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Ferroelectric phase in Stockmayer fluids
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By using a density-functional theory we establish the existence of a ferroelectric nematic phase in

fluids consisting of spherical particles which interact with Lennard-Iones and dipolar forces. Our de-
tailed analysis of the thermodynamic limit shows that for a polarized dipolar fluid within a single
domain the free energy density depends on the shape of the sample as well as on the dielectric permittivi-
ty of the surrounding. For different aspect ratios of an ellipsoidal sample we determine the phase dia-
grams which comprise the isotropic gas and liquid phases and the ferroelectric liquid phase. For the
latter we obtain the full probability distribution for the orientation of the particles. Its behavior in the
vicinity of the phase transition between the isotropic and the ferroelectric liquid is analyzed by a Landau
expansion of the grand-canonical potential. The repercussions of domain formation are briefly dis-
cussed.

PACS number(s): 64.70.—p, 77.80.—e, 64.60.Kw, 61.25.Em

I. INTRODUCTION

Molecular dynamics simulations of fluids consisting of
either hard or soft dipolar spheres revealed the possibility
that such systems can exhibit a ferroelectric nematic
phase [1—4]. While it is well known that short-range
steric interactions can induce orientational order in fluids
without positional order [5,6], the numerical simulation
by Wei and Patey represents the first contribution which
shows that the dipolar interaction alone is capable of
bringing about the formation of an orientationally or-
dered phase, which was already conjectured by Born in
1916 [7]. Moreover these authors showed that this phase
is ferroelectric. On the other hand, it seems that the only
experimental systems known up to now, which show a
similar phase behavior, are certain ferroelectric liquid
crystals exhibiting smectic phases [8,9]. Wei, Patey, and
Perera also tried to understand their numerical findings
on the basis of density-functional theory [10]. However,
this analysis suffers both from a poor quantitative agree-
ment with the simulation data and from difficulties in

performing correctly the thermodynamic limit in these
systems with long-range interactions. A mean-field
theory for a dipolar lattice gas by Sano and Doi [11,12]
gave further evidence for the existence of an orientation-
ally ordered phase in dipolar fluids. One should also note
the orientational instability observed by Kinoshita and
Harada [13] as well as by Kasch and Forstmann [14] in

solving the hypernetted-chain equations for dipolar hard
spheres.

In the following we present a density-functional theory
for Stockmayer fluids, which are somewhat more realistic
in that they incorporate both the dispersion forces be-
tween the spherical particles as well as the dipolar in-
teraction. Recently it has been demonstrated that the oc-
currence of the liquid-vapor phase separation is linked to
a minimum admixture of dispersion forces [15,16]. This
requirement is fulfilled for Stockrnayer Auids, which may
be used also to model ferrofluids, i.e., colloidal suspen-

sions of small ferromagnetic particles [17]. Originally the
present density-functional theory approach was designed
to investigate the wetting behavior of such Auids in their
isotropic phase [18] and has successfully been applied to
analyze the properties of the interface between the isotro-
pic liquid and vapor phases [19]. By applying this theory
to the case of orientationally ordered Auid phases and by
combining it with a careful analysis of the thermodynam-
ic limit we find that a ferroelectric phase does indeed
occur and that due to the long-range nature of the dipo-
lar forces and the resulting depolarization effects the free
energy density of this phase depends strongly on the
shape of the sample. A needlelike volume is considerably
more favorable for such phases than spherical volumes.
This effect was not borne out by the previous analytical
analyses mentioned above. In the molecular dynamics
simulations a spherical volume was considered implicitly
by using the Ewald summation technique [20]. These au-
thors found, as we do, that the structural properties of
such Auids also depend on the kind of dielectric sur-
rounding them.

In contrast to Ref. [10] our density-functional theory
does not rely on correlation functions that have to be ob-
tained by independent methods. We are able to compute
the full phase diagrams of these fluids for arbitrary aspect
ratios of an ellipsoidal sample. They exhibit two isotro-
pic and one ferroelectric phase. At high temperatures
the isotropic and the ferroelectric phase are separated by
a continuous phase transition, which turns into a first-
order transition below a tricritical temperature. Close to
the continuous phase transitions the anisotropies are
small which allows us to carry out a systematic Landau
expansion of the grand-canonical potentia1. This yields
analytic expressions for the corresponding critical ex-
ponents and amplitudes. These critical exponents are
mean-field-like; they are exact at the tricritical point.

Certain results of our approach have already been pub-
lished in Ref. [21]. The purposes of the present contribu-
tion are to provide both additional results and further de-
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tails as well as the derivation of our conclusions. In the
following section we describe our model together with
the approximations underlying the density-functional
theory we use. The thermodynamic limit for different
shapes of the sample is discussed in Sec. III, where we
also analyze the relevance of a dielectric surrounding.
Section IV deals with the determination of the thermo-
dynamic state of the system. There we focus in particular
on the orientational distribution in the ferroelectric
phase. Section V is devoted to the phase diagrams. It
turns out that the properties of oblate samples can be
mapped exactly on those of appropriate elongated sam-

ples (Sec. VI). In Sec. VII we perform the systematic
Landau expansion mentioned above. In Sec. VIII we dis-

cuss the possible consequences of domain formation. Our
results are summarized in Sec. IX. Certain technical de-
tails are presented in Appendixes A and B.

p(r, co)=pa(co), fdcoa(co)=1, (2.1)

where the angular distribution a(co} is normalized to 1

and p is the total mean number density without specified
orientation. Thus we consider a single domain and we do
not take into account spatial inhomogeneities near its
surface.

As our model system we study Stockmayer fluids con-
sisting of spherically shaped molecules interacting via a
Lennard-Jones potential

6' 12

properties we resort to the density-functional theory
worked out in Ref. [18]. Since such phases are character-
ized by long-range orientational order without long-range
positional order the mean number density of particles at
a point r and with orientation co=(8,P) (see Fig. 1 in Ref.
[18])is given by

II. DENSITY-FUNCTIONAL THEORY
W L(J)r2)=4e

12 12
(2.2)

In order to study the occurrence of ferroelectric nemat-
ic bulk phases and their thermodynamic and structural

to which an interaction is added due to point dipoles em-
bedded in spheres of diameter o".

wo; (r, r', co, co'}=wd; (r,2=r —r', co, co'}

Os F12 (0'
3[m(co)r&2][m(co')r&2] —m(co)m(co')

12 f12
12 00'

(2.3)

w(r, r', co, co')=w„J(r,z)+ws; (r, r', co, co') . (2.4)

m is the absolute value of the dipole moment and m(co) a
unit vector pointing in its direction. Thus the total pair
potential is given by

V, T, and p denote the volume of the fluid, its tempera-
ture, and its chemical potential, respectively. The first
term in Eq. (2.7) is the free energy density of the refer-
ence system due to Carnahan and Starling [26]

According to Barker and Henderson [22] it is decom-
posed into a short-range repulsive reference part

fHs(p T)=+ ln(pk ) 1+ 4 —3

(1—g)
(2.8)

ref a r )2 ) w(LJlgr)

and a long-range attractive excess part

w,„(r,r', co, co') =e(r, z
—o )w(r, r', co, co') .

(2.5}

(2.6)

where A, denotes the thermal de Broglie wavelength and
g=(m/6)d p the packing fraction with a temperature
dependent diameter d, as given by Barker and Henderson
[27], accounting for the soft sphere character of the refer-
ence fluid:

The analysis of the quantitative consequences of applying
either alternative separation schemes for the repulsive
part of the interaction potential [23,24] or using the
different approach of the so-called u expansion [25] is left
to further studies.

Due to the translational invariance of p the approxi-
mate grand-canonical variational functional used in Ref.
[18] reduces to

1—Q[p, [a( c)o,]T,p]

d(T)= f dr(1 —e "'
) .

0
(2.9)

The second contribution to the grand-canonical function-
al stems from the additional entropy due to the orienta-
tional degrees of freedom. It vanishes for the isotropic
fluid for which a(co)=1/4n. . The interaction contribu-
tion

2 1

0;„,= P f d r f d r'f dcodco'a(co}a(co')e
2P v v

=f„f(p, T)+ f dco a(co)in[4m a(co)]
—Pw „(r,r', r», m')

(2.10)

1+ Int PP . (2.7}
follows from using [18] the low-density approximation
for the pair distribution function:
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~(z) (r r~ ~ ~~)—&
JJ—w(r, r', ra, ra']

PS app (2.11}

2Jra(co) =cc(cosO) = g a, P, (cos8),
1=O

2l +1 'd- P
2 —1

(2.12)

where ao= —,
' due to the normalization introduced in Eq.

(2.1). In order to proceed we express the Mayer function
of the excess intermolecular potential

~~ex~ri2 ~ ~ }
f(r]z, co, co')=e '" " ' —1 (2.13)

F«uniaxial molecules the angular distribution a(co}
depends only on the angle 8 and thus allows for the fol-
lowing expansion in Legendre polynomials:

4gfA ( r ]2 )
2& + a co a co'f ( r», co, co', co» ) ItA~ ( co, co', co» ),

A=(I, I I ), (2. 18)

all fA with AW(112) decay for large r]2 as r]z", n & 6.
For A=(112), however, one has f»z(r]2~ ~ )-r,

III. THERMODYNAMIC LIMIT
AND SHAPE DEPENDENCE

A. Thermodynamic limit

In order to extract the system size we introduce the
sum and the difference of the coordinates in the two posi-
tional integrals of the interaction contribution to 0 [see
Eq. (2.10}]:

in terms of the rotational invariants

(It/
/ /(co, co', co]2)= y' C(t]lzl, m]mzm)Y/ (co)

ml, mp, m

X Y, (co') Y(' (,2)

with

li 2 }I

(2.14)

r, , =r —r', rz =
—,'(r+r') .

If the volume V exhibits inversion symmetry about the
center of the volume chosen as the origin, one Ands the
identities

Ir»E}R'Ir»=r —r'A rE Vhr'E VI

=Ir&}R'I—,'rE VI =2V {3.2)X'=XXX
m m m m = —I m = —I m= —Iit 2t 1 1 2 2

(2.15) and (see Fig. 1) for fixed r»

[rs &}R Irs =
—,'(r+r') A rE V br'E VI

C(1, Iz I, m ] m 2 m) are Clebsch-Gordan coefficients using
the convention of Rose [28] and Gray and Gubbins [29]
and (l]lzl)=ANNO. These functions are a complete set
of orthogonal functions of co, co', and co,2 that are invari-
ant under simultaneous rotations of these three solid an-
gles. In Ref. [18) analytical expressions for the first ex-
pansion coefficients in the series

f(r» ~ ~')=Xf~c'A (2.16)

up to (l]lzl )=(224) have been derived. The behavior of
the coefficients f~ for large r]z can be obtained by ex-

panding the exponential in Eq. (2.13). Since for r]z ~ cr

w,„(r,r', co, co') =wLJ(r 12 )+wd;p(r, r', co, co')

wLJ(r]2 )

2

(4n ) Q ,', (P„z(co,co', co]2) —(2.17)
12

and [see Eq. (Bl) in Ref. [18]]

where

= V+ (r, z) Cl V (r,z)—:Vs(r]2),

V+{r]z)=[r+ER Ir+=r+ —,'r]zhrE Vj . (3.4)

For integrands that do not depend on rz, such as that in

Eq. (2.10), one obtains

1 3 3, 1f a—'r f a'r'. = f d—'r„fV v v V 2V

Vs(r]z}
f12

2V V

Now we restrain ourselves to the case of a rotational
ellipsoid with two equal axes of length R and one axis of
length kR. The preferred orientation of the ferroelectric
phase, i.e., the director, is assumed to be along the latter
axis. [This assumption is supported by macroscopic con-
siderations (see Sec. III B).] Thus the angle 6] in Eq. (2.12)
is measured relative to this axis (see Fig. 1).

Inserting Eqs. (2.16) and (2.14) into Eq. (2.10) and per-
forming one spatial integration leads to the following ex-
pression for the interaction contribution:

2—0
V tnt 4 2 2p g fzt~s

1 2t

3 F12
d r]z h 8]z,

2& f,]]z,(r]2)

X fdcodco'a] a( P& (cosO)P, (cose')

X g' C(l] lzl, Jt] 1 m 2m ) Y] (co}Y] (co') Y]* (co]2)
m&, m2tm
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r)3 (8u}
(3.10)

where r, s (8,2) defines the surface of 2V, can be deter-
mined by using the parametrization of the ellipse

x(t) =2R (sint, k cost ), (3.1 1)

and cos8=[x(t).e2]/~x(t)~, leading to tan t=k tan 8
and

' —1/2

V (r„) g(8)= = sin 8+ cos 8x . 3 1

2R
(3.12}

FIG. 1. Illustration of the regions of integration in Eq. (3.5).

For an ellipsoidal sample and a fixed vector difference r» the

vector sum r& lies in the shaded volume V&(r») given by the in-

tersection V+(r») A V (r») of taro ellipsoids.

In order to determine the function h we calculate the
volume Vz given by the intersection of two ellipsoids dis-

placed relative to each other by the vector r, 2 (see Fig.
1). For a sphere (k =1) the volume Vs is twice that of a
cap of a sphere so that one has

12
h 812,

Vs(r)2}

V

with S = tram (r (cr I and where

(3.7)

12
h q)h( y ) = 1 ——', y+ —,

' y, y =
2R

(3.13)

which is independent of 8. The general problem for ellip-
soids can be mapped onto the one for a sphere by the di-
lation z~z'=z/k, which leads to

1 p 1 21+1
V '"' p 3/4~ i ~i

1
(2l)+1)(2l2+ I)

' 1/2

XC(l) lzl, 000)a( a, I

is independent of $,3 and depends on r, 2 only via the
dimensionless ratio r) 3 /2R. Because of Pi(cos8)
=')/4n /{21+I)F(o(60), the orthogonality of the spherical
harmonics, and the properties of the Clebsch-Gordan
coefficients, all terms with m, AO, mz+0, or mAO, van-

ish.
Thus one obtains

V~ '(r)2, 8)

=kVs)'" r)3 =r) sin 8+ cos 81

k

' 1/2

(3.14)

1=1——'y sm 8+ cos 8
2

' 1/2

Since the volume of the full ellipsoid is k times the
volume of the full sphere with radius R one finds

1/2
r12 . 2 1h„,(8,y)=h, „y'= sin 8+,cos 8
2R

with

(3.g)
1+—f sin 8+ co

k

' 3/2

=1+h)(8)y+h3(8)y (3.15)
1r

Ii i i= d8)3sin8, 2P((cos8)2)
1 2 p

r12
X f dr)2r)3 f( i i(r)3)h 8)3, 2RCT

1 2

The function

(3.9}
I =3

(3.16)

into Eq. (3.9) and regroup the terms according to their
power of r:

In the next step we insert Eq. (3.15) and the asymptotic
expansion

21(g(()) c3 'h3(8) c4 'h3(8) c3 'h, (8) c3 'h3(8)
I~ = d8sin8Pi(cos8) dr r +r + +

0 (2R ) (2R ) 2R (2R )3

C4 h 1(8) C6 h3(8)+r-' c'3"'+ +
2R (2R )3

c' 'h (8} c' 'h {8}—i (A) + 1+3 1 + i+5 3

(2R )3
(3.17}

The thermodynamic limit R ~ 00 will now be considered in two cases. First, if AA (112) one has c3"' =0 (see Sec. II}
and therefore
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lim I„=J dOsinOPl(cosO) g . , c,.'+~2
R~oo 0 +2

=I dx Pl(x) f d"" fA(r)=2~i, o&i, , i, J «» fl, l, o(") .

Note that, due to the triangle condition for the first three arguments of the Clebsch-Gordan coefficients in Eq. (2.14),
1=0 implies that they vanish unless 1, =12. Second, if A =(112)all those terms that contribute to Eq. (3.18) vanish be-
cause l&0. Since c 3" '%0 one therefore has

(112) ~ 2Rg(8 2
li 3(8) li i {8)

lim Iii2= lim c3 dOsinOP2(cosO) dr r
3

+ +r
R~oo R~oo 0 CT (2R )3 2R

=c3" ' I dOsinOP2(cosO)[ —,'h3(8)g(8) +h, (8)g(8)+lng(8)] . (3.19)

Due to the form of the functions h, (8) [Eq. (3.15)] and g(8) [Eq. (3.12)] the first two terms vanish and one is left with
the shape dependent (i.e., dependent on k) expression

I112I(k) = „,,
= —f dx P2(x)ln[k (1—x )+x ]

ln(k++k —1), k ~ 1
(k2 1 )3/2

k~1 .

k +2
3(k —1)

k +2 k +1—k+
2 3 /2

arctan
3(k —1) (1—k )

[, 3.20)

(112) 8C3
15

1/2

Pm (3.21}

This function is shown in Fig. 2. It is a monotonically
increasing function of k with I(k~0)= —', +(~/2)—k

2k +—, I(k=1)=0, and I(k~)= —,
' —(1nklk

+ . The value of c 3" ' can be inferred from Eq. (B34)
in Ref. [18]yielding

oc

lim —0;„,=p g ulal,v-- V '"'
I 0

where

1 (
—1)'

~l 3 2
dr 12r i2fllO( 1r2 )~ 1%1

m.(21+1)

(3.22)

(3.23)

By inserting Eqs. (3.18), (3.19), and (3.21) into Eq. (3.8)
the thermodynamic limit of the interaction contribution
to the grand-canonical potential reads ( C(1,120,000)
=( —1) '(21, + 1) ' 5l l and C(112,000)=Q —', [see

Eqs. (A.157) and (A. 162) in Ref. [29])

0.2

-0.2

-0.4

-0.6-
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

FIG. 2. The function I(k) [see Eq. (3.20)] which determines
the shape dependence of the grand-canonical potential;
I(0)= —3, I(1)=0, and I(ao)=

3
~

3
—I(k) is the usual depo-

larization factor of a rotational ellipsoid with aspect ratio k.
k & 1 corresponds to oblate and k & 1 to elongated samples.

1 aa 8a 2

3&2 drl2ri2flio(ri2) — I{k)m
773 9

The last term in Eq. (3.24) contains the whole shape
dependence of the grand-canonical potential.

By using a similar density-functional theory for dipolar
tluids Wei, Patey, and Perera [10] stated that the grand-
canonical potential would not be well de6ned in the ther-
modynamic limit "without exactly specifying how the
long-range dipolar forces are treated. " They introduced
a cuto6' short-range potential and treated the region out-
side the cutoff sphere as a dielectric continuum. After cal-
culating the thermodynamic limit of that grand-canonical
functional they replaced the cutoff radius Rc by infinity
and arrived at a result which depends on the dielectric
constant of the surrounding medium, but not on the sam-
ple shape. Thus the order in which the two limits V~ ~
and Rc~~ are taken is important, because our shape
dependent results correspond to performing the limit
Rc~ ~ first, thereby recovering the original dipolar in-

teraction potential, and then V~ ~ for fixed shape. Ob-
viously for an actual dipolar Quid this latter approach is
the appropriate one yielding a well defined thermo-
dynamic limit.
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B. Electrostatic energy density
and dielectric surrounding media

E; = 4nD;(k)—P;, i =1,2, 3 (3.25}

where (see, e.g., p. 56 in Ref. [32])

+ ln(k+ 1/k —1)
Ic —1 (Ic —1) /

D3(Ic)—:D(Ic)=—

I(k) )0—1

3
(3.26)

The above considerations apply to the case that the di-
polar liquid within the ellipsoid is surrounded by vacu-
um. However, in an actual experimental situation the
liquid will be contained by a solid material. If the liquid
does not exhibit a net polarization, the nature of the con-
tainer will only enter into the surface contribution to the
free energy of the liquid. If, however, the liquid is in a
ferroelectric state, the container will be polarized too and
thus in turn give rise to a reaction field ERF within the
fluid. This leads to a contribution to the bulk free energy
so that the bulk properties of the ferroelectric liquid will
depend on the nature of the container.

In order to extend the results in Eqs. (3.22) —(3.24) to
this more general case we recall that the shape depen-
dence of the free energy of dipolar systems, which is a
consequence of the long-range nature of the dipolar in-
teraction, has already been known for a long time; e.g.,
the shape dependence of the specific heat of dipolar mag-
nets has been verified experimentally by Levy and Lan-
dau in 1968 [30]. Macroscopically this shape dependence
can be understood by considering the electric field inside
a homogeneously polarized ellipsoid embedded in vacu-
um. For a rotationally symmetric ellipsoid with polariza-
tion P the corresponding electric field is given by [31,32]

Thus the shape dependent contributions -I(k) in

limi „(I/V)Q,and W(k)/Vare the same.
On the other hand, for oblate ellipsoids (k & 1) one ex-

pects that the polarization vector spontaneously chooses
one particular direction within the xy plane, leading
again to a minimum in Eq. (3.28}. This case will be dis-
cussed in Sec. VI. In the following we focus on the case
k) 1.

If the polarized liquid is surrounded by a container
characterized by a dielectric constant e, the induced po-
larization in the container generates the reaction field

(e—1)[1—D(k)] (3.30)

so that the total internal field as the sum of the depolari-
zation and the reaction field is [33]

D(k}
a D(k—)(e 1)— (3.31)

which reduces to Eq. (3.25) for e= 1 and for P, =P2 =0
(see above). The resulting electrostatic energy density

(3.32)

[see Eq. (3.28)) decreases monotonically as function of k
or e and vanishes for k~ 00 or e~ 00. In the latter case
the surrounding medium is effectively conducting so that
the charges at the container surface will always arrange
themselves in such a way that there is no electric field in-
side the sample [see Eq. (3.31)]. Thus for e-+ 00 the bulk
properties of the ferroelectric Quid become independent
of the shape of the sample.

We argue that, in order to take the effect of the polar-
ization of the container into account, the grand-canonical
potential density must be augmented by

is the depolarization factor along the symmetry axis and —[ W(k, e)—W(k, e= 1)]= —
—,'P E„„.1

(3.33)

D, (k) =D2(k) =
2

(3.27)
This leads us to the final expression

Inter alia the free energy of the polarized liquid must
contain the corresponding electrostatic energy density

W(k)
2

=2m (P +P )+D(k)P

W(k} 8n x g p 8m'
pm a, — I(k}pm a, . (3.29)

=2ir[D(k)P + —,'[1—3D(k)](Pi+P22 }], (3.28)

where p'=p', +p,'+p,'. For fixed absolute value p the
electrostatic energy is minimal if P] =P2=0 as long as
D(k) & —,', i.e., for aspect ratios k) 1. Thus in this case
one expects that the polarization points along the long
axis and that the orientational distribution a(co) depends
only on the angle 8 due to the symmetry of the problem
as assumed above. Then, since P=P3e3 with
P3 =jd &p( r, co }m coso =pm f ',dx x a(x )= 23 pm a„—
one has

25

20

15

10

a=1

s=2

sW
~I'

~t

~'

~t

10

FIG. 3. The effective aspect ratio k,s defined in Eq. (3.35) as
a function of the actual aspect ratio k for difFerent dielectric
constants e of the surrounding medium. A sample with aspect
ratio k,l surrounded by vacuum has the same free energy densi-
ty as a sample with aspect ratio k surrounded by a dielectric
continuum, k,m(k, e= 1)=k.
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X I(k) D—(k)
e —D(k}(e—1)

(3.34}

f= —1+e '[1—
Pwd; + —,'(Pwd;„)

—
—,'(pwd;~)'+ —,', (pwd;, ) +. . .

]

—
u (0)+ (2) 2+ (4) 4+ (6) 6+ (8) 8+ui —ui

where u«, =u& and u& =1/(Pv'm3~y2) J "dr r f»o(r}.
(In Eq. (3.34) the term in square brackets can be rewrit-
ten as —,

' —D(k)/[e —D(k)(e —1)].} With the definition

I(k) D(k—} =I[k,tt(k, e)],
e D(k—)(e 1)— (3.35)

one sees that for any k a system with e&1 can be mapped
onto the case @=1 by rescaling the axis ratio from k to
k,s.(k, e) ~ k. As can be seen in Fig. 3 a larger value of e
corresponds to a larger value of k,z. Therefore, in the
following, we confine our analysis to the case @=1.

IV. THERMODYNAMIC STATES

lim —0;„,=p g utv--~ V I=o

1 1=~f dx f dx'u(x)a(x')K(x, x'), (4. l)
2 —1 —1

Only the constants uo, u„and uz in Eq. (3.22) are
known from Ref. [18]. But a cutoff' of the summation
after the term l =2 would mean that the function a(x) is
approximated by a linear combination of the first three
Legendre polynomials, i.e., a quadratic function in
x =cos8. Since in the ordered phase this function turns
out to be strongly peaked at x = 1 (or x = —1), this would
be a bad approximation.

As an alternative we pursue an approach which takes
into account the whole function a(x). To this end Eq.
(2.12) is inserted into Eq. (3.22) and gives

21 +1 f' dx I( )xm )x
2 —I

ui Io rr e (4.7)

For the higher-order terms in Eq. (4.5) it is useful to ap-
ply Eq. (2.17). Obviously the shape independent contri-
bution proportional to m is zero. However, the shape
dependent contribution is nonzero and proportional to
m so that

u' '= — I(k)6i1, 1
(4.8}

The expressions for the terms u& ', ui ', and u&"' are
derived in Appendixes A and 8 leading to the results

r r e 4

(4.5)

As will be shown below [see Eq. (A14}] only terms of or-
der m~ with p ~2l contribute to u, . This means that if
one is interested in contributions to 0;„,up to terms pro-
portional to m, the infinite series in Eq. (4.2) can be
truncated such that u»L =0. Within this expansion the
angular integrations in Eq. (4.3) can be performed term
by term using the orthogonality relation of the rotational
invariants 4„[29]:

f 21+1
dm dm'4A(co, co', col2)C ~ (co,a'', ml2) = 5A ~4n

(4.6}

The zeroth-order term is [4000=(4') ]

where
8 'm'

I,o(Pe')+O(m ' ), (4.9}

K(x,x')= g (21+1)
u,I,(x}I,(x } .

1 =0
(4.2)

2 6

I(k)m — I7(Pe)+O(m '
) „(4.10)

By using Eqs. (3.23) and (2.18) the coefficients u& can be
expressed as

1 4&~( —1)'

P (21+ I)
Qo 2X drI2r, z dude'f(r, z&u&~'&~, 2)

X 4 go( co&co &co Ip }

4 32

u = I (Pe)+O(m ' ),16~ m'
25 725

8m 'm'

(4.12}

(4.13}

I(k)m 5, , (4.3}

[Note that in Eq. (4.3} the spatial integration is carried
out after the angular integrations. ] Due to the five
remaining integrations it would be a difficult task to cal-
culate uh numerically as function of T and m. Therefore
we expand the Mayer function f and the coefficients ul
for small dipole moments:

All contributions u»4 vanish in this order. The dimen-
sionless integrals I„aredefined as

f ™d —n 4y(x —x )

1

(4.14)

The equilibrium configuration for given T and p is
determined by minimizing the total grand-canonical
functional with respect to p and the function a(x):
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=pHs(p, T ) +—f dx a(x )ln[2a(x ) ]
1 an
V ap

"' '
P

m*=2, T =2.8, p W.755

and

+2p g ulai —@=0
1=0

(4.15)

5 n—+~ 1 —f dx a(x)
5a

5 En +~ 1 — dx a x =0. 416
5a

Here

—b,Q[p, [a(x}),T]1

1
00=+f dx a(x)ln[2a(x)]+p g uia& (4.17)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

x=cos e

FIG. 4. Typical orientational distributions a(cos8) in the fer-
roelectric phase for aspect ratios k=3 and 00. They exhibit a
pronounced maximum at cos8=1, i.e., in the direction of the
long axis of the ellipsoidal sample. But even for the needle-

shaped sample there is still a finite probability for the dipole
moment to point into other directions (cf. Sec. VIII).

1

exp pP f—dx 'a(x ')K (x,x ')
a(x) =

f '
dx exp pPf—

' dx'a(x')K(x, x')
(4.18)

denotes the a dependent part of n which vanishes in the
isotropic phase. pHs(p) =8f„r/Bp is the chemical poten-
tial of the reference system and ~ a Lagrange multiplier
which takes into account the normalization condition.
Equation (4.16) leads to the integral equation

y&
= —pP u& f dx P&(x }exp g y, P, (x)(21 +1}'

2 —1 i=1

1
00

X x'exp y P x'
—1 j—

1

,j~1 . (4.22)

The coefficients ai, which determine a(x), follow from

Note that the isotropic configuration a =—, always solves

Eq. (4.18) because

dx'K(x, x') =uo (4.19)—1

Xl

pP(21+ 1)u(
(4.23)

is independent of x [see Eq. (4.2}].
The actual structure of the kernel K(x,x') [Eq. (4.2)]

implies the following form for a(x):

a(x)=C exp —pP g (21+1)ura&PI(x)
1=1

=C exp[y, x+y2Pz(x}+y3P3(x)+ ] (4.20)

with

—=f dx exp g y, P, (x)
C 1=1

(4.21)

One should recall that within our approximation yI=0
for I ~ 5 because we consider only terms up to O(m ). If
we insisted on a strict expansion of a(x) in powers of m,
we would have to expand the exponential functions in
Eqs. (4.20) and (4.21) too and truncate this series accord-
ingly. However, we refrain from this systematic scheme
in favor of keeping the full exponential form in Eq. (4.20),
which difFers from a simple polynomial expression for
a(x).

Equation (4.20) leads to a system of coupled nonlinear
equations for the coefficients yI.

V. PHASE DIAGRAMS

The conditions for coexistence of a ferroelectrically or-
dered phase of density pf and an isotropic phase of densi-
ty p; along the phase boundary pf ( T) are

and

Q[p;, [a=—,
' j,T,p&]=Q[pf, [a(x)],T,pf ] (5.1)

for l=1, . . . ,p if the u& are expanded up to O(m ~).
Based on Eqs. (4.9)-(4.12), the above nonlinear system of
equations is solved numerically by using a standard rou-
tine of the Numerical Algorithms Group library, which
requires an initial guess as input and which ffnds the solu-
tion by iteration. Thereby it is convenient to describe
Stockmayer Quids in terms of the reduced density
p' =po 3, the reduced temperature T' =ka T/e,
the reduced dipole moment m '
=(m 2/A@3)'~~, and the reduced chemical potential
p =[@ k&T ln(6A, /—nd )]/e. A typical solution of
Eqs. (4.15) and (4.22) together with Eqs. (4.20), (4.21), and
(4.23), exhibiting the expected pronounced maximum at
@=1,is shown in Fig. 4, where m'=2, T =2.8, k=3,
and p =—4.677, giving p =0.755. Since K( —x, —x')
=K(x,x') the function a( —x) is a solution as well,
representing a Quid polarized along the opposite direc-
tion.
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an
()p p,-, = /2

an
Qp pI, I a(x) I

(5.2)

f,".r'(p; ) —p;pHs(p; ) ——.'p,'uo

f (Pf ) PfPHS(Pf ) Pf g ul !
1=0

PHS(P )+—P "0 PHS(Pf )+»(2C)+ y ~ll'l 'P, , 21+1
5a

Since Q[p, [a(x)],T,p] =F[p, [a(x)I, T] pp V— the
chemical potential p& can be eliminated from these equa-
tions, resulting in the following equations for the un-
knowns p;, PI, and [ar, l 1]:

P
+2pf g uciK/

I=O
(5.4)

and Eq. (4.22) with p=p&. By using Eq. (4.23), Eqs. (5.4)
and (4.22) can be rewritten as

P

pHs(p~ )+-,'p~uo =PHs(PI )+
& pfuo+ In2 —ln dx exp —

p&P g (2l+1)utaiP, (x)
—

1 I=—1

and

al=
1 P

dx exp p&PQ (—2i+ 1)u;a;P;(x)—
1 i=1

1 P
dx Pi(x) exp —PIP g (2i+ 1)u;a;P;(x)

2l+1 i=1

2

P'f ( T) PHs[P(( T)~ T ] + &Pi ( T)"o (5.7)

Due to 0= —pV the corresponding pressure at coex-
istence is

The coexistence line between the ferroelectrically ordered
phase and the isotropic phase is given by

for fixed T= T„where p, =p(T„p&(T,)) is the tricritical
density. Up to logarithmic corrections, in three spatial
dimensions these critical exponents are valid beyond
mean field theory. (2, plays the role of the order parame-
ter since the coefficients at&2 vanish more rapidly (see

pI(T)= f,~r (p;(T)] —&piuo+—py(T)p, (T) . {5.8) 2.8
m*=2, k=3

T)', py
—p, —Tt T, TZTt (5.9)

along two-phase coexistence Lu=pI(T)] for T & T, and

~i (V ))'" p-(T p—) p-(V V)'"— —

p ~p, , (5.10)

Figure 5 shows the phase diagram for I'=2 and
k =3. At low temperatures (T & T3) a ferroelectric liquid
coexists with an isotropic gas. The dotted curves indicate
the liquid-gas phase diagram if no ordered phases are tak-
en into account (i.e., ai is constrained to be zero for
i ~ 1). At the triple point temperature T& =2.494 three
phases coexist: the isotropic gas, an isotropic liquid, and
a ferroelectric liquid. Up to T'= T,*=2.552 coexistence
of both isotropic phases or both liquid phases is possible.
Above T, there is only one isotropic phase left. The den-

sity difference between the coexisting unordered and or-
dered fluids shrinks to zero at the tricritical point T, with

T,*=2.727. For temperatures above T, there is a line of
second-order phase transitions PI, ( T) (dashed curve).
The tricritical point exhibits the classical critical ex-
ponents as predicted by an extended Landau theory [34]:

2.6 t-

T

3

2.2

p* 0.2 p* 0.4p* 0.6p* p*0.8
g.3 c ( 3 i t 3

j3*

FIG. 5. Phase diagram for the dipole moment m*=—2 and
the aspect ratio k=3. Below the triple temperature T& a fer-
roelectric liquid coexists with an isotropic gas. Between T& and
the critical temperature T, there are three possible phases: an

isotropic gas, an isotropic liquid, and a ferroelectric liquid. The
first-order phase transition between the isotropic and the fer-
roelectric liquid turns into a second-order phase transition at
the tricritical temperature T, ~ Above T, there is a line of criti-
cal points pI, (T} given by the dashed curve. The dotted lines
denote the two phase region of the isotropic gas and the liquid if
the ferroelectric phase is not taken into account. within the
shaded region there are no thermodynamically stable states. At
high densities the system freezes. The corresponding solid

phase is not shown because it is not accessible by the present
theory.
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3.5 4
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order m

s
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m*=2, k=3
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1'

2.2--

25

0 0.4

2

3

k

FIG. 10. Dependence of {a) the tricritical temperature T,*

and (b) the tricritical density p,
* on the aspect ratio k for

m *=2. At large aspect ratios T, approaches the limiting value

T,*(k ~~ ) =3.2595 and p,*(k ~~ ) =0.5433. For small k, T,*

increases sharply. However, for these small values of k the cor-
responding tricritical density reaches such high values that the
fluid will become a solid.

three- and two-dimensional fluids with internal quantum
states). For decreasing k the tricritical point first ap-
proaches the triple point, but then the tricritical tempera-
ture increases again (see Fig. 10). As shown in Fig. 11
for the case of a sphere, at small values of k there is only
a weakly first-order transition between the isotropic and
the ferroelectric liquid below the tricritical point, which
occurs at a density far above solidification. Of course
these phase diagrams are incomplete insofar as they do

2.4

2.2

1.8

0.80.4 0.60.2

FIG. 11. Phase diagram for a spherical sample (k =1). The
formation of a ferroelectric phase affects the phase diagram only
at very high densities where a weakly first-order transition be-
tween the isotropic and ferroelectric liquid is found, which ex-
tends up to the highest densities considered. The dashed line

denotes the absolute stability limit of the isotropic phase given

by Eq. (7.10), which represents the analytic continuation of

pf ( T) (compare Figs. 5 and 9).

FIG. 12. Comparison of the phase diagrams for m *=2 and
k =3 obtained by approximating the coefficients ui in different
orders in m [see Eq. (4.5)]. Since the isotropic-liquid —gas part
of the phase diagram depends only on u&, it is the same in

O(m ) and O(m } [see Eq. (4.9)]. The line of critical points
(dashed line) depends only on u

&
[see Eq. (7.10)]. Therefore it is

the same in O(m ) and O(m') [Eq. (4.10}]. Also shown are
those parts of the limiting phase diagram that can be calculated
to all orders in m, i.e., the line of critical points, the tricritical
point (open squares), and the isotropic-liquid —gas coexistence
line.

not contain the transition to a solid phase which is not
predicted by the present local density-functional theory.
For a pure Lennard-Jones fluid the liquid-solid transition
occurs in the range p*=0.85 —0.95 for T("r, [24], so
that most probable for values of k close to 1 the forma-
tion of the ferroelectric phase is preempted by the freez-
ing of the fluid.

A11 results presented up to now were obtained with the
coefficients ui calculated in order m ' [see Eqs.
(4.9)—(4.13)]. The effect of truncating the series in Eq.
(4.4) can be estimated from Fig. 12, which displays the
phase diagrams obtained with truncations at O(m ),
O(m ), and O(m ) for k =3 and m '=2. Additionally
we show parts of the phase diagram using the full ex-

ponential exp(Pad; ), i.e., all orders in m: The coex-
istence line of the isotropic fiuids is taken from Ref. [18];
the tricritical point and the line of critical points are cal-
culated from Eqs. (7.10) and (7.24) (using the results for

f»o and fz2o from Ref. [18] to determine u, and u2).
Note that the liquid-gas coexistence line is the same for
O(m ) and O(m ) because it depends only on uo, which

contains only even powers of m [see Eq. (4.9)). On the
other hand, the line of critical points is identical for
O(m ) and O(ms) since u, contains only odd powers of
rn . Obviously with increasing order in m the phase dia-

grams converge to a limiting form for which the result in

O(m ) represents a satisfying approximation.

VI. OBLATE SAMPLES

In the case of oblate ellipsoidal samples, i.e., at aspect
ratios k ( 1, the polarization is expected to point along a
spontaneously chosen direction within the xy plane. This
means that the orientational distribution a(co} will de-

pend also on the azimuthal angle P. Thus we use an ex-
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pansion in spherical harmonics:

a(~)=/pi~ Yi~() pi~ =fd~a(~)Yim(~) . (6.1)

Since a(co) is real one has p~ = (
—1) iMi', where

m —=—m; pcs= I/&4n. due to Eq. (2.1). In analogy with
Eq. (3.6) we obtain

T

2
3 12—Q;«= — g f d r,~h 8,~, fi i i(r, ~ }

]r

X f dcodco' g pi'~ pi* Yi'~ (co)Yi*~ (co')C(l, lzl, m&m&m)
mi mp, m

X Yi (cu) Yi (co') Yi' (co,z), (6.2)

21 +1
4m

1~ 2 P
y ill t 2P Ii, l~, I

PI&mPI ~~lil~l

(6.3)

In the next step we use our results for the integrals Iz ob-
tained in Sec. III. For A=(llO) we find [see Eq. (A. 157)
in Ref. [29]]

g C(110,mmO)pi )u~ =(21+1) '
( —I)'glori

where the complex conjugate of Eq. (6.1) has been used.
Only the factor Yi' (cadiz) depends on the angle Pi&, so that
all terms with mAO vanish. By using the orthogon-
ality of the spherical harmonics and with Yio(co)=V'(21+ 1)/4m P, (cos8) one obtains

' 1/2

g C(l, l~l, mmO)

a(co)=C exp —2mpPQ(21+1)vi~Re(pi~ Yi~(co))
I, m

(6.8)

pi =Cfd~ Y,
' (co)exp 2~pPQ —(2l+1)v,

l, m

XRe(iu, Y, (~})

C '= fdcoexp —2m'ppg(2l+1)vi~

(6.9)

Here we used [5/Sa(co)]IiMi~ I =2Re(}Mi~ Yi~(co)). From
Eq. (6.8) one obtains a system of equations for C and the
unknown expansion coefficients JMI of the orientational
distribution:

(6.4)

QC(112,mmO)p; p, ', =Q—,'(igloo
—Ip»I ) . (6.5)

(Note that iuic is real. ) By inserting Eqs. (3.18), (3.20),
(6.4), and (6.5} into Eq. (6.3) the interaction contribution
takes on the form

lim —Q;«=np g(21+1)ui I@iv V I, m

8m m'p'r(k)(p «— (6.6)

while for A = ( 1 12) the explicit evaluation of the
Clebsch-Gordan coefficients results in

XRe(iMi Yi (co))

Yi~(co') =g D„'m(Q)Yi„(co), (6.10)

As in Eqs. (4.20) and (4.21) the sum in the exponent con-
tains only a finite number of terms if the coefficients uI
are expanded with respect to the dipole moment m and
then truncated at a certain order.

In order to examine the resulting orientational distri-
bution it is useful to perform a transformation to a
different coordinate system whose z' axis points into the
spontaneously chosen direction of the polarization which
lies within the xy plane (see Sec. III). For a general rota-
tion described by the Euler angles Q=($, 8,g) the spheri-
cal harmonics transform according to [29]

where ui&&=ui and u&=1/(P~n3 )f "dr r f»0(r) is
the shape independent part of Q1 ~ In order to obtain a
convenient notation we rewrite this as

where D„(Q)denotes a rotation matrix with

Di (~) e ingdl (8)e
—™x (6.11)

lim —Qi«=mp g (21+1)vi~ I@i
1

v- V
, m

(6.7)

with vi« =ui for 1%1, v,o=u, (8n/9)rn l(k),—and.
v, ~, =ui+(4m/9)rn l(k).

The minimization of the grand-canonical functional
with respect to the orientational distribution yields

A general expression as well as explicit formulas for 1=1
and 2 for the functions d„aregiven in Ref. [29]. The
coefficients of the orientational distribution correspond-
ing to the new coordinate system are related to the previ-
ous ones according to

(6.12)
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Due to g (D„' )*D„=5„„,one has g 1@&

1p, ~, i.e., the shape independent part of 0;„,[see
Eq. (6.6)] takes on the same form in the new coordinates.
Now we consider the special rotation /=0, 8=m. /2, and

y =m /2, which represents the transformation
(x',y', z') = (y, z,x). Using the explicit expressions for the
d„' from Ref. [29] we find

p', o= —&2 Re(Lt», p'» =Imp» — —p, o . (6.13)

Inserting Eq. (6.13) into Eq. (6.6) yields the interaction
contribution in the new coordinates

1 8m
lim —Q;„,= — m p I(k)v- V '"' 3

X [2(lmp'„) —(Rep, '„)——'p, '
]

+np g(21+1)uiipI
1, m

(6.14)

In the following we exploit the symmetries expected
for the equilibrium distribution in order to reduce the
number of coefficients that have to be determined. Due
to the invariance of Q under rotations of a(co) about the z
axis one can choose the polarization to point along the z'
axis, which results in p&& =0. Any other degenerate solu-
tion of Eq. (6.9) can then be obtained by rotating the pre-
vious solution about the z axis by an angle Po. Further-
more the orientational distribution should be invariant
under a reflection at the x'z' plane, i.e., the middle plane
of the ellipsoid. This means that it has to be an even
function of the angle P'. For this reason the imaginary
parts of the coefficients pi vanish since
Im Y& (8,$)= —Im Y& (8, —P). Another symmetry
operation is the reflection at the y'z' plane corresponding
to the transformation P'~rr —P'. Due to
Yi (8, rr P)=( ——1} Y~" (8,$) all coefficients p& with

even m are real, while coefficients with odd m are imagi-
nary and thus must be zero. For example, for I ~ 2 one is
left only with the real coefficients p&0, pro, and pz2.

Surprisingly the numerical solutions of Eq. (6.9) show
that at the minimum of the grand-canonical functional,

pz2 as well as the higher coefficients with rrt@0 vanish.
This means that the orientational distribution exhibits ro-
tational symmetry about the z' axis and thus depends
only on the angle O'. With the definition

1
Qo Qo

dx —,'+ ga, P, (x} ln I+2+rz, P, (x)
1=1 t'=]

2n
—1= g ( —1)" f dx g a&Pi(x) . (7.1)

The multinomial expression in the integral can be ex-

panded as

QO
n

g a(PI(x)
1=]

r1 n= lim $ $ 5k+
k(=0 k~, =O k, ,k, . . . , k.

X [aiPi(x)] ' . [a~P~(x)]

2I +1
a, = de'a(co')P, (cos8'}=&n(21+1)pIo (6.15)

the grand-canonical potential Eq. (6.14) takes on exactly
the same form as for elongated samples, but with aI and
I(k) replaced by a& and —

—,'I(k), respectively [see Eqs.
(3.22}—(3.24) and recall that ul+, =u&]. Therefore the
case of an oblate ellipsoid with aspect ratio k can be
mapped onto the case of an elongated ellipsoid with an
aspect ratio k given by the implicit equation

I(k) = —2I(k ) I6.16)

whose solution is shown in Fig. 13. The aspect ratio k in-
creases from 1 at k =1 to infinity at k =0. Not only are
the phase diagrams identical for the aspect ratios k and k,
but also the orientational distributions at a given density
and temperature are the same, except that they are cen-
tered around the z axis for k & 1 and around the z' axis
for k & 1.

VII. LANDAU THEORY
In order to locate the line of critical points separating

the isotropic and ferroelectric liquid and to analyze the
behavior near those second-order phase transitions we ex-

pand the orientation dependent contribution hQ, to the
grand-canonical potential [see Eq. (4.17)] for small devia-
tions from isotropy, i.e., for small aI. The corresponding
entropic term is given by

1f dx a(x }ln[2a(x ) ]

12 with the multinomial coefficients

10

k), kg, . . . , kgb

0.2 0.4 0.6 0.8

The terms of this sum can be ordered according to the in-
dex of the highest nonzero k,-, i.e., the degree r of the
highest occurring Legendre polynomial. [For a given N
tuple (k„.. . , k~), r is defined by k„&0and k, & „=0.]

1

For that purpose we introduce the abbreviation

FIG. 13. The phase behavior and the structural properties of
oblate samples with an aspect ratio k ( 1 are equivalent to those
of a certain elongated sample with an aspect ratio k & 1 [see Eq.
(6.16)]. k = 1 for k = 1 and k diverges for k ~0.

f(k, , . . . , k~;n)=5k + +k~, n

X[a, P( )x]
' . . [a~P~(x)] '

and rewrite Eq. (7.2) as
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galPl(x) = lim g g f(k„.. . , klv „k&=0;n)+g . . g g f(kl, . . . , kill;n)
1=1

(7.4)

The iteration of this procedure leads to
'n

N n n n

galPl(x) = hm g g . g g f(k„.. . , k„k„+,=(), . . . , kN=0;n) .
I=1

Thus the orientation dependent contribution to the grand-canonical potential is
00—bQ=p2+u, a2l++ g g g g g c„'"".'. .„a,' a„'

l=1 P n =2 r=lkl =0 k„ i=ok, =l
(7.6)

with

2n —1

cI "'
k

—4, + +k, n(
—1}"

( )

1 k1 k
X k k k dx P, '(x) P„'(x).

In Eq. (7.6}the contribution for n =2 gives

1
" 2—AQ= g +pPul a, +

l=l

(7.7)

(7.8)

+pPul ~0, 1~ 1 (7.9)

are fulfilled. The numerical evaluation of Eqs.
(4.10)—(4.13) shows that Eq. (7.9) is fulfilled for 1=2,3,4
and for all reasonable values of the parameters T, p, m,
o, e, and k. But for /=1, since u, may take on quite
large negative values, especially if k&&1, there is a
threshold density

where the ellipsis denotes all higher-order terms; they
contain products of at least three factors aI. The terms
of the form a;aj with i' vanish due to the orthogonali-
ty of the I.egendre polynomials appearing in Eq. (7.7).
Obviously, for given p and p the isotropic configuration
[al&, =0] minimizes the grand-canonical functional if
the conditions

p, (T)=— 2/3
Pul(k, m, T)

(7.10)

above which a stable isotropic phase cannot exist. The
line p=pf, (T) is a line of second-order phase transitions
as long as the density p at the global minimum of 0 is a
continuous function of p, as it is the case for T & T, .
This means that in this parameter region the criterion for
the minimum of Q with respect to [al J is indeed deter-
mined only by the terms quadratic in a, [see Eq. (7.8)].
The equilibrium values of the coefficients aI at this
minimum are determined by the coupled equations
Bb Q/Gal =0, 1 ~ 1. In the ordered phase al is nonzero
and vanishes continuously upon approaching pf, ( T).

In order to obtain the values of aI one needs to know
the higher-order terms in Eq. (7.8) beyond the quadratic
contribution. A posteriori it will turn out that the
coefficients aI wi11 vanish more rapidly upon approach-
ing the phase transition the larger I is. This means that
high powers of a& with large I can be of the same order
of magnitude as small powers of aIq with small l. In-
spired by the actual solution [cf. Eq. (7.16)] it turns out
that in order to determine alq it is appropriate to order
Eq. (7.6} not according to the number n =g,",k; of the
factors a, {as it is necessary for the stability criterion [see
Eq. (7.9)]), but according to the number L=g,",ik, .
This is accomplished by introducing in Eq. (7.6) an addi-
tional summation at the expense of a corresponding
Kronecker delta symbol followed by an interchange of
the order of the summations:

T

00 00—bQ=p gu, a, ++ g, g
l=l PL=1 n=2r=l k&=0

n n k k(r, n) 1. . . r
k +2k - . +k,L k ~ . k, 1

k 1=0k„=1
(7.11)

Due to Pl( —x)=(—1)'Pl(x) the product of polynomials
on the right-hand side of Eq. (7.7) is an odd (even) func-
tion of x if n is odd (even} so that ck'". '. . k =0 for n odd.

1 r
It is easy to show that, for a given set of numbers k;,
n =g;,k; and L =g; ,ik, diffe-r by an even integer so
Eq. (7.11}contains only contributions with even L. The
evaluation of the curly bracket in Eq. (7.11}for L =2 and
4 yields

1 00—bQ=~ pP gula, +—', a,v p

+ (—', a2 —
—,', ala2+ —,', al )+ (7.12)

If one splits off one of the k, highest-order polynomials
P„(x}in Eq. (7.7), its degree r must be less than or equal
to the degree of the product of the remaining polynomials
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P, ' (x) P„' (x),
r —1 Lr ~ haik, +(k„—l)r~2r haik, r ~ —;(7.13)
i =1

otherwise the coefficient ck'". '. . k would vanish due to the
1 r

orthogonality of the Legendre polynomials because the
product of the remaining polynomials could be expressed
as a linear combination of Legendre polynomials with or-
ders less than r The minimization condition in Eq. (4.16)
is equivalent to BED/Gal =0 for all I, which results in

I, /2 oo n n n
k, k

L, =2r=(n=2k ={) k =Ok =] +t
1

(7.14)

Due to 2r ~L [see Eq. (7.13)) and r ~1 [see Eq. (7.14)]
one has

haik;
—1~1 .

i=1
(7.15)

(This inequality means that, if a, is proportional to y', so
1 k1 k

that the product aI a& a, ' is proportional to y
this product vanishes for y ~0 at least as y'. ) For p ~ p fc
the set of equations given in Eq. (7.14) can be solved con-
sistently with the ansatz

aI= AIy'+0( '+
}

where

(7.16)

(7.17)

4u2 2 4A2y + —', Azy —
—,', A,y +O(y )=0, 1=2

3 u)

(7.19)

4 u&

A&y +g&(A„.. . , A~)y'+O(y'+ )=0, 1~3 .
u)

(7.20)

By inserting this ansatz into Eq. (7.14) and using Eq.
(7.12) one obtains

4 2——',y A, y
—

—,", A, Azy'+ —,", A',y'+O(y') =0, 1=1

(7.18)

with hp=p —pf, and

+O(y ) —Ap =0 (7.22)

m*=2, k=3, T =2.8

affects the phase diagram only for densities for which the
fiuid is expected to be already solid (see Sec. V) so that we
do not pursue that farther. The remaining amplitudes At
can be determined iteratively by solving the equations for
I » 3. There are two solutions for 3

&
and for all AI with

odd I which differ only by sign. They correspond to the
two possible orientations of the polarization vector along
the long axis of the ellipsoid.

Equation (7.16) means that a, is a suitable order pa-
rameter vanishing as the square root of the density
difference upon approaching the phase transition. Close
to the phase transition the higher-order coefficients al are
proportional to powers of e, . Figure 14 shows the nu-
merical results for the first three coei5cients al as a func-
tion of the density difference for m*=2, k=3, and
T'=2. 8. The asymptotic behavior according to Eqs.
(7.16) and (7.21) is indicated.

In order to analyze the dependence of the orientational
order on the chemical potential near the line of critical
points we insert the approximate solutions Eqs. (7.16) and
(7.17) into the minimum condition Eq. (4.15) and expand
with respect to y, which leads to

r

Pf fHs(Pf T}+ "02' 3P

g&(A„.. . , AI) are functions which, in principle, can be
determined by evaluating the appropriate expansion
coeScients c&'". '. . k . They do not depend on the higher-

order amplitudes A; » since these always occur together
with a power of y higher than y' and thus are contained
in the higher-order terms in Eq. (7.20). In Eq. (7.20}
there are no terms of order y' ' or lower due to the con-
dition in Eq. (7.15). The nonzero solutions of Eqs. (7.18)
and (7.19) are 0.01 0.02 0.03

3u) Su2 5 u1

4 u&
—Su2 2 u&

—Su2
(7.21)

For m*=2 and k &1.1S one finds u, &Su&(0 for all
temperatures so that Az &0 and A, is real. At lower
values of k the above expansion becomes invalid if
u, =Su2, in these cases, however, the orientational order

FIG. 14. Dependence of the expansion coeScients o,
&

of the
orientational distribution on the density difference p —pf, . In
accordance with Eq. (7.16), a, vanishes as A&pf

'
(p —p }'

upon approaching the phase transition. The dotted lines
represent the approximate solutions for a, and a, [Eq. (7.21}]
obtained from the Landau expansion.
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Pfc O'Hs(Pfc )+ 2Pfc 0 ' (7.23)

For temperatures above T, the coefBcient of y is posi-
tive. Thus there are solutions corresponding to the or-
dered phase for hp & 0, and since y —hp and a& -y, one
obtains the critical exponents given in Eq. (5.12). At the
tricritical point the expression in square brackets in Eq.
(7.22) vanishes so that the terms of order y become the
leading ones and the critical exponents change to the
values given in Eq. (5, 10). By using Eq. (7.21) the implicit
equation for the tricritical temperature reads

82

2 fHs[Pf~( ~) ~]+ 2 "0(
p'

3ui(T, ) —Su (iT )t

Qi Tt 592 Tt

Note that T, is independent of u»3 [see Eq. (7.24)] and

pf, (T) is independent of u&&z [see Eq. (7.10)]. At lower
temperatures, for which the prefactor of y in Eq. (7.22)
becomes negative, the solution of Eq. (7.22) corresponds
to a saddle point of 0, but there are minima at a larger
degree of order which are not contained in the present ex-
pansion and which lead to the first-order transition.

(a)
3.5 " m*M, k=~

7

' p„(T)

tional in a larger space of configurations including several
domains. This allows one to determine the actual spatial
distribution of the polarization in a ferroelectric dipolar
fluid, which differs substantially from the case of a fer-
roelectric solid due to the lack of easy axes of the polar-
ization. To our knowledge, up to now there are no mi-
croscopic results concerning this interesting but dificult
problem, which we are pursuing actively. It has been
surmised that the domain walls extend over the whole
sample [42] whereas in snapshots of the configurations
obtained by simulations the interface between domains
with opposite polarization appears to be rather sharp [2].
One possible mechanism for reconciling these two obser-
vations would be that the sharp intrinsic interface mi-
grates slowly throughout the system leading to an
effective broadening over long times. Second, our results
may be relevant for metastable states of homogeneous po-
larization, which could be observable in computer simu-
lations using appropriate initial conditions.

VIII. DOMAIN FORMATION

As already stated above the present work is confined to
the case of a homogeneous polarization throughout the
sample. However, real ferromagnetic and ferroelectric
samples with a finite demagnetization factor split up into
various domains with different directions of the polariza-
tion vector in order to lower the demagnetization energy.
For dipoles fixed on lattice sites Griffiths [38] has proven
that this leads to a shape independent free energy in the
thermodynamic limit. Provided that this result holds
also for dipolar fluids, one can surmise [39] that the phase
diagrams become independent of the sample shape if
domain forination is taken into account. Since there is
only one domain for an infinitely long needle-shaped sam-
ple (k ~~), or equivalently for a flat disk (k ~0), our re-
sults for this special case would therefore be valid for any
shape. For this reason in Fig. 15 we display the phase di-
agrams for k ~ 00 and for three different values of the di-
pole moment. For m ' =2 and 1.5 we find the same topo-
logical features as in Figs. 9 and 5. For m *=1,however,
the tricritical point has disappeared below the liquid-gas
coexistence curve and only a critical end point T„is left
where the line of critical points meets the coexistence line
of the isotropic phases [40]. A similar series of phase dia-
grams has been found by Zhang and Widom [41], who
use a phenomenological ansatz for the free energy. In
contrast to their approach our analysis keeps track of the
dependences on the microscopic parameters and renders,
in addition, the orientational distribution a(cos8), which
exhibits a nontrivial behavior even for k = ao (see Fig. 4).

Although for finite aspect ratios our results for a single
domain probably do not correspond to the true thermo-
dynamically stable configuration, they are nonetheless in-
teresting on their own. First, they are indispensable
prerequisites for the minimization of the density func-

2.5

0.2 0.4 0.6 0.8 1.2

(b) 2.4
m*=1.5, k=~

isotropic

1.6

0.2 0.4 0.6 0.8

(c) 1.6

1.4 .

1.2 .
erroelectric
qUld

0.2 0.4 0.6 0.8

FIG. 15. Phase diagrams for needle-shaped samples (k ~ oo)

with reduced dipole moments (a) m =2, (b) m =1.5, and (c)
m — =1. T„~denotes a critical end point. For more details see
the main text.
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The shape dependence will certainly prevail if an exter-
nal field is applied, which tends to suppress the domain
formation. In a large field all dipoles are aligned in one
direction and thus, e.g., the second virial coefficient be-
comes shape dependent [43] by the same mechanism as

0;„,given in Eq. (2.10}. Levy and Landau [30] showed
experimentally that the specific heat at constant external
field of a dipolar antiferromagnet depends on the aspect
ratio of the sample. As compared to our shape depen-
dent results in zero field the external field will shift the
first-order phase transitions [41] and the line of second-
order transitions will be washed out but leave fingerprints
such as, e.g., maxima of the specific heat [40].

IX. SUMMARY

Based on the density-functional theory developed in
Ref. [18] we have studied the occurrence and the proper-
ties of a ferroeiectric nematic phase in Stockmayer Quids.
The following main results have been obtained.

(i) For an ellipsoidal volume with a single domain, the
shape dependence of the grand-canonical potential for
ferroelectric phases, which is due to the long-range na-
ture of the dipolar interaction, is given by Eqs.
(3.22) —(3.24}.

(ii) If the sample is surrounded by a dielectric continu-
um, the grand-canonical potential is given by Eq. (3.34).
The introduction of a surrounding medium has the same
effect on the free energy density as an increase of the as-

pect ratio k to k,tr(k, e) [see Eq. (3.35) and Fig. 3].
(iii) We have derived a scheme which allows us to

determine the grand-canonical potential to any desired
order in the dipole moment m (see Appendixes A and B).
Explicit results up to O(m } are given in Eqs.
(4.9)—(4.13).

(iv) Figure 5 shows the phase diagram for k = 3 exhibit-

ing three Quid phases, a triple point, the usual liquid-gas
critical point, a tricritical point, and a line of critical
points corresponding to a second-order phase transition
between the isotropic and the ferroelectric liquid.

(v) As shown in Fig. 9 for k =5, the liquid-gas critical
point disappears for large aspect ratios so that in these
systems at all temperatures there are only two Quid

phases.
(vi) For nearly spherical samples, i.e., k close to 1, the

occurrence of the ferroelectric phase affects the phase di-

agrams only at very high densities where the Quid is ex-
pected to have already turned into a solid (see Fig. 11}.

(vii) The phase behavior and the structural properties
of an oblate sample with an aspect ratio k & 1 are
equivalent to those of a certain elongated sample with an
aspect ratio k ) 1 (see Sec. VI and Fig. 13).

(viii) Close to the line of second-order phase transitions

p&, ( T) above the tricritical point the expansion
coefficients a& of the orientational distribution vanish ac-
cording to the power law -(p —

p&,
)'~ [Eq. (7.16)]. The

corresponding amplitudes for 1=1,2, which are deter-
mined by a systematic Landau expansion, are compared
with the full numerical results in Fig. 14.

(ix} Figures 7 and 8 show the critical exponents of the
ferroelectric order parameter a, and the density

difference p
—p, upon approaching the phase transition

at and above the tricritical point along various thermo-
dynamic paths. They are in accordance with the sys-

tematic Landau theory [see Eqs. (5.9}—(5.12)].
(x) There are reasons to expect that for any shape of

the sample the inclusion of domain formation leads to the
phase diagrams obtained for k = ~, which are displayed
in Fig. 15 (see Sec. VIII).

Obviously several further investigations are lying
ahead, such as the study of domain formation and the use

of more sophisticated density-functional theories. In par-
ticular one would be interested in the freezing transition
between the ferroelectric liquid and the solid phase as
well as in more sophisticated expressions for the pair dis-

tribution function compared with the one used in Eq.
(2.11).
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APPENDIX A: DETERMINATION
OF THE COEFFICIENTS ui UP TO ORDER m 8

( —1)'
u,' '= —24m&5 I4(Pe)

(21+1)' cr

1 1 $
1 1 2

X 0 p 0 1 1 2

l l 0
(A2)

with the dimensionless integrals I„defined in Eq. (4.14).
Due to the triangle condition

I 1, —1, 1

~ I ~1,+I,

for the 3j symbol ( ) and the parity selection ruleE) E2 l

1 2

(A3)

l2 l

0 0 0:0 unless I, + 1z + l even (A4)

[see Eqs. (A. 131}and (A. 155) in Ref. [29]], u&'
' is nonzero

only for l =0 and 2:

g'~'= — ~ I (pE) u'~'= — I (Pe) . (A5)
3 4 ' ' 375

The contributions to u& of order m can be obtained
from Eq. (4.3) if one replaces the Mayer function f
by —,'P wd;~e '. This yields [see Eq. (2.17)]

~4) 256' ( 1) P
(21+1}~ 03

x fd d~'~l12@IIO

4»2 is expressed as a sum over rotational invariants us-

ing the product rule Eq. (B8), which is derived in Appen-
dix B. Evaluation of the angular integrations with the
help of the orthogonality relation Eq. (4.6) then gives

[(ooo)=1~&5]
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Here the values

1 1 0
0 0 0

and

1 1 2

1 1 2

0 0 0

have been used.

1

3&S
'

1 1 2

000

1 1 2

1 1 2 =—„'o
2 2 0

(A6)

(A7}

r

204877 2
45 15

1/2
)' p'I

((2l+1} g

X Id co d co 4 ( )pC ((o (A8)

By applying the product rule in Eq. (B8}twice the third
power of 4»2 can also be expressed as a sum over rota-
tional invariants:

The terms of order m are calculated analogously, this
time replacing the Mayer function f by —

—,'P wz; e
which results in

r3

@s((q= g g ( —1) ' ' (2p, (+ 1)(2(Mq+ 1)[(2(M+ 1)(2v(+ 1)(2vq+ 1)]'/
4m.

P),Pp, P V), Vg, V

1 1 pi
00 0 0

12 p v

0 0 0 '1
pi

p2 2 2 p
0 0 0 0 0

1 2 1 1 2

1 2 . p, p p '@VVV'
I 2

p2 p v) v2 v

1 p) v) 1 p2 v2

0 0 0 0 0 0

(A9}

After performing the integrations one has v) =v&=1, v=0, and therefore, due to the last 3j symbol in Eq. (A9), )M=2 so
that one finally obtains

r

p2 1 1 pi 1 1 p2 1 pi l
uI = —80m+ ,'(2l+—1) 6I7(pe) g (2p(+1)(2p&+1) 0 0 0 0 0 0 0 0 0

CT
17 2

J

1P2l 1 12 1 12
X 0 0 0 ' 1 1 2 pi p2 2

P1 p2 2 I l 0
J

(A 10)

where the values (()(x))
= 1/v'5 and (()(x))

= —Q —,', have been used. Due to the first two 3j symbols (((,( and pz must be 0
or 2 and thus l = 1,3. For these two cases the evaluation of the sums gives

1677 p 16)r P
225 g6 ' 25725 gs

The values for the occurring 3j and 9j symbols are obtained from the computer program MATHEMATIcA.
In a completely analogous way the contributions of order m are found to be

(s) 8192 )3/p (
—1)' P 4 ea( = —

m
~/~ 9

I (P)0)edco de'0 ()q4 )')0
(2l + 1) o

( 1)l P3= —300@&5, Q g (2p)+1)(2(Mq+1)(2@+1)(2v)+1)(2vq+1)(21+1)'/ o9
„„„

(Al 1)

1

X

X

'2
Pj 1 1 P2 2 2 p

0 0 0 0 0 0 0 0

p& v& 1 p2 v2 1 v& l 1 v2 I

0 0 0 0 0 j 0 0 0 0 0 0

1 1 2 1 1 2 1 1 2

X 1 1 2 . , P) p2 p, v) v2 2. ,

P& P2 P v, v 2 l l 0

(A12)
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which results in

3

u() = — 91,O(pe),(8)—

,1)0(pe),
32m P
6125 09

(A13}

APPENDIX B:
PRODUCT RULE FOR ROTATIONAL INUARIANTS

In order to determine the coefficients u( (see Appendix
A) it is necessary to express a product of two rotational
invariants 41 ( ( [see Eq. (2.14)] as a sum of such func-

tions. For this purpose it is advantageous to use the 3j
symbols [see Eq. (A. 139) in [29]]

J2 J
=( —1) ' ' (2'+1)

m& m2 m
(8)—

99 225 XC(j,j2j, m, mmmm ) (81)

In principle, the method that leads to Eqs. (A2), (A10),
and (A12) can be applied to calculate the coefficients u, to
any desired order in m. For each additional order one
has in addition three summations, three 3j symbols and
one 9j symbol [see Eq. (88}]. An examination of the 3j
symbols shows that in general the term of order m "only
contributes to u„,u„2,. . . , uk (with k=0 if n is even

and k = 1 if n is odd). Thus for all I one has

instead of the Clebsch-Gordan coelcients C because of
their higher symmetry. Thus we apply the form [see Eq.
(2.14)]

( —1} ' ' (2l+1)'
ml, m2, m

Y( (~)Y, (co')Y(' (co)~)
m1 m2 m 11 2 2

u (m —+0)-m '+O(m '+
) . (A14)

and the product rule for the spherical harmonics [see Eq.
(A.36) in Ref. [29] ]

oo ( I, l I I, I

Y( (co) Y( (co)= g g (
—1) [(21,+ 1)(21~+ 1)(21+1)]'~ (co)

4~)=0 m = (— m) m2 m ™
in order to express the product of two rotational invariants as

(83)

m), m2, m m I, m &,
m' P), V) P&, V& P., V

X [(21( + 1)(21~+1)(21', + 1)(21~+1)(2)u(+ 1)(2)Mi+ 1)(2p+ 1)]'~

I ) I~ I I', /2 I' I, /', p ) /2 /2 p2

m, m2 m m', my
m' m] m ) V] m2 m2 V2 m m' v

I ) p) Iq 12 p2

0 0 0 0 0 0 0 0 0 (84)

/, ld I d

w'th g„„=g„"Og„„.[Note that m+rn' v=O; see E—q. (A. 130) in [29].] The summation can be considerably
simplified by using the formula (A. 149) in Ref. [29],

I, lb / b I, I, I„
m, mb, m, md,

ab ™cd

M mb m b m md md m m m

lb ld Iqd l,q l,d /

X
m$ md mbd m b md m

/„ lqd 1

mg~ mbd

/, /b /, b

. I, ld ld

/„ /„d /

(8&)

and the symmetry property

J& J2 J
m) mp m m) m2 m
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of the 3j symbols. The 9j symbol is given by [Eq. (A.291}in Ref. [29]]

a b c
T

a i x h d x f b x
(2x+1)

h d f
min(a+i, h+d, f+b)

(B7}

(
1}l|+l2+t+ll+l2+I'(4 }-3/2III 7T

1 2

X g [(2l+ I}(21'+ I}(2li+1}(2l2+1}(2lI+1}(212+1}(2pi+1}(2@2+I}]'
P)~IJ 2~8

d e f
g h i

A lengthy explicit formula as well as certain symmetry properties for the 6j symbols [d, f ] are given in Sec. A.5.1 of
Ref. [29]. By applying Eq. (B5) to Eq. (B4}one finally obtains

I t 1't pt l2 l2 p2

.0 0 0. 0 0 0.
l) l2

1 I' p
0 0 0 ll /2

P& P2

l

P)PtP ' (Bg}

where Eq. (B2) and the condition v&+ vz —v=0 have been used.
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