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The following statement is investigated: if electrons realize an equilibrium between ionization and
recombination in a two-temperature radiationless plasma, then the Saha equation can be obtained by re-
placing the thermodynamic temperature by the electron temperature. It is found that the statement is in
general rather academic, but becomes realistic if it is confined to the higher excited states. These states
are in so-called partial local Saha equilibrium (pLSE). The elementary mass action law (EMAL) is used
to derive the Saha equation for pLSE conditions and the method is compared to a derivation based on
the maximum entropy principle (MEP). This comparison reveals why the complicated two-temperature
Saha variants as found in literature are incorrect and why the EMAL is much more suitable than the
MEP to treat partial equilibria. Experimental evidence proves once more that the complicated two-
temperature Saha equations are incorrect and that the statement is justified as long as we confine our-

selves to the pLSE part of the system.
PACS number(s): 52.25.—b

I. INTRODUCTION

There is much confusion in literature on the Saha
equation for two-temperature (2T) plasmas, i.e., plasmas
for which electrons and heavy particles differ in tempera-
ture. This confusion originates from the fact that
(modified) functions from equilibrium thermodynamics
are used to describe this treacherous case of partial equi-
librium; i.e., a situation with equilibrium and nonequi-
librium aspects. The nonequilibrium aspect is the
difference between the temperatures of electrons (T, ) and
heavy particles (T, ) whereas equilibrium is present (1) in
the Maxwellization between particles of equal mass and
(2) in the electron-induced balance of ionization and
three-particle recombination

e+Adoet+ A +e, (1)

the so-called electron-induced (e-induced) Saha balance
[1]. The class of plasmas of interest can be specified as
follows: (1) it is a subclass of the electron excitation
kinetics (EEK) plasmas for which h-induced excitation
kinetics (charge and/or excitation transfer, molecular
processes) are unimportant; (2) atomic (ionic) transitions
are induced by free electron collisions solely, i.e., the
influence of bound electron transitions (radiative decay)
can be neglected; and (3) the plasma is composed of elec-
trons {e} and heavy particles {h}; the latter consists of
atoms {a} and singly charged ions {i} of the same ele-
ment. The excitation dominance of electrons {e} over
heavy particles {h} (i.e., the first condition) puts a lower
limit on the ionization degree. The second condition (the
leak of radiation can be neglected: the plasma is radia-
tionless) requires a large electron density n, and/or a

1063-651X/94/50(5)/3925(10)/$06.00 50

large opacity. We will not discuss the boundary criteria
for this class of plasmas but investigate the Saha equation
under the assumption that the relevant criteria are
fulfilled.

Due to the dominance of the electron-induced transi-
tions it is plausible that the number density 7,(p) of a
state p of a system x can be found by using the
Boltzmann law in which the thermodynamic temperature
is replaced by the translational electron temperature T,,
giving

n,(p) n,
Pl =2 exp(—E3, /kT,) . @

mx(p)= g () G,

Here n, is the density of atoms (x =a) or ions (x =i) and

ip the excitation energy of the state p with respect to
the ground state of the atomic or ionic system. In fact we
might also take x =e, i.e., treat the free electron with its
two spin states as a system. The sum of states of the sys-
tem in question, given by

G, =3 8. (plexp(— i /7kT,) , 3)
P
is related to the one-particle internal partition function
by
Z"=G,=g,=2,
Zir=G, , 4)
Zi*=G,exp(—1I,/kT,)

for the systems {e}, {a}, and {i}, respectively. In the
last expression I, represents the ionization potential of
the element in question. Equation (2) also expresses that
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the number density 7 of the state and the corresponding
level n are interrelated by y=n /g where g is the statisti-
cal weight of the level.

So far we dealt with densities on three scales, namely,
systems, levels, and states. Section II will continue this
series using for the microscopic scale the elementary oc-
cupation 7, (a), the number of particles per state a of
species x, a dimensionless quantity.

Following the same reasoning that leads to the
Boltzmann equation we can get the Saha equation for a
2T EEK plasma by replacing the thermodynamic temper-
ature by the electron temperature. This gives
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exp(I,/kT,) . (5)
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It is the aim of this article to find support for the simple
reasoning given above which may be formulated as the
following statement: if electrons realize an equilibrium
between ionization and recombination in a 2T radiation-
less plasma then only the electron temperature will be im-
portant in the description of the atomic state distribution
function (ASDF); the Saha and Boltzmann equations in a
2T plasma are obtained by replacing ‘“‘the” temperature
by the electron temperature. Support for this statement
will be given by theoretical and experimental evidence.

Despite the reasonable degree of consensus on the
Boltzmann equation [cf. Eq. (2)] different formulas can be
found for the Saha equation in collisional-dominated 2T
EEK plasmas. The discussion of the differences will be
guided by writing the 2T Saha formula as
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h2
exp(I, /kT,) (6)
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so that the differences can be brought back to the factor
F(y) which depends on the temperature ratio y =T, /T),.
It is the aim of this article to prove that for 2T radiation-
less plasmas F(y)=1, that is, independent of the value of
v. By discussing the theoretical and experimental back-
ground of the various F(y) functions we automatically
make a selection of the different Saha variants existing in
literature. We will, e.g., exclude the work of Refs. [2,3]
in which the presence of 2T plasmas in inductively cou-
pled plasmas (ICP) is denied and the whole plasma (in-
cluding the ASDF) is described by only one ‘“thermo-
dynamic temperature” of which the value as proposed for
the ICP (2000 K) is much too low. On the other hand,
there is the “generalized multithermal equilibrium
(GMTE) model” [4] which claims that (under some con-
ditions) even more than two temperatures are needed to
describe the Saha equation. This multitemperature Saha
variant also being excluded from discussion is obviously
ruled out as well once the above statement is proved.

The background of the models considered in this study
leads to the following classification.

(1) The thermodynamic derivations. (a) The work of
Ref. [5] is based on the criterion that the affinity (a
derivative of the free energy) should be zero. This leads
to a result which can be expressed as
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According to this Saha variant, T, plays an important
role in the ASDF of plasmas with relatively low (or high)
degrees of ionization.

(b) Using the minimum-of-free-energy principle a Saha
equation was found by Refs. [6,7] which can be charac-
terized by
1-1/y

a

Foo(y)= (8)

i

Again the T, is found to be important.

(c) Taking a “generalized” form of the free energy (a
quantity with the dimension of entropy) it is found in
Ref. [8] that T, has no influence, i.e.,

F,=1. ©)

(2) Linear nonequilibrium thermodynamics. In Ref. [9]
the working hypothesis is used that the entropy produc-
tion should be minimal with the result that the influence
of T, is limited. Expressed as

Fo m(y)=1+0((y —1)m, /M) (10)

it states that the temperature ratio ¥ comes in via a term
of order m, /M. Consequently F differs only very slightly
from unity.

(3) Nonlinear nonequilibrium thermodynamics based on
the Zubarev formalism [10] by which again a limited role
of T, is found [cf. Eq. (10)].

(4) A kinetic derivation [1] based on the elementary
mass action law (EMAL) derived from the principle of
microscopic reversibility. This results in an ASDF which
depends on T, solely [cf. Eq. (9)].

Before discussing the various models in relation to the
fundamental background (Sec. II) and the experimental
evidence (Sec. III) some general statements should be
made on the problem as such and the model classification
as given above.

The ordering given, from equilibrium thermodynamics
(1) to kinetic theory (4), is parallel to the route from a
macroscopic (global) towards a microscopic (detailed)
description. In spite of the differences they all have in
common to deal with an academic (or idealized) situation
in which a nonequilibrium aspect T, 7T, exists under the
presence of full equilibrium on the level of Maxwelliza-
tion and ionization recombination. However, to maintain
the temperature difference, the electron gas {e} must be
matched between a relatively strong accelerating electric
field and an effectively cooling heavy particle gas {h}.
This needs a large value of the electric field strength E
and a small degree of ionization a which drives {e] to-
wards a Druyvensteyn distribution and distorts the bal-
ances between inelastic (excitation and ionization) and su-
perelastic (deexcitation, recombination) processes. The
consequence is that full Maxwell and Saha equilibrium
cannot exist. The question is how strong the impact of E
and a on the ASDF is and if there are conditions under
which the academic problem posed in this paper is realis-
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tic. To get an amswer we should explore the kinetics
more precisely, i.e., extrapolate the route (1)—(4) as given
above in the direction of more microscopic details. This
leads to a fifth category.

(5) The collisional radiative (CR) models. From the
many studies in the framework of CR models we refer to
the classification studies of Refs. [1,11,12] which in most
cases are dedicated to the ASDF of EEK plasmas. Spe-
cial attention deserves the extensive model of Ref. [13]
which apart from the e-induced also contains the h-
induced processes and the calculation of the electron en-
ergy distribution function (EEDF). Such an extensive
model is ideal to demarcate the validity regime of our
academic problem, provided all rate coefficients are
known.

We are not going to discuss the CR models but will use
their results as a guideline in the search for a realistic ap-
plication for our academic problem.

From the CR studies it can be deduced that (1) for a
vast range of E and a values only the tail (electron energy
larger than the first excitation threshold E,,) of the
EEDF and the transitions from the ground state to the
first excited state or the ionization from the ground state
are affected; (2) the bulk of the EEDF is Maxwellian so
that excitation and ionization of highly excited states are
not affected by the EEDF-tail distortion; and that (3)
since the ionization cross section roughly scales with the
square of the principal quantum number p, ionization
from and recombination to an excited state occur more
frequently for higher p values. This implies that the top
of the system is less sensitive to equilibrium disturbing
processes and that it is more realistic to use the Saha
equation as a predictor for the relation between the densi-
ty of highly excited atomic states and the ion ground
state [i.e., 9(p)/7n,(1)] rather than for the relation [cf.
Eq. (6)] between the atomic and ionic (i.e., system) densi-
ties (i.e., n, /n;). This relation between state densities can
be obtained using the Boltzmann equation, Eq. (2),
n(p)=(n,/G,lexp(—E,,/kT,) for the atomic states,
n+(1)=n_, /G, for the ion ground state, and 1,=n, /2
for the electrons. After substitution in Eq. (6) we get
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exp(I,/kT,) . (11)

2

_ h
n(p)=F(y)n,n.(1) Py

We will see that the models classified as the most mac-
roscopic (i.e., under 1 and 2), deal with the determination
of the ratio of the total atom (n,) and total ion densities
(n;) as if the balance in Eq. (1) constantly transforms all
the atoms irrespective of their excited state into the ag-
glomerate of ions and vice versa. Obviously this is not a
realistic picture of the actual ionization-recombination
kinetics. It is better to use a theory which makes it possi-
ble to confine the Saha balance to the atomic top. The
next section gives a theoretical treatment (classified under
4) which makes it easy to “isolate” the atomic top levels.
The result is that our simple kinetic statement, i.e., that
F =1, is justified. This type of partial equilibrium will be
denoted (cf. [1]) by partial local Saha equilibrium (pLSE).
Section III describes experimental techniques applied to
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inductively coupled plasmas in argon for which it will be
proved that most of the atomic states are in pLSE while
there is a significant difference between T, and T,. The
experimental results also show that F =1 is justified while
Egs. (7) and (8) are wrong.

II. THEORY

A. The elementary mass action law

As stated in the Introduction, it is merely academic to
describe the ionization and recombination balance as a
reaction between the atomic and ionic systems since it
does not give a realistic description of the reaction kinet-
ics. It is more appropriate to study the ionization and
recombination balance from the atoms in level p to the
ions in ground state 1 and vice versa. This is given by the
reaction equation

etA,oet+At(D+e. (12)

According to the mass action law the equilibrium state of
the balance in Eq. (12) implies the following relation be-
tween the concentrations:

non(p)K_ =n2n,(DK_, 13)

in which K _, and K _ are the reaction rate coefficients of
the forward and backward processes. To extrapolate this
route from systems to levels, i.e., from the macroscopic to
the microscopic scale, we consider the equilibrium state
of the Saha balance on the most elementary level where it
describes how each particle changes from one particular
initial to one particular final quantum state and vice ver-
sa. The elementary counterpart of Eq. (12) will then be
given by

e;(€)+ A, (6))e;(€3)+ A1 (&) +ejles) , (14)
while Eq. (13) transforms into (cf. [1])
ﬁe(iﬁel)ﬁA(p’ez)=ﬁe(i’63)ﬁA+(1’64)178(1"65) . (15)

Since the quantum state has a translational and an inter-
nal aspect we label the particles in Egs. (14) and (15) with
the translational energy € and the internal state index i.
On the elementary level the role of the densities is played
by the elementary occupation #j, (i,€) which is defined as
the number of particles x per state with internal index i
and translation energy €. Note that Eq. (15), the elemen-
tary mass action law applied to the Saha balance, does
not contain rate coefficients. This is due to the principle
of microscopic reversibility stating that the probability
that a particle leaves a quantum state via a certain route
equals that of the process in which the particle arrives at
that quantum state via the reverse route. As a conse-
quence the elementary counterpart of K_, can be
eliminated against that of K_ which gives Eq. (15).
More generally the EMAL is applicable to various types
of reaction mechanisms and the classical variant can be
formulated as follows: If an elementary balance equili-
brates then the product of elementary occupations of the
reactant equals that of the resultants. Note the condi-
tional “if. . .then. ..” construction of this statement. It
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makes it possible to ‘“isolate” the equilibrium part. In
this particular situation it can be used to isolate the upper
levels in pLSE, for which equilibrium disturbing process-
es (transport of particles and/or radiation) are relatively
unimportant, from the lower lying levels which might be
out of Saha equilibrium.

So far we only considered the Saha aspect of the partial
equilibrium which via Eq. (15) interrelates elementary oc-
cupations of atoms, ions, and electrons. Another equilib-
rium property of the situation under study is that of the
Maxwellization in {e} and in {h}. This determines the
1, (i,€) in Eq. (15) which can be derived using the EMAL
(cf. [1,14]) or can be obtained by dividing the number of
particles per energy range by that of the translational
states per energy range. The first quantity is given by the
well-known Maxwell energy distribution function and the
other one follows from elementary statistical mechanics.
For particle x in internal state p we obtain

A (p,€)=1n,(p)V(m,, T, )exp(—e/kT,) , (16)

where the elementary thermal de Broglie volume of the
particle x,

Vilmy, T, )= (17)

L
2rm kT, zr’

an important character of the thermal translational dis-
tribution, is related to the translational partition function
ZY. Another equilibrium aspect is that ions and atoms
due to their equal mass have the same temperature and
Y,, value. (The small mass difference m, —m;=m, will
generate an error in Saha’s equation of order m,/M. Ina
correct treatment we should use the reduced mass of the
electron-ion system.) The nonequilibrium aspect comes
in by the fact that {e} and {h} differ in temperature, i.e.,
T,#T,. The reason for this is that, due to the small
mass ratio m, /M, <<1, the transfer of translational ener-
gy from {e} to {h} is not effective at all. However, the
very same reason is responsible for the fact that the ion-
ization energy of the atom (I,) is supplied from the elec-
tron translational energy so that the following energy bal-
ances hold:

Ip =El—€3'—€5 >
(18)
€,=¢, .

[The equations (18) are only true within (a very good) ap-
proximation. The difference between Ae=¢,—¢€, is on
the average on the order of T,(1—vy)m,/M. Taking this
into account Eq. (9) will change into Eq. (10).] Substitut-
ing the expression Eq. (16) for each particle into Eq. (15)
and using Eq. (18) we find

h2

2mm kT,
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n(p)=n.7m4+(1) exp(l, /kT,) , (19)

which is equivalent to Eq. (11) with F =1. Note that [un-
der the assumption of Eq. (18)] (1) this method makes
clear how the kinetics of {e} is imposed on the ASDF of
the atoms and ions, (2) the factor YV, between square
brackets representing the elementary thermal de Broglie
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volume of the particle created in the ionization process
(namely, the electron) depends on T, solely, and that (3)
each set of {€;} gives the same relation between the state
density in the atomic top and the ion ground level [i.e.,
the same 7(p) /7 (1) value].

B. Comments on the thermodynamic derivations

The theoretical proof that F; =1 is (in good approxi-
mation) correct whereas F; and F, are wrong is two-
fold. First one should give a correct derivation of the
Saha equation in a 2T plasma; second it must be demon-
strated why the thermodynamic derivations leading to
F,; and F,, are wrong. The first was done in the
preceding subsection using the EMAL; the second will be
done in this subsection.

Although the different works in the thermodynamic
category (1) use different principles or thermodynamic
functions to derive the Saha equation, all of these should
be based on the second law, which states that the com-
bination of a system with its surroundings strives to a
maximum of entropy. Therefore we focus on the change
in entropy due to the establishment of the Saha balance
in a plasma which satisfies the conditions that (c1) both
{e} and {h} are ideal Maxwellian gases each with their
with their own constant temperature, (c2) the internal en-
ergy distribution of atoms and ions is prescribed by Egs.
(2) and (4), and (c3) the volume ¥V of the plasma is con-
stant; the only exchange of energy with the surroundings
is that of heat exchange.

We first consider the entropy of the atoms {a} which
equals

S=kInP=—k 3 N,Infj,(a)+kN , (20)

where N,=n,V is the number of particles in the discrete
energy level E,, whereas fj,(a) is the number of particles
per state with energy E,. Note that E,=E +¢, is an
addition of the internal and translational energy. For
atoms E" =E,, (for the ions Eff =E,, +1, i.e., the ener-
gy distance in the ion plus the ionization energy of the
atom). The conditions (c1) and (c2) determine the value
of the elementary occupation #,(a) which using Egs. (2)
and (16) inserted in Eq. (20) lead to

Utr U,i,n [Z;nZ;r]Na

Sul Ty T)= -+~ +k =35,

a

T, T, 21
whereas Ui"=3 N, E and U¥=3,N,€, The same
procedure can be applied to the gases {i} and {e}. For
{i}] this gives an expression S;(T},T,) which is Eq. (21) in
which all lower indices a are changed into i. The expres-
sion for the electron entropy S,(T, ) is Eq. (21) in which a
is replaced by e, T, by T,., whereas the internal energy
U™ is set to zero. This latter, being related to the equali-
ty Zi"=g, =2 [cf. Eq. (4)], is justified as long as the mag-
netic field strength is not too high. Since the entropy is
an additive function we can write for the total entropy of
the surroundings plus plasma
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S, =8, +S,+S,+8S,

U+Uf  US+UrR+UP
=S+ + —
Th Te
e [ZEZE 1 ZPz ) zz ™
N,IN;IN,! @2

In the following we will prove that the change in the en-
tropy AS, as caused by ionization or recombination (i.e.,
Saha) processes is limited to a change in the last term,
i.e.,

AS! A‘SSaha
: N : Vit i N,
(ZPZE1 o [ZZ)) [ ZZ )

~kAln N,IN,N,!

; (23)

provided (c1)-(c3) are fulfilled. The entropy, and thus its
maximum value, associated with the Saha balance is
determined by the particle distribution over the states a
and i and not by the energy. To prove this we consider
one particular recombination process in a plasma
fulfilling conditions (c1)-(c3) but out of Saha equilibrium.
More specifically we study the process in Eq. (14) towards
the left. This process will not change the second term on
the right-hand side of Eq. (22) since the sum of the
translational energy of the heavy particles U+ U is not
changed (e,=¢,). {The fact that this is an approxima-
tion [cf. Eq. (18)] implies that a certain (small) amount of
energy (heat) is transferred from {e} to {h} during ion-
ization. It is shown in [9] that this generates a deviation
in the result in the order of F,, , [cf. Eq. (10)].} The
recombination will also not change U¥+ U+ U™ due to
the relation Eq. (18a). However, here we must be careful;
the recombination process tends to increase the transla-
tional energy of the electron and thus 7, so that in order
to fulfill conditions (c1) and (c2) the process must be ac-
companied by a process of heat exchange of the electron
gas toward a “surrounding” thermodynamic bath of T,.
Therefore the first term will increase with the same
amount as the decrease of the third term. Resumming,
we may state that during recombination (or ionization)
the second term on the right-hand side remains unaltered
while changes in the first and third terms will compensate
each other. This indeed implies that Saha processes will
only affect the last term on the right-hand side of Eq.
(22), i.e., justifying Eq. (23).

Now that we know that the maximum of entropy asso-
ciated with the position of the Saha balance under the
conditions (c1)-(c3) is determined by the maximum in
Ssana We have to search for that N,, N, and N, compo-
sition for which the small change AN, =AN;=—AN, re-
sults in ASg,,, =0. This leads to the condition
zozr || ZrZF | ZrZE ]

N, e N i Na

ASgp. =AN, |In

’

(24)

which is satisfied if
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Using Eq. 4) for Z™, Eq. (17) for Z' (note that
Z'=2Z}), and the relation n =N /¥ it is found that Eq.
(25) indeed is Eq. (6) for which F =1.

The above sketch will be helpful in understanding the
background of the procedure leading to F,; and F ;. In
both cases thermodynamic principles are used which are
derivatives of the second law, derivatives which are valid
in full thermodynamic equilibrium but apparently
misleading in a 2T situation.

The approach leading to Fy, Eq. (8), uses the free en-
ergy which for a 1T and one-component system equals
F=U—TS. The procedure followed in [6,7] can be
sketched as follows: (1) the plasma is considered as being
composed out of two subsystems, {e} and {h}; (2) the
internal energy of the atoms and ions contributes to the
“energy” of the electrons; (3) the entropy associated with
the internal distribution, i.e., K 3 N;In[Z"] contributes
to the entropy of {e}; and (4) the free energy is supposed
to be an additive quantity so that under the conditions
(c1)—(c3) the change in free energy gives

(25)

AF=AF, +AF,
Zinztr zjn Z-“N
=AN, |T,]n—————+T,ln——— [=0
N, |T, N, zm T;ln Z°N, , (26)
which is satisfied if
N, |7 _zr N,
=_—, 27)
Ni Z'm Zemzetr

Using Eq. (4) for Z™ and Eq. (17) for Z* this leads to the
Saha variant containing F'

pot®
The derivation of F; is based on the principle that the
affinity A4 should be zero. However, since

A =[0F /3n, 11,y there is no essential difference between
AF =0 and 4 =0. The relevant differences between the
derivations behind F; and F,, are (1) the entropy relat-
ed to the internal distribution attributes to that of {h}
whereas (2) the Boltzmann equation is ruled by T, in-
stead of T,. This leads to

AF=AF, +AF,
intr Zjnz_trN
=AN, |T,n———+T,n————— [=0, (28)
e e Ne h N,Z;"Z:’
which is satisfied if
N, T, /T, ~ Zf,“ T, /T, N, 9
Ni Ziin Z:nzetr °

Realizing that the internal partition function in this ap-
proach is ruled by the heavy particle temperature we get
after substitution of Eq. (4) for Z™™ and Eq. (17) for Z%
the Saha variant containing F ;.

The derivations sketched above show that the
difference between taking the minimum in free energy in-
stead of the maximum in entropy essentially leads to
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“weighing” the entropies of the different components
with the corresponding temperatures. This is by no
means prescribed by the second law of thermodynamics
so that no basis can be found for the factors F;; and F .
In order to offer an alternative thermodynamic ap-
proach comparable to that of those based on the
minimum of free energy a function was introduced in [8]
denoted by the generalized free energy and given by

F=3

X

X

T

X

-s. |, (30)

where the summation runs over the various subsystems.
The demand that the generalized free energy of the plas-
ma as a whole should be zero leads to the Saha variant
with F =1. However, this quantity & has the dimension
of entropy and essentially the demand is the same as that
described above leading to Eq. (23) which is the max-
imum of entropy under the conditions (c1)-(c3). In that
respect it is better to speak about the ‘“free entropy”
since, given the constraints (c1)—(c3), it is the only part of
the entropy of the system plus surroundings which is free
for striving to a maximum value.

C. The elementary mass action law
versus the maximum entropy principle

It is useful to reflect on the differences between the two
principles, the EMAL and the maximum entropy princi-
ple (MEP), i.e., the two bases of the Saha derivations
given in the preceding subsections. A first comment is
that they are essentially different. The EMAL, relating
each elementary process to its corresponding inverse pro-
cess (microscopic reversibility), has its roots in the order-
ing on the microscopic level. The MEP, on the other
hand, dealing with the most probable distribution of par-
ticles over all possible states, is essentially based on the
global features of the systems as a whole. In many stud-
ies it is even stated that the entropy can in principle only
be dealt with if the whole universe is involved. It is use-
less to say that such an approach does not facilitate the
treatment of partial equilibria, i.e., the situation in which
some processes equilibrate while others do not.

A second note to be made is that almost any textbook
on statistical mechanics uses the MEP to derive the dis-
tribution laws of statistical mechanics. However, it was
shown in [1,14] that the EMAL can be used just as well
and that the derivations are even more simple. More-
over, in his H theorem, Boltzmann used in principle the
same method to show that in equilibrium the collision in-
tegral, the right-hand side of the Boltzmann transport
equation, disappears. This integral vanishes since the
product of the occupation of the reactants equals that of
the resultants for any possible collision process (cf. the
EMAL definition).

Finally we want to emphasize once more that the fact
that the EMAL is related to balances on a detailed level
makes it more suitable for the description of partial
equilibria than the MEP. In this study it was used to iso-
late the top of atomic systems in pLSE but it can equally
well be used to isolate the partial equilibrium between
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two levels coupled by an intense laser field or the
Mazxwellization in the bulk of the EEDF, etc. (cf. [1]).

It is not the aim of this paper to treat all these various
partial equilibria. Nevertheless we want to give an exam-
ple of the EMAL applied on the counterpart of the e-
induced Saha balance (i.e., the balance under study),
namely, the A-induced Saha balance of which the elemen-
tary variant reads

A€+ A (&) A (&) AT (e)Fe;le)),  (B1)

where A, refers to an atom in the ground state. If this
balance equilibrates we get the following relation between
the elementary concentrations:

74(1,€)7 4(p,€)=17 4(1,€)7 , +(1,€4)7, (), €5) - (32)

Substituting the expression Eq. (16) for each particle and
using the energy conservation

€te,—€63—€,—6=1, (33)
we find
B2 3/2 )
n(p)=n,7m4(1) W exp(l, /kT,)
Xexplesty —1)/kT,] . (34)

This derivation shows that (1) a mixture of the kinetics of
{e} and {h} is imposed on the ASDF of the atoms and
ions, (2) the factor between square brackets, the thermal
de Broglie volume %V,  of the {e} depending on T, solely,
is still present, (3) but that the exponential factor is
changed with respect to that in Eq. (19), and that (4) in
contrast with Eq. (19) not each {¢;} set gives the same re-
lation between the state density in the atomic top and the
ion ground state [i.e., the same 7(p)/n (1) value]; in-
stead the density n(p) created by this particular balance
is determined by ;.

To get a global outcome one can determine the average
value of 7(p). In this procedure we need €5 dependent
rate coefficients for the various balances which provide
the weighing factors for each corresponding 7(p) value.
The outcome will be the same as that given by [15]. This
hybrid procedure, in which the outcome of different ele-
mentary equilibria is averaged in a CR way, is compara-
ble to the method given in [16]. Moreover, it is the
essence of the treatment given in [10].

III. EXPERIMENTS

A. Characterization of the ICP

The inductively coupled plasma is a well known excita-
tion source in spectrochemistry. It is an atmospheric
flowing argon plasma in a quartz torch (Fig. 1) sustained
by a radio frequent electromagnetic (EM) field (100 MHz)
generated by a rf load coil. The argon flow consists of
three parts: the outer flow (=~ 10 1/min) serves to avoid
plasma-wall interaction, the intermediate flow (=~0.5
1/min) lifts the plasma, and the central flow ( =0.5 1/min)
can be used for sample injection. The behavior of our
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FIG. 1. A sketch of an inductively coupled plasma as used
for spectrochemical applications. The active region where the
energy coupling takes place and y=T, /T, >1 is located more
or less in the load coil. Farther downstream the plasma is
recombining.

plasma is studied by means of absolute line intensity
(ALI) measurements, the power interruption (PI) tech-
nique, and Hg broadening (HB) determination. In some
cases it is possible and fruitful to use experimental results
obtained by other groups [17,18] although the plasma is
somewhat different. Here we present only the basic prin-
ciple of our experiments (ALI, PI, and HB). The full
description containing the technical details can be found
in [19,20]. In the case of ALI and PI the plasma radia-
tion is focused on the entrance slit of a monochromator
and detected by a photomultiplier. In the case of HB an
optical multichannel analyzer was used in order to
deduce the locally resolved line profile of Hg.

In the PI experiment we switch off the plasma genera-
tor for a short time (typically 100 us) and study the
response of line intensities in time with a resolution of 2
ps using a multichannel scalar. This information is espe-
cially interesting since the power interruption changes
the plasma from a 2T into a 1T plasma.

In steady state the mechanism of energy transfer from
the EM field to various species in the plasma occurs in
three steps: the electrons gain energy from the EM field.
Due to Ohmic heating this energy is transferred to the
heavy particles which in their turn are cooled by the sur-
roundings. This chain can be schematically presented as

RF—{e}—{h}— {surrounding} . (35)

The second link of this chain (i.e., Ohmic dissipation) is
only possible if T, > T, and due to the small mass ratio
m, /M, the factor y =T, /T, can differ significantly from
unity. In order to show that the active plasma part is
suitable to study the Saha equation under 2T conditions
we give a brief summary of the plasma parameters of the
active zone as found by the different techniques.

(1) The electron density as obtained via HB [19] is typi-
cally n,=10* m 3.

(2) The T, value of T,=0.6-0.9 eV as reported in [19]
is obtained by combining ALI with HB measurements or
by using the slope of the Boltzmann plot of the near con-
tinuum part of the argon spectrum [19,21]. These values
are in reasonable agreement with each other and with the
values as obtained by [17] using Thomson scattering.

(3) The T, value can be obtained using Rayleigh
scattering [17].
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(4) Together with the T, value this results in a value of
vy=T,/T, in the range of 1.2-1.4 which in its turn
agrees with the y value as reported in [18,20] using PI.

(5) Due to the relatively low n, values the atmospheric
pressure must be realized by argon atoms in the ground
state which using the T, value of typically 7500 K results
in n, ~10** m~3. This implies that n, /n, ~107>.

Using the quantities summarized above it is found (tak-
ing ¥ =1.3) that F,, ~5 whereas F,;~7. The presence
of these factors in Saha’s equation must be easily trace-
able using ALI or PI measurements.

B. Absolute line intensities

One approach to testing the Saha variants is by apply-
ing Eq. (6) on the ionization degree of the plasma for that
part of the plasma where 2T exists and the whole argon
system is in local Saha equilibrium (LSE). This transition
region must be somewhere between the active energy
coupling region and the recombination zone. However,
due to the uncertainty of T, which enters into the various
Saha equations via exp(I,/kT,) and due to the uncer-
tainty about the Maxwellization of the EEDF tail, this
exercise is doomed to be unsuccessful. Moreover, it is
not easy to find the location of this LSE 2T region.
Therefore it is better to investigate the upper part of the
atomic system which is in pLSE. In [19,20] it was shown
that apart from the ground state and first excited levels
(4s and 4p levels) the whole system is in pLSE for a con-
siderable plasma region. Therefore it is possible to deter-
mine from the Boltzmann plot of highly excited states the
value of 717, the value of 7(p) for p approaching the con-
tinuum. It was found in [19] that this 5, value only
weakly depends on the position in the transition region
between the active and recombining parts of the plasma.

By substitution of the experimentally determined local
n,=n; and T, values it is found that depending on the
position 1, =2X10"2-4X10"® m™3. The ALI measure-
ments giving 77, more or less directly lead within the er-
ror bars to the same values. The 7, value (ALI) is
claimed to be better than 10%; the same precision applies
to the n, values obtained via the HB technique. Since
F and F; are typically 5 and 7, which if present would
have been well detectable, we must conclude that these
functions cannot be correct.

C. The power interruption technique

The power interruption technique, a powerful tech-
nique, provides insight into various processes in the plas-
ma. The essence is that two basic decay phenomena, that
of the T, and n,, are unraveled from each other due to
difference in decay time. The method was introduced by
[22] and applied on the ICP among others by [18,20]. A
short break of the power input caused by switching off
the plasma generator influences the energy balance, Eq.
(35). Immediately after switching off the power supply
the first link RF— {e} disappears, so that the electron
temperature drops to the heavy particle temperature with
a time constant which for our experiment is determined
by the switching time of the generator being on the order
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of a few pus [20]. After this cooling period the electron
density decreases due to recombination and/or outward
diffusion of electrons occurring with a much longer time
constant of about 200 us. During all these processes the
heavy particle temperature does not change significantly.
After the power is switched on again the reverse process-
es occur and restore the steady state. We will concen-
trate on the response of the line intensities, i.e., excited
state densities, on the cooling of the electrons T, — T}, as
caused by the switch off. The densities immediately after
the cooling are denoted by an asterisk. The density of a
level in PLSE (before and after cooling) will change from
75— 1 into n3* 7 which, using Eq. (11), are interrelated by

In[7%*(p)/m%(p)]=—InF + 3Iny +I,(y — 1) /KT, .
(36)

If F=1 it is found that In[7°*(p)/%(p)]>1. This in-
crease in intensity as a response on the cooling of the
electron gas, which might be strange on first sight, can be
understood by realizing that the balance, Eq. (12), shifts
towards the left since the ionizing electron on the left-
hand side is reduced in energy, which obstructs the en-
doergic process while the exoergic process of recombina-
tion keeps going on. This causes an increase in the densi-
tyn(p)of 4,.

If F=F,, or F=F; and for y>1 thus larger than
unity this upward cooling jump will be in competition
with the disappearance of F. As far as we know it is not
possible to explain this erroneous “thermodynamic” ar-
tifact by kinetic arguments.

Note that in all cases In[n*(p)/n(p)] has the same
linear dependence on the ionization energy E, of the level
p [cf. Eq. (36)]. For given parameters T,,T},n, the
difference lies in the value of In[1*( 0 ) /7( = )], the extra-
polated ratio for I, =0 which is determined by the value
of F. Figure 2 shows a typical response of an argon line
to the power interruption. In the upward jump at
“power off” we clearly recognize the cooling jump
(T,—T,), which is followed by a relatively slow decrease
due to the decay in the electron density. When the plas-
ma generator is switched on again, opposite responses are
visible. Eventually the plasma returns to its steady state.

25
20
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FIG. 2. A typical response, i.e., the intensity as a function of
time, of the argon 6d level to the power interruption. At =0
(¢ =80 us) the generator is switched off (on). The so-called cool-
ing jump at ¢ =0 is plotted in Fig. 3 for several levels.
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From this measurement we can easily determine the cool-
ing ratio n* /n as it equals the ratio of the peak intensity
after switching to the steady state intensity. The mea-
sured values of In[7*(p)/7(p)] are plotted as a function
of the I, for several levels (Fig. 3). A linear relationship
is found for the upper levels for which 7, <0.7 eV. Ex-
trapolating this line towards 1,=0 gives
In[9*(o0)/7( 0 )]=0.5. Substituting this in Eq. (36) for
the case F =1 gives ¥y =1.4, which is in agreement with
results obtained from Thomson and Rayleigh scattering
as published in [17]. To obtain the y values for the Saha
variants corresponding to F,;(y) and F,,(y) (which are
both y dependent), we have to substitute Egs. (7) and (8)
into Eq. (36). For the case of F; we get for I, =0 the
equation

In[75*(p) /95(p)]=(1/y—1)
X[In(n, /n;)+1In(G;/G,)]
+3lny=0.5, (37)

which, taking n, /n; =10 and G,/G,=6, is fulfilled for
y=0.94 whereas F,, satisfies Eq. (37), in which
In(G; /G,) is omitted, provided y =0.91. Both results are
in serious contradiction with reality.

First it implies that in the active zone T, < T}, which is
impossible with respect to the chain given above Eq. (35)
and the experimental values as published in [17]. Second,
if nonetheless a value of ¥ <1 could exist then according
to Eq. (36) the slope in Fig. 3 should be negative, which is
not the case. Therefore we must conclude once more that
the Saha variants containing the F,, or F,; factors can-
not be correct.

Returning to Fig. 3 we see that highly excited levels
indeed follow a predicted slope but that the lower levels
(e.g., level 4p) are not on this line. This implies that these
levels are not in Saha equilibrium before and/or after the
switch. Model calculations [1,23] have shown that the 4p
levels under recombining ICP conditions are close (within
10%) to pLSE provided that 7, >0.5 eV. Thus we may

2.00

1.00}

In [n*(P)M(p)]

0.50f

0.00 n L . . L
3.00 2.50 2.00 1.50 1.00 0.50 0.00

Ip (eV)

FIG. 3. The cooling jump [cf. Eq. (36)] for several levels as a
function of the ionization energy of the level. The least squares
fitting for levels in pLSE (I, <0.7 eV) gives for this condition
T,=0.65 eV and T),=0.48 eV. Note that the lower levels show
a systematic deviation which is explained in Fig. 4.
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conclude that during the off period the 4p density is in a
T,=T, determined Saha equilibrium and that the devia-
tion of 4p from the line in Fig. 3 must be due to the ioniz-
ing state of the ICP under standard conditions. The
influence of the ionizing state on the ASDF can be stud-
ied using the excitation step flow, which reads

J(p,p+D=nn(p)K,,1—nn(p+DK, 1,
=n,7%p)g (P)K, , +1[b(P)—b(p—1)],

(38)

where the principle of detailed balancing is used together
with the factor b =7/75 which expresses the deviation
from Saha. This equation shows that above in the system
where the value g(p)K, , 1 (scaling with p®) is large, a
small slope of the overpopulation ([b(p)—b(p—1)])
generates a considerable stepwise flow. Lower in the sys-
tem a steeper slope is needed to generate the same step
flow. So, in an ionizing plasma where ionization is real-
ized by stepwise processes it is evident that the lower lev-
els are more easily disturbed than higher levels. It is also
evident that the 775(p) sets a standard to this flow strength
via Eq. (38). So even at large departure from pLSE it is
useful to know the Saha value of the excited state densi-
ties. In Fig. 4 it is depicted how an ionizing system
responds to the electron cooling. The jumps of lower lev-
els are lower than the value predicted by the extrapolated
Saha curve. In a future article we will use a time depen-
dent CR model to study the behavior of the ASDF of the
complete system, including the lower lying levels.

IV. DISCUSSION AND CONCLUSIONS

The situation of full ionization-recombination equilib-
rium and Maxwellization within the electron and heavy
particle gases where the temperature inequality T, T, is
present is suspected to be merely academic. Therefore
one might conclude that it is useless to derive the Saha
equilibrium for a two-temperature plasma. However, the
experimental results obtained from an ICP show that it is
still useful to talk about the Saha balance in a 2T plasma
provided this concept is confined to the upper levels of an
atomic system. These levels will reach the state of partial
local Saha equilibrium (pLSE) much more easily than the
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FIG. 4. A sketch of the atomic state distribution function for
an ionizing system (dotted) compared to the corresponding Saha
value for T, [Saha (T,)] and T, <T, [Saha (T,)] and the
response to cooling. Since the lower levels are already overpo-
pulated there is no need for a large cooling jump to reach Saha
(Ty) at t =0 (the generator switch-off time). This explains why
the lower levels (e.g., 4p) are below the line in Fig. 3.

atomic system as a whole. Moreover, even at large
departures from ionization-recombination (i.e., Saha)
equilibrium the Saha density provides a standard to
which stepwise ionization can be related. We have shown
that the elementary mass action law is suitable to “iso-
late” the pLSE and to find a correct but simple derivation
of the Saha distribution law which despite the presence of
the temperature inequality 7,7, depends on T, only.
The Saha equation valid for levels in pLSE in a 2T plas-
ma can be obtained by replacing the thermodynamic tem-
perature by the electron temperature and by transform-
ing the Saha formula from an interrelation between sys-
tem densities to a relation between state densities. The
2T Saha density as found in literature [5,6] is ruled out by
experimental evidence and a derivation based on the
maximum entropy principle shows that the errors in [5,6]
are generated by an incorrect generalization of the second
law of thermodynamics. To describe the ASDF under a
realistic plasma condition taking the various transport
phenomena into account we need a full kinetic descrip-
tion which accounts for both radiative and collisional
processes, i.e., a collisional radiative model.
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FIG. 1. A sketch of an inductively coupled plasma as used
for spectrochemical applications. The active region where the
energy coupling takes place and y=T, /T, > 1 is located more
or less in the load coil. Farther downstream the plasma is
recombining.



