction of a plasma with a high-frequency field.
For a time-varying process, we modify the definition of
the Coulomb logarithm [10],which at fixed plasma densi-
ty and field frequency may be considered a constant.
From Eq. (3), using the spherical harmonic expansion
and averaging over the field period, the well known equa-
tion for the isotropic part of the EDF results [1-6,9].
Vfe intend to study the plasma properties without any ad-
ditional assumption about the angular dependence of the
distribution function and, hence, we must solve Eq. (3}
directly. %e cannot average over the field period since
we do not know in advance the "fast" time dependence of
the distribution function. It is only under the small-
anisotropy assumption that the anisotropic part of the
EDF oscillates together with the field, thus allowing the
isotropic part to be averaged over the field period and the
"slow" time dependence to be extracted. In our case,
averaging over the field period is possible only after solv-
ing Eq. (3}. As suggested by the symmetry of the prob-
lem, the natural coordinate system for our case is cylin-
drical. Moreover, in view of the numerical modeling
developed below, it is convenient to define the following
equation to remove the velocity gradient of the distribu-
tion function:

a r, as' as'

a r, as' as
+a. "

2
" a. "'a. (5)

where F(v', t)=f (v, t), v„=4nZe N, lnA/[m (r
+z, } ], r and z are, respectively, the component of the
electron velocity in the oscillating frame perpendicular
and parallel to the oscillating electric field, and z, is the z
component of the electron velocity in the rest frame. As
pointed out above, choosing the oscillating coordinate
system rem. oves the velocity gradient of the EDF but,
however, the coefiicients of Eq. (5} are now functions of
time. The boundary conditions pertinent to Eq. (5) are
that the distribution function is equal to zero for u ~ 00

and the particle fiow vanishes far r ~0. To calculate the
moments of the EDF, the EDF is narmalized to the con-
dition

2m fF(r,z, t)r dr dz =1 . (6)

We define the following first moments of the EDF: (a)
the average component af the electran velocity along the
direction of the electric field

V~~
=2m f r dr f dz F(r, z, t)[z+ VEsin(tot}]

0 00

= (z )(t)+ VEsin(tot),

(b) the average parallel kinetic energy

EN =me f r dr f dz F(r,z, t)[z+ Vzsin(cot)]
0 00

=—[(z )(t)+2(z )(t)VEsin(a)t)+ VEsin (tot)], (8)
2

(c) the average perpendicular velocity

Vi=2m f r dr r f dzS'(r, z, t),
0 00

(d) the average perpendicular kinetic energy

Ei =mmfr dr f dz .r F(r,z, t) . (10)

III. NUMERICAL CALCULATIONS AND RESULTS

Equation (5) is now solved numerically, and Eqs.
(7)-(9) are evaluated. To solve the two4smsamaonal par-
tial dhfferential Eq. (5), we make use of the alternating
direction method [8]. However, because of the presence
of mixed derivatives in Eq. (5), the usual version is not

v'= v z—VEsin(tot),

with v' and v, respectively, the electron velocity in the os-
cillating frame and in the rest frame, and z a unit vector
directed along the z axis.

Then Eq. (3) may be written as
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convergent. Therefore we use the modification of the
method proposed in Ref. 7, to which the interested reader
is referred for details. For the sake of brevity, we omit
cumbersome and poorly instructive expressions and re-
port the numerical results only.

Numerical calculations have been carried out in three
different regimes characterized, respectively, by
VE/Vr(1; VE/Vr= 1; Vs/Vr) 1. The electron plasma
is assumed to be described initially by a Maxwellian dis-
tribution function, and its parameters have been chosen
in such a way that the electron-ion collision frequency is
much less than the frequency of the external electromag-
netic field. As it is well known, a collisionless plasma
driven by an external electromagnetic field can be de-
scribed, in the oscillating frame defined by Eq. (4), by a
stationary EDF. Therefore in our case the EDF is ex-
pected not to change sensibly during a field period T, as
V~I T &(1.

We now illustrate in detail the behavior of the EDF in
the above mentioned regimes.

A. Vg/Vg(1.
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FIG. 2. The electron distribution function evaluated in the
middle of the 20th period of the laser field. At this instant the
velocity of the oscillating frame is zero. Laser and plasma pa-
rameters are as in Fig. 1. Both the parallel and the perpendicu-
lar velocities are expressed in units of Vz.

In this regime, our numerical results are in agreement
with those of Refs. 1 and 6, in which an analytical expres-
sion for the EDF has been obtained. In particular, we
find that for values of Vz smaller than 0.5Vr, the shape
of the EDF does not change appreciably during time in-
tervals as large as twenty cycles of the oscillating field.
By integrating the distribution function over the angular
coordinates that define the electron velocity, we obtain a
one-dimensional distribution function that behaves as the
well known EDF reported in Ref. 1. In Fig. 1 this one-

dimensional distribution function is shown as a function
of (V/Vr) . In Fig. 2 the distribution function, evalu-
ated at such a time that the velocity of the oscillating
frame is zero, is shown as a function of z and r, and in
Fig. 3 the momenta defined by Eqs. (7)-(10) are plotted
as functions of time.

We observe that the ratio E~/Ei, evaluated at times
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FIG. 1. The one-dimensional EDF as a function of the
squared electron velocity evaluated at three different instants t.
The laser and plasma parameters are: E0=2m. X 10 V/cm,
Ace=0.4 eV, Z=5, v„-T=0.1, VE/V&=0. 5. v„- and Tare, re-
spectively, the electron-ion frequency and the laser period. VE
and Vz are, respectively, the electron quiver velocity and the in-
itial thecal velocity. Thin line: t =19T+~/2. Dash-dotted
line: t =19T+~. Thick line: t =19T+3m!2.
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FIG. 3. The first moments Eqs. (7)—(10) as a function of time.
The velocities and the energies are, respectively, expressed in
units of the initial thermal velocity and the kinetic energy of the
electron plasma. Laser and plasma parameters are as in Fig. 1.
The time is expressed in units of the laser period T. Thin mono-
tonic curve: the average perpendicular velocity. Thin, large-
amplitude, oscillating curve: the average parallel velocity.
Thick monotonic curve: the average perpendicular kinetic ener-

gy. Thick oscillating curve: the average parallel kinetic energy.
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such that the velocity of the oscillating frame is zero, is
nearly equal to two for all the times considered. The
EDF, in the oscillating frame, therefore remains essen-
tially isotropic [with the limitation F(r,z, t) =F(r, z—, t)] .
For example, see Fig. 3, where Eqs. (7)—(10) have been
plotted as functions of time. Hence, although the
electron-ion collisions are responsible for the asymmetry
in the distribution function, the energy absorption from
the laser pump proceeds in such a way that, in the oscil-
lating frame, it is equally shared among each degree of
freedom of the plasma electron. Ultimately, all of the
above properties of the EDF, in the regime VE/Vr &1,
corroborate the validity of the known procedure for solv-
ing the Boltzmann equation for a plasma driven by an
electromagnetic field by expansion of the EDF in terms
of spherical harmonics.

B VE= Vz
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The shape of the EDF is similar to that for the previ-
ous case with, however, the degree of anisotropy now
more emphasized (see Fig. 4). Note that for all the cases
we use the same initially isotropic function. In the first
case (case A), such a function in practice does not
change, although the typical scale of the longitudinal
motion is larger than the perpendicular one. The max-
imum value of F(r,z, t) is reduced by approximately a
factor of two. Further, more significant modifications ap-
pear in the tail of the one-dimensional EDF (see Fig. 5).
In fact, in the course of a field period the tail of the EDF
is considerably afFected, while the bulk sufFers only small
modifications.

Another distinct feature is the modulation of the rela-
tive maxima of the curve for E~~ as a function of time in
Fig. 6. From inspection of this figure, it seems reasonable
to assume that (z )(t) is a slowly increasing function of
time. We can then linearize (z )(t) during half a cycle
of the oscillating electromagnetic field. In this way, we
can assume that the increase of (z )(t) between two con-
secutive maxima is roughly the same as that occurring
between the two associated consecutive minima. This is,

FIG. 5. The electron distribution function as in Fig. 1, with
E0 and VE/VT the same as in Fig. 4.

in fact, easily confirmed by scrutinizing the numerical
values of (z)(t} and Ef. Moreover, for (z)(t)=0, the
upper envelope of the curve for E~~ as a function of time
should behave in the same way as the lower one. The os-
cillations occurring in the maxima are, in fact, caused by
the lack of symmetry sufFered by the distribution function
because of the combined action of the electromagnetic
external field and the electron-ion collisions. Such an
asymmetry [F(r,z, t}AF(r, z, t)]—gives rise, in the oscil-
lating frame, to a drift velocity (z)(t) from which the
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FIG. 4. The electron distribution function as in Fig. 2, with
Eo=4wx10 V/cm and VE/VT=1.

Time

FIG. 6. The Srst moments of the EDF as in Fig. 3. Laser and
plasma parameters are as in Fig. 4. Thick monotonic curve: the
average perpendicular velocity. Thick, large-amphtude, oscil-
lating curve: the average parallel velocity. Thin monotonic
curve: the average perpendicular kinetic energy. Thin oscillat-
ing curve: the average parallel kinetic energy.
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FIG. 7. The ratio E&/EII as a function of time evaluated at
cot =nm (n integer) for VE/V&=2 (dashed curve). Dash-dotted
curve: perpendicular energy. Full curve: parallel energy.

FIG. 9. The first moments of the EDF as in Fig. 3, with Eo
and VE/VT the same as in Fig. 7.

modulations result. Of course such modulations, though
less pronounced, are also present in the regime
VE/Vz & 1.

C. Vg & Vz.

The significant feature that distinguishes this regime is
that the EDF, in the oscillating frame, experiences
enhanced stretching in the direction of the oscillating
electric field and is broadened and lowered further be-
cause of heating. As shown in Fig. 7, the ratio E~/E~~~,
calculated for up to 100 cycles of the radiation field, ap-
pears to increase its departure from the isotropic value
(2). A slowly evolving anisotropic EDF has therefore
been established. In Fig. 8 the EDF is shown as a func-

tion of the components of the electron velocity perpen-
dicular and parallel to the oscillating electric field. The
rate of energy absorption decreases with the time, as can
be seen by the quite regular behavior followed by E~(t)
and the dumping of the oscillations of the upper envelope
of the curve for E~~(t) (see Fig. 9).

In addition, numerical data not reported here show
that the drift velocity (z)(t), after increasing during the
first few cycles of the oscillating electric field, starts de-
creasing. This is reflected in the dumping of the oscilla-
tions of the upper envelope of Ez(t) and, corresponding-
ly, in the reduction of the heating rate with increasing
time.
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FIG. 8. The electron distribution function as in Fig. 2, with
Eo =6~X 10 V/cm and Vz /Vz. the same as in Fig. 7.

FIG. 10. The electron distribution function as in Fig. 1 with
Eo and VE / Vz the same as in Fig. 7. Thick line:
t =19T+m/2. Thin line: t =19T+3~/2. The dash-dotted
line corresponds to t =19T+n. and must be multiplied by 5.
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Finally, in Fig. 10 the instantaneous one-dimensional
EDF exhibits a behavior rather difFerent as compared
with that in Ref. [1]for the case of small anisotropy.

IV. CONCLUSION

The reported numerical results allow us to conclude
that the time evolution of the EDF, for the case under
consideration, may be divided into two stages dis-
tinguished by difFerent energy absorption rates.

During the first stage, the initially isotropic EDF, un-
der the joint action of an intense electromagnetic field
and the electron ion-collisions, transforms rapidly into an
anisotropic EDF characterized by a longitudinal velocity
scale larger than the perpendicular one. The value of this
relative stretching depends on the ratio VE/Vr and be-
comes significant when this ratio is close to or larger than
one. In other words, the initial electron temperature and
the radiation field parameters control the shape of the
"first-stage" anisotropic EDF. In the case of smaI1 an-
isotropy ( VE /Vr « 1), the EDF shape remains similar to
the initial one for practically all times considered, chang-
ing only in scale because of the heating. For values
VE/Vr) 1, the relative longitudinal stretching persists
for many cycles of the radiation field, implying establish-
ment of two-temperature EDF. Because these calcula-
tions are very time consuming, we presently are not in
the position to make definite statements about the evolu-
tion of the EDF for times larger than 100 cycles.

The reported results are based on a numerical solution

of the Boltzmann equation. These results complement
similar results [1,2,4,6,7] obtained using approximate
analytical treatments and serve as a stimulus for further
work. As a matter of fact, the approximate analytical
treatments, in principle, may have an heuristic power not
shared by the numerical treatments. The latter may pro-
vide rigorous results and, ultimately, a check on the lim-
iting, approximate treatments of the same problem. In
this context, it is hoped that rigorous numerical results
can be used as "input data" for developing useful and
predictive analytical treatments of the important but
dimcult topic of nonstationary EDFs in plasmas subject
to strong laser field radiation.
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