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Phase transitions in a continuum model of the classical Heisenberg magnet:
The antiferromagnetic system
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V7e model an antiferromagnetic Quid by a system of hard spheres with embedded classical Heisen-
berg spins with antiferromagnetic coupling constants. In this system we find from Monte Carlo sim-
ulation strong evidence of an order-disorder transition between paramagnetic and antiferromagnetic
spatially disordered states, which also appears in an appropriate integral equation theory (refer-
ence hypernetted chain). We do not find direct simulation evidence of the presence of gas-liquid
coexistence, but find such coexistence via the mean spherical approximation internal energy, which
predicts a first-order gas-liquid transition. Analysis of the mean spherical results provides a ten-
tative scenario concerning the way the line of Neel transitions approaches a liquid-gas coexistence
curve.

PACS number(s): 61.20.Gy, 64.60.Cn

I. INTRODUCTION

This work is part of a continuing eÃort to extend our
understanding of the phase transitions present in dis-
ordered magnetic materials. In a previous work [1] we
have studied in some detail a auid of hard spheres with
embedded classical Heisenberg spins with ferromagnetic
interactions. In the system considered, the interaction
potential was taken to be

s( ) (sJ(p)olM(yp)
r&+
r&u,

with

~
—s{v —cr)

PJ(r) = —J (1.2)

Here the rotational invariant O'M(12) = s~ s2, where
s; is a unit vector describing the orientation of the spin
of particle i, o is the hard sphere diameter, P = 1/k~T,
where T is the temperature and k~ Boltzmann's con-
stant, and r is the distance between two hard sphere
centers. In Ref. [1], as well as in the present work,
the value of z was 1/o. The behavior of the ferro-
magnetic system (J & 0) turned out to be fairly rich.
Thus, we were able to determine, via Gibbs ensemble
Monte Carlo simulation (GEMC) a gas-liquid coexis-
tence curve, and to produce estimates of the loci of
the Curie points (paramagnetic-ferromagnetic transition
points), by means of integral equation theory together

with canonical ensemble (NVT) Monte Carlo. For suf-
ficiently low temperatures the order-disorder and gas-
liquid transition were found to be coupled and, on the
low density side of the coexistence region, the system to
be organized into xnagnetized droplets. The line of Curie
points appears to have a critical end-point at the gas-
liquid spinodal. The purpose of the present paper is to
examine the phase diagram in the case where antiparallel
(antiferromagnetic) ordering of the spins is favored, i.e.,
the coupling constant J in Eq. (1.2) is negative. As for
the ferromagnetic system, most of our results will be from
integral-equation theory, specifically the mean spherical
approximation (MSA) and reference hypernetted chain
(RHNC) equation. On the basis of extensive earlier ex-
perience with these equations [1,2], we expect the MSA
to be useless as a means of picking up any evidence of an-
tiferromagnetic ordering. The MSA is intrinsically linear
in its response to the coupling strength of the interac-
tion between particles, but in the context of Quid-state
integral-equation approach that cannot make use of sub-
lattices to describe staggered order, a description of an-
tiferromagnetic ordering requires nonlinear terxns to en-
sure adequate coupling between the spherically symmet-
ric and orientational dependent components of the corre-
lation. On the other hand, the MSA can be expected to
detect gas-liquid transitions via its internal energy, which
provides a useful mean-field theory. In contrast, the non-
linear RHNC equation is capable of describing antifer-
romagnetic correlations, whereas the direct information
it yields concerning gas-liquid transitions is known to be
seriously unreliable, so we do not attexnpt to make use of
this information in our analysis.
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To monitor and supplement these theoretical predic-
tions, and also to provide a qualitative picture of the ori-
entational structure inside the ordered phase, not acces-
sible to the integral equations, we have performed canon-
ical ensemble Monte Carlo simulations.

The rest of the paper can be sketched as follows. In
Sec. II we recall some of the main features of the MSA
solution for the Heisenberg spin fluid, which are essen-
tial to the determination of the phase coexistence &om
MSA thermodynamics. In Sec. III we briefly discuss
the RHNC results, including peculiarities of the well-

known artificial singular behavior of this approximation
in the presence of phase transitions (spinodal behavior
and square root branch point singularities). Finally, in
Sec. IV we present the Monte Carlo results and in Sec. V
a discussion of the significance of our results. For full de-
tails of numerical procedures and techniques here applied
we refer the reader to Ref. [1].

PU'"/N = ——v((, J), (2.3)

v((, a J)d&.
2 0

(2.4)

It can be shown that, in contrast to the dipolar hard
sphere case [3], the integration cannot be performed ex-

plicitly. The hard sphere contribution to the &ee energy
can be estimated from the Carnahan-Starling equation
of state, and thus one finally gets

PA/N = —— v((, AJ)dA+ +, ('2.5)
3 2 1

0

which is a convenient starting point. From the knowledge
of v, the excess free energy can be computed by a stan-
dard charging procedure [3], scaling J with a charging
parameter A and integrating

II. THERMODYNAMICS AND PHASE
COEXISTENCE IN THE MEAN SPHERICAL

APPROXIMATION

where a temperature-dependent constant has been omit-
ted. The pressure and chemical potential must now be
computed from the relations

As mentioned in Ref. [1], the paramagnetic-
antiferromagnetic transition is signalled by the diver-
gence of the susceptibility

2 (OpA/N 0
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with

uo = 6&K(I —~v/K)',

ug ———3(K(1 —cuv/K) (1 —pv/K),

where u = (e ' —1)/2z, p = (e ' + 1)/2z, K = J/3,
and ( = vrpo /6. Here v is related to the excess internal
energy through

where c22o is the (220) angular projection of the direct
correlation function c(12) in the spatial reference frame.
Unfortunately, the MSA, due to its linear dependence on
the potential (1.1), sets the projection c2~o to zero so that
it is not useful in connection with Eq. (2.1).

On the other hand, because the spin-spin interaction
results in a net attraction between particles, irrespective
of the sign of the coupling constant [1], the MSA might
be able to predict a gas-liquid transition. This turns
out, however, to be possible only if the thermodynamic
route that starts with the internal energy is followed.
Due to the MSA decoupling of the angle averaged pair
correlation function g

0 kom the spin-spin interaction,
it will not be possible to determine a gas-liquid spinodal
&om the divergence of the inverse compressibility. The
thermodynamic properties of the system with interaction
(1.1) in the MSA have been given by H@ye and Stell [2].
Basically the problem reduces to finding the roots of the
equation

These expressions yield fully consistent thermodynamics.
The density dependence of P and p exhibits a van der
Waals loop characteristic of a mean field theory as it
should be expected. The coexistence curve is obtained
&om the solution of the two nonlinear equations

PP(J, p ) = PP( J, p(),

Pp(J ps) = ~(J p~). (2 6)

Obviously the critical behavior obtained will be classical.
It is worth remarking that the construction just described
is only feasible in the antiferromagnetic system since in
this case Eq. (2.2) gives real solutions for all physical
values of p and J, whereas in the ferromagnetic case, the
possible gas-liquid coexistence will be buried inside the
boundary of complex solutions of Eq. (2.2.)

III. SINGULARITIES AND CRITICAL
BEHAVIOR IN THE RHNC EQUATION

The RHNC equation has been solved in the way de-

scribed in Ref. [1] and details will be omitted here We.
have tested the accuracy by comparing structural and
thermodynamic properties in the dense paramagnetic re-

gion with exact MC results (for details of the latter see

below). Figure 1 illustrates the comparison for the pro-
jection g, describing average spatial pair arrangement,
and h, , accounting for colinear orientational ordering
of pairs of spins, irrespective of direction (parallel or an-
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&22o = (3.1)

tiparallel), of the pair distribution functions at po = 0.8
and T' = 3/!J!= 1.5. (The factor 3 is introduced to be
consistent with previous definitions [1] of the reduced T
in terms of K = J/3. ) The agreement is quite good,
as is that for the thermodynamic properties. The val-
ues for the internal energy and compressibility factor are
Pu /N = —4.195 and PP /p = 6.04, respec-
tively, compared to the MC values Pu /N = —4.20,
and PPMC/p = 6.22. However, the hypernetted chain
approximation and variants such as the RHNC equation
are already known to be unreliable in their predictions
concerning gas-liquid criticality and coexistence. As al-
ready noted for the Heisenberg ferrofiuid [1] and other
systems [4], the RHNC equation has a no-solution region
whose origin is di8'erent depending on density. At low

density, the RHNC no-solution boundary is character-
ized by a square root branch point (SRBP). The inverse
susceptibility y 20 remains finite and near the SRBP can
be fitted to

0.025

0.02

N 0.015,

x 0.01

2.442 2.446

1/T
2.45

FIG. 2. Variation of the RHNC inverse isothermal com-

pressibility and y~~p in the vicinity of the nonsolution line at
low density (pa = 0.01). Direct RHNC results are denoted

by solid circles and lines correspond to a nonlinear fit to Eq.
(3.1).

where T, denotes the reduced temperature at which the
numerical solution of the RHNC breaks down. This be-
havior is shown in Fig. 2 for po = 0.01. Quite remark-

~ I ~ I ~

ably, and similar to the ferrofiuid case [1] the isothermal
compressibility y000 exhibits the same singular behavior.

At high density the RHNC no-solution boundary is
characterized by a divergence of the susceptibility y220,
which follows a power law near the boundary,

1.6- g22o = a(T' —T';, ) (3 2)

at pos = 0.9 (cf. Fig. 3). The apparent value of p
(p = 0.99) is very close to the classical value of amity, sug-

gesting that unity is the true RHNC value. The isother-
mal compressibility remains finite. The magnitude of the
exponent decreases with density and the divergence has
a smooth crossover towards the SRBP behavior. The
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FIG. 1. g and h projections of the pair distribution
function for the Heisenberg antiferromagnetic spin Quid in the
paramagnetic phase (po = 0.8, T' = 1.5). RHNC results
(lines) vs MC data (solid circles).

FIG 3 RHNC pggp in the vicinity of the Neel temperature
at high density (po = 0.9). Direct RHNC results are denoted
by solid circles and lines correspond to a nonlinear fit to Eq.
(3.2).
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in the canonical ensemble for a system of X = 500 spins
in a cubic box with periodic boundary conditions, the
preceding discussion implying that the results should be
viewed only as providing a qualitative description of the
phases.

The MC results for the thermodynamic properties and
order parameters are summarized in Table I. The order-
ing of the system was monitored through the parameter
S2 which is the ensemble average of the largest eigenvalue
of the ordering matrix Q whose elements are given by [8]

0.0 0.2 0.4

PO
3

0.6 o,e 1.0 (4.1)

FIG. 4. No-solution line of the B.HNC equation of the
Heisenberg antiferromagnetic spin Quid and MSA estimate of
the gas-liquid coexistence curve and spinodal. MC estimates
of Neel points are represented by solid squares.

crossover density is hard to determine with precision but
should be close to po 0.2. In Fig. 4 we have plotted
the nonsolution line of the RHNC equation together with
the MSA gas-liquid coexistence curve and MC estimates
of the order-disorder transition (see below). An intrigu-
ing feature in this figure is the proximity of the MSA gas-
liquid critical point and the maximum in the no-solution
curve of the RHNC equation. Whether the SRBP singu-
larity of the RHNC equation should be regarded here as
a RHNC caricature of a gas-liquid transition, as it is in
the case of other model potentials [4], is an unresolved
question.

IV. MONTE CARLO STUDIES OF THE
ANTIFERROMAGNETIC TRANSITION

Here we shall discuss the use of computer simulation to
help determine the location of order-disorder transitions.
The paramagnetic-antiferromagnetic transition tempera-
ture (the Neel-point temperature) can be obtained from
the point where the order-parameter vanishes. How-
ever, similar to what is observed in the simulations of
the Heisenberg ferromagnet [1,5] with a finite number of
particles, the variation of the order parameter with tem-
perature shows appreciable "rounding" near the phase
transition, rendering a precise determination of the tran-
sition temperature impossible. In simulations of lattice
spin systems these shortcomings have been circumvented
by taking advantage of finite size scaling analysis to-
gether with eKcient spin sampling methods, histogram
techniques, etc. [6]. Although these methods translate
readily to the continuum case and have, in fact, been ap-
plied successfully to locate Curie temperatures in the fer-
romagnetic Heisenberg system [7], they are nevertheless,
too demanding in computer time to justify their appli-
cation to the present exploratory study. For this reason
we limited ourselves to perform Monte Carlo calculations

TABLE I. Thermodynamics and order parameter Sz of the
Heisenberg antiferromagnetic spin Quid from NVT Monte
Carlo simulation. N, g is the number of con6gurations and
N the number of particles.

po J
0.01 -10.0
0.1

0.2

0.4

0.8

-8.6
-10.0
-20.0
-40.0
-60.0
-10.0
-12.0
-15.0
-20.0
-25.0
-30.0
-12.0
-15.0
-20.0
-10.0
-12.0
-12.06
-13.0
-14.0
-16.0
-20.0

T
0.30
0.349
0.30
0.15
0.075
0.05
0.30
0.25
0.20
0.15
0.12
0.1
0.25
0.20
0.15
0.30
0.25
0.238
0.231
0.214
0.1875
0.15

N, f /N
36000
60000
50000
40000
50000
30000
52000
80000

100000
80000

110000
80000

100000
92000
40000
50000
80000
70000
52000
48000
50000
16000

Pu/N
-3.34
-3.86
-5.02

-15.47
-33.1
-53.8
-5.63
-7.43
-7.43

-16.32
-21.9
-26.4
-8.30

-11.20
-17.04
-8.06

-10.12
-10.80
-11.53
-13.08
-15.80
-20.34

pP/p S2
0.49 0.05
0.34 0.05
0.21 0.05

-0.29 0.20
-0.84 0.23
-1.36 0.28
0.22 0.06
0.03 0.07

-0.08 0.10
-0.26 0.40
-0.?8 0.60
-1.16 0.44
0.33 0.07

-0.09 0.11
-0.50 0.53
5.06 0.07
4.51 0.11
4.32 0.20
4.11 0.40
3.63 0.59
2.58 0.73
1.92 0.79

where u' (a = z, y, z) is the Cartesian component of the
unit vector describing the orientation of the spin embed-
ded in particle i. The variation of the order parameter
S2 can be followed in Table I. At the two highest den-
sities, S2 takes appreciable values (= 0.5) for T* 0.15
(pcrs = 0.4) and T" —0.22 (pos = 0.8) and these val-
ues of T' can be taken as rough estimates of the tem-
peratures at which ordering sets in in the finite system,
The snapshot of a configuration of spins at T* = 0.1875,
pas = 0.8 (Fig. 5) clearly shows that for this thermody-
namic state the preferential ordering of the spins around
a given particle has antiferromagnetic character.

The change in Quid structure when crossing the tran-
sition temperature is further illustrated in Figs. 6—8
showing the projection gooo, hiio, and h22o (defined in
Ref. [1]) of the molecular pair distribution function g(12)
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FIG. 5. Three-dimensional snapshot of an antiferromag-
netic state at per = 0.8, T' = 0.1875. The spins are repre-
sented by lines with a dot indicating the direction of the spin.
The hard sphere center is at the middle of the line. The side
of the simulation box is 8.550' long.

h (r) =5822 (r ,'oo). (4.2)

[h(12) = g(12) —Ij at po = 0.8. It is visible in the h

projection which decays to zero for T* & 0.25, whereas
it shows long range orientational order for T' ( 0.25, in
accord with the asymptotic relationship

FIG. 7. The variation of the projection h (r) of the pair
distribution function with temperature at per = 0.8.

As expected &om the antiparallel ordering of neighboring
110spins, h is negative at contact and at large distances

presents well defined oscillations around zero.
Upon increase of the coupling constant J (decrease of

the temperature) the average pair distribution function
000 '

g is seen to develop a small peak at r 1.40 indicating
local formations of closely packed structures.

Snapshots of configurations in the low density region
pu = 0.1 —0.3 are shown in Figs. 9 and 10. Whereas
above T* 0.22 system structure appears to be fairly
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FIG. 6. The variation of the projection h (r) of the pair
distribution function with temperature at per = 0.8.

FIG. 8. The variation of the projection g (r) of the pair
distribution function with temperature at po = 0.8.
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FIG. 9. Three-dimensional snapshot of a spin configuration
at po = 0.2 and T' = 0.25. The box length is 13.57~.

FIG. 11. Three-dimensional snapshot of a spin configura-
tion at po = 0.01 and T' = 0.30. The box length is 36.84o.

homogeneous (Fig. 9) with an order parameter Sq 0,
more complex structural arrangements seem to occur at
lower temperature (Fig. 10). These appear to be charac-
terized by fairly connected regions in which the spins tend
to align with antiferromagnetic order. As the average di-
rection of alignment of the spins may vary from region to
region, the global value of the order parameter turns out
to be small (cf. Table I). This structure differs consider-
ably Rom that of the ferromagnetic system, for which at
comparable densities, strongly magnetized droplets typ-

ical of gas-liquid coexistence were observed. Whether
the structural patterns found in the present case indicate
coexistence between a gas and an antiferromagnetic liq-
uid is less clear and cannot be decided without further
free energy calculations. A few additional remarks can
be made. Simulations using the GEMC method do not
give evidence of a gas-liquid transition in the tempera-
ture range T' = 0.45 —0.19 in agreement with XVT
calculations [9]. As we shall see in Sec. V, there is some
independent complementary evidence that the gas-liquid
critical point is to be expected below T* = 0.2 or so.
Prom Table I it is readily seen that states in the den-
sity range 0.1 ( pu ( 0.4 with temperature T' & 0.20
have negative pressure according to our canonical ensem-
ble MC results. States in this range may be artificially
stabilized by the periodic boundary conditions in a way
that is masking the appearance of a critical point some-
where in this region. A marked difference with the fer-
romagnetic fluid is that in the latter instance successive
layers of spins cooperate to lower the energy of the sys-
tem, whereas in the antiferromagnetic system, due to al-
ternating directions of the spins in adjacent layers some
cancellation of the stabilization energies occurs.

Finally at even lower density pa = 0.01 (T* = 0.30)
the particles show a strong tendency to associate into
pairs with antiparallel ordering of the spins. This be-
havior is manifest in the snapshot presented in Fig. 11
and also in the large negative value of the projection 6
near contact. However, there is no long-range antiparallel
ordering.

V. DISCUSSION OF THE RESULTS

FIG. 10. Three-dimensional snapshot of a spin configura-
tion at per = 0.1 and T' = 0.075. The box length is 17.10a.

Perhaps the most striking and significant of our re-
sults is the strong Monte Carlo evidence we 6nd for a
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paramagnetic-antiferromagnetic transition in the liquid
state. These preliminary results are consistent with the
appearance of a line of Neel points in the liquid region of
the p' —T' plane that spans the two points indicated in
Fig. 4, and perhaps meets a gas-liquid coexistence curve
in the near vicinity of the lower of those points. In a
lattice-gas version of the model treated here on a cubic
lattice consisting of two interlaced sublattices, the lattice
symmetry would provide a natural length associated with
staggered order. As a result one would expect as a mat-
ter of course the appearance of a A line of Neel points. In
the fluid version considered here, it has been less obvious
what to expect in the absence of such lattice symmetry.
It is for this reason that the Monte Carlo evidence for
the antiferromagnetic state is particularly interesting.

Although we are unable to discern from our MC calcu-
lations any direct evidence pertaining to the location of
a gas-liquid transition, the MSA estimate of where this
transition is located, together with our MC estimate of
the location of the A line of Neel points, provides us with
a tentative picture of the way the gas-liquid and Neel
transitions are situated with respect to each other.

In order to use the MSA results to estimate where the
true gas-liquid transition lies, we shall argue that the
trends one observes in comparing the MSA and the true
gas-liquid coexistence curve in the restricted primitive
model (RPM) can also be expected in the case of the an-
tiferromagnetic Heisenberg fluid, but they will probably
be less pronounced.

In the RPM, comparisons of the MSA coexistence
curve with the recent simulation results of Caillol [10]and
of Orkoulas and Panagiotopoulos [11]show that the true
gas-liquid critical point is at a considerably lower tem-
perature and a somewhat higher density than the MSA
critical point, and that the true coexistence curve un-
der the critical point would be somewhat more sharply
peaked than the MSA curve shown on a p*-T* plot such
as that of Fig. 4.

The reason we can expect these same trends in the case
of the antiferromagnetic Heisenberg fluid lies in the fact
that the RPM is an antiferromagnetic Ising Huid with a
Coulombic J(r) In an an. tiferromagnetic fluid (Heisen-

berg or Ising) one expects the thermodynamic effect of
the higher-order terms in J missing in the MSA to coun-
teract, and thus weaken the eKect of the lowest-order- J
terms. In particular, this will lower the gas-liquid criti-
cal temperature and change somewhat the shape of the
coexistence curve. However, this effect will tend to be
more pronounced in the Ising case than in the Heisen-
berg cas- —for example, the term of order J is three
times larger relative to the J term in the Ising case than
in the Heisenberg case. Similarly, when one goes &om a
J(r) of Yukawa form to one of Coulomb form, the relative
counteracting eH'ect of the higher-order terms can again
be expected to be enhanced. Since the RPM does show
a gas-liquid critical point, it seems reasonable to also ex-
pect such a point in the antiferromagnetic Heisenberg
fluid, but at lower temperature than that given by the
MSA, with an altered coexistence-curve shape. On the
basis of this line of reasoning one might expect a critical
point that is likely to be near T' = 0.2 in temperature, as
well as somewhat higher in density than the MSA critical
point [12]. This would give rise to the A line of Neel points
meeting the coexistence curve at a density substantially
higher than the critical density. Our discussion of the
gas-liquid transition must remain tentative, however, un-
til there is con6rmation of the gas-liquid transition &om
simulation results.
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