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Surface adsorption of branched polymers: Mapping onto the Yang-Lee edge singularity
and exact results for three dimensions
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Starting from the general epidemic process, a stochastic multiparticle process which exhibits a critical
point near an absorbing state and leads to big clusters belonging to the branched polymer universality
class, we exploit supersymmetry to map the statistics of branched polymers in half-infinite systems onto
the problem of the Yang-Lee edge singularity. Using this connection, we exactly calculate the scaling
behavior and various scaling functions for the crossover between the nonadsorbed and adsorbed state in
three dimensions.

PACS number(s): 64.60.Ak, 68.35.Rh, 64.60.Ht

I. INTRODUCTION

The theory of critical phenomena near surfaces has
been of interest for more than twenty years (for reviews,
see Refs. [1) and [2]). In particular, the behavior and the
adsorption of 1inear polymers at a wall have been studied
by scaling, Monte Carlo simulations, and
renormalization-group methods [3] (for a recent review,
see Ref. [4]). Also the behavior of polymer networks or
branched polymers with fixed topology and of star poly-
mers has been analyzed extensively [5].

In contrast to the great number of all these studies,
only a little work has been done on the corresponding
problem of randomly branched polymers or lattice trees.
Using Monte Carlo methods Lam and Binder [6] calcu-
lated the specific heat of branched polymers modeled as
site lattice animals near a hard wall in the presence of an
attractive force between the monomers and the wall.
They found an adsorption transition and determined the
crossover exponent. De'Bell and co-workers [7] analyzed
lattice trees attached to a surface by exact enumeration
data. They estimated the location of the adsorption tran-
sition for various two- and three-dimensional lattices and
showed that the so-called ordinary behavior is deter-
mined by the bulk exponent. In particular they found for
the number of surface-rooted trees

5'~(E)= g "Ttt~ e '-A, X
X) ~1

8(E)=0 if E&E, (X»1) .

Here Y& ~ is the number of different trees with X& sites
]

out of X at the surface and 0 is the known bulk exponent
which determines the subleading asymptotic behavior of
large (bulk) animal numbers. For E &E„O(E) is the
bulk exponent of a (d —1)-dimensional system. Thus E,
is the critical energy for adsorption of trees at the sur-
face.

Here and in a subsequent paper we start an investiga-
tion of the adsorption transition of randomly branched

polymers at an impenetrable surface by analytical Aeld-
theoretic methods. A short communication of exact re-
sults in d =3 was already given in [8]. We think that this
analysis, apart from its theoretical interest, is experimen-
tally relevant. Suppose the branched polymers are dilut-
ed in a good solvent; we find the universal properties of
such solutions near a wall. This is of interest for the un-
derstanding of surface properties of physical systems 1ike
rubbers and for the influence of surfaces on the sol-gel
transition and the collapse transition of branched poly-
mers.

The field theory of branched polymers is usually con-
structed either by generalization of the de Gennes 4
theory for linear polymers allowing for multifunctional
units besides the monomers [9] or by development of an
asymmetric Potts model which generates lattice animals
[10]. Both methods lead to the same effective Hamiltoni-
an. Parisi and Sourlas [11] have later shown that the
n ~0 limit inherent in the theory generate the same per-
turbation expansion as the field theory of the Yang-Lee
edge singularity in an imaginary random field. The di-
mensional reduction which follows from the hidden su-
persymmetry of this model is the origin of the remarkable
connection between the branched polymer problem in d
dimensions and the nonrandom Yang-Lee problem in
d —2 dimensions. The predictions of dimensional reduc-
tion for the critical exponents in two and three dimen-
sions agree quite well with the results of numerica1 stud-
ies. Thus one can hope that studying the Yang-Lee edge
of a spin system in d dimensions with a surface mill yield
information about the statistics of branched polymers in
d+2 dimensions as well. But the arguments of Parisi
and Sourlas are heavily based on perturbation theory for
systems in an infinite medium without surfaces. Thus we
prefer a derivation which avoids such an argumentation.

Ten years ago Grassberger [12] introduced a kinetic
model for the so-called general epidemic process (GEP)
which belongs to the universality class of dynamic per-
colation. The GEP is a local stochastic multiparticle pro-
cess which describes the temporal evolution of a density
of infected individuals n (x, t) It is characteri. zed by the
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following features.
(i) There is an absorbing stationary state n(x, t)=0,

corresponding to the situation where the epidemic has be-
come extinct.

(ii) The disease spreads (diffusively) in the available en-
vironment.

(iii} Infected individuals become immune to the disease
after their illness. Thus the net infection rate locally de-
pends on the number of infected individuals and of im-
mune individuals, introducing a memory term into the
process.

(iv) Microscopic degrees of freedom are subsumed in
the form of a local Langevin noise term which, however,
must respect the absorbing state. Hence it correlations
have to vanish for n (x, t) =0.

The field theory of the GEP was developed in [13,14].
It was shown that, after the epidemic has become extinct,
the distribution of immune individuals proportional to
f "„dtn(x, t) defines static percolation clusters. These
clusters percolate if the infection rate exceeds a critical
value. In [13]one of us showed that the statistics of large
clusters below the percolation point is indeed reducible to
the problem of the Yang-Lee edge singularity in a ran-
dom imaginary field. This demonstrates that the statis-
tics of these clusters and of branched polymers or lattice
animals belong to the same universality class. Therefore
we take the field-theoretic model of the GEP in a semi-
infinite geometry, originally formulated in a paper of
Janssen et al. [15] and used to calculate surface proper-
ties of percolation, as a suitable start point for our inves-
tigation of surface properties of branched polymers.

II. MODEL BUILDING AND BASIC QUANTITIES

Let us consider a Langevin equation for the local den-
sity n (x, t) of the infected individuals which incorporates
the characteristics (i)—(iv) in a simple, self-contained form
(up to irrelevant terms in the renormalization-group
sense}:

B,n(x, t)=A[6, —r —m(x, t)]n(x, t)+q(x, t)+q„(x, t) . (2)

The first term in the bracket on the right-hand side mod-
els the diffusive spreading (ii) of the disease. The next
two terms in the bracket represent the net infection ac-
carding to (iii}. Here m(x, t)=Aw f ' dt'n(x, t') is pro-
portional to the density of immune individuals at time t
at the point x. Besides an external source q(x, t) of the
epidemic, q„(x,t) is a Gaussian random source, with
correlations subject to (iv)

(q„(x,t)q„(x', t') }=Ayn(x, t)5(x—x')5(t —t') . (3)

The parameter r in (2} measures the distance to the criti-
cal point. In terms of percolation probabilities it can be
interpreted as r-p, —p near this point up to fluctuation
corrections. We shall study the GEP in a semi-infinite
geometry [x=(y,z}~ y&R ', 0&z & ao ]. Thus we
have to endow our stochastic process with appropriate
boundary conditions.

To study the stochastic properties of the GEP and
especially the statistics of large clusters of immune indivi-
duals, it is advantageous to recast the Langevin equation
(2) in conjunction with (3) as a dynamic functional
[16,17].

dt[II, n]= fdt d x a(x, t} 8, +A[r —b, +m(x, t)]—A, tI(x, t) n(x, t)+ fdt d 'y Acro(y, t)no(y, t), (4)

where no(y, t)=n(x, z=O, t), etc. Within this formalism
all correlation and response functions can be expressed as
functional averages with weight exp( —8). In (4) we have
added the only relevant surface interaction term which
respects all the conditions (i)-(iv) together with the
causality requirement [15]. The Laplacian b is defined as—V- V, where the arrows show the direction of
differentiation, and we have neglected redundant surface
terms.

In the following we use the notation

m(x)=m(x, t ~Do )=Aw f dt n(x, t)

for the density of immune individuals after the epidemic
has become extinct. From now on the term immune indi-
viduals is caOed "monomers" in polymer language. Re-
calling that with

(q, K)= fdt d"x q(x, t)8'(x, t)

the expression f2)rtexp[ —d'+(q, tI)] defines the joint
probability for a specific realizatian of a path n(t), we
find that

I

'N~(zR ) ( n (x~ 0)}~

Sn N — xm x 5 xzoe

(5)

measures the probability for the generation of a single
cluster of N monomers from a weak pointlike source q as
a root of an epidemic at xx =(ys, zx ). In the bulk limit
we have %'z(zx —+ ~ )-Npo A& where Az-RON are
the animal numbers which count the different
configurations of the large ¹ited clusters. The con-
stants iLo and po are nonuniversal (we combine the two
into one A, =pok, o). The factor N arises because, in the
bulk limit, each point of a given cluster may be the root;
thus by translational symmetry the same configuration
can be generated N times.

To find out the modifications of the properties of
branched polymers on their approach to the adsorptive
surface we introduce several quantities of interest. We
consider clusters rooted in the point x„made of N mono-
mers with N monomers in a layer parallel to the surface
at a distance z . The corresponding animal numbers are
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given by

NgA+(NI lzl ' i' Ized )

= f2)(if, n)5 N —fd x m(x)

X5(N, —m"'(z, ))

X 5(N„—m ' "(z ) )n (x„,O)e (6)

Z~"(z, , . . . , zR)

=f dN, N, f dNgNg
0 0

XAN(N) Iz( .,'Ng lz„;coo) .

These moments are layer-integrated restricted correlation
functions

where we have defined layer densities
m"'(z)= fd 'y m(y, z). The factor Na in (6) arises
from the restricted translational symmetry: each point in
the layer at zz may be the root of the same configuration.
The definition (6) leads directly to the sum rules

f dN, A+(N, lz„N2 Ized, . . . ', N„ lz, )

=A&(N2 Iz2, . . . ', Nz Ized ),
f dz) f dN, N)A~(N( lz), N2lz2, . . . , N~ lz~ )

0 0

NA&(N—2Iz2, . . . , Nz Iz„), (8)

and

dN~A~(N, lz„. . . ;N„ Ized }=% &(N& lz&, . . . ,zz )
0

Z~(x, ). . . , x„)—( m (x, ) n (x~,O) ) v

= f2)(if, n)5 N f d x—m(x)

—8—tz)om( )(0)
X m (x, ) E(xa, O)e

(12)

The restricted correlation functions are (linked) cumu-
lants. Indeed, if one separates a group of arguments of
Zz(x„. . . , xz ) to infinity, we get Zz =0 by reason of the
connectedness of the animals.

Various mean values are given by these moments.
Especially for the mean monomer density at the point x
in the (surface-weighted) clusters with root at xz we ob-
tain

as the generalization of (5). Later we will show that the
layer animal numbers are fully symmetric in all their ar-
guments, as one feels intuitively from their definition.

Having defined layer animal numbers we now weight
monomers at the surface by a Boltzmann factor e
Here mo represents a surface adsorption energy E(di-—
vided by temperature). Consequently we introduce
weighted layer animal numbers

A~(N) lz) . 'N~ IzR'coo)

= f dNoe ' 'A~(NOIO, N, lz, , . . . ;N„Ized ) . (10)

We expect a transition of the behavior of the animals
near the surface from a nonadsorbed to an adsorbed
phase at a critical value co0, = —E, of the adsorption en-

ergy.
Using these weighted animal numbers we define mo-

ments

p~(xlx„) —Z~(x, x„)/Z~(x„) .

With the help of (8), (10), and (12) the obvious sum rule

f d "xp~( lx„x)=N follows.
The radius of gyration is a characteristic length of an

animal. Here we have to distinguish between a radius
perpendicular to the surface and a parallel one. They are
defined by

R~(xq )~=f d"x(z —zx) p~(xlxa)/N ~

&,~(x~)~= fd «(y ya)'p—~(xlxa)/N

Also the surface induces an eccentricity of the root. This
eccentricity which defines the position of the center of
mass as (zR+R~) is then given by

R,(x„)~=fd~x(z z„)p„(xlx„)—/N . (15)

Of course many other quantities which characterize the
shape can be defined, but we will not consider them in
this paper.

Now we introduce the Laplace transforms of the mo-
ments

G(x„. . . , xz, co, coo) =f dN e " ZN(x„. . . , x„;coo)
0

= fr(N, n)m(x ) . K(xz, O)exp 8 coom"'(—0)——co f dzm~ "(z) (16)

We will show that the cumulants G(x&, . . . , x&)
directly related to the correlations of the Yang-Lee edge
problem in d —2 spatial dimensions. We note that the
nonuniversal factor A, in the animal numbers at this
stage can be included in a redefinition of the Laplace
variable co, which plays the role of a chemical potential in
a grand canonical description, by a simple shift ink.

III. MAPPING ONTO THE YANG-LKK PRQSLEM

Exploiting the supersymmetry we will show in this sec-
tion that also in our half-infinite problem the cumulants
defined in (16) are nothing else than the cumulants of an
Ising spin system near the Yang-Lee edge singularity.
Consider the generating functional
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«[J q] ~ ~0)
(f—([m, n], ro, mo)+(j, n)+(q, s)

E,n e

by suitable functional derivatives with respect to the
sources. Following [13] we perform a shift and a duality
transform of our dynamic fields n and N,

with

cf( [n, n], co, coo) =cf[K,n ]+cof ci x m (x)

+coof d 'y mo(y) . (18)

Here ci)[n, if] is the dynamic functional defined in (4).
Specializing the sources to j=j(x) independent of time t
and q =q(x)5(t) we obtain the cumulants defined in (16}

I

R(x, t) =M —ias(x, t)—,

n(x, t)=ia 's(x, t)—.

(19a)

(19b)

The definition of M=M(co) will be given shortly. Note
that the integration path of the response variables N and s
in the complex plane always goes from —i 00 to i 00. In-
serting the transformation (19) into the dynamic func-
tional o" (18}we obtain

d'[y, s]:=d'( [8',n ],co, coo)

I ~ ~

=fd~x fdt V(x, t) c},+A, ~—6+ 'gs(x—, t)+iaaf f "cit'V(x, t') s(x, t)

'2

A, f cd s(x, t) i AH f—cit s(x, t) +f ci 'y Afcit y, o(y, t)[cso(y, t) iHO]—. (20)

The new parameters are given by ~=r —yM, 2a =wM,
g =ay, and f=a 'w, and the new external fields linear
in co and coo are

functional which describes the critical behavior near the
animal line r=r, (r, co}=0,

H=a '[co+—(r yM/2)M]—, Ho=a '[coo+—cM] .

(21)

8'„)=A,f cit fd"xi A, 's+ ~ b, +i s —s iH—

Now the parameter M is determined by the condition
lim, „(s(x,t})=0, where the mean value has to be cal-
culated with the weight exp( —8'). In a graphical pertur-
bation expansion this condition is equivalent to the com-
pensation of the tadpole graphs by H in the bulk limit.
At the tree order this yields H =0 leading to
yM=r +r +2yco, w=+r —+2yco From (.5), (12},(16},
and (19a) we find that M(co} is the Laplace transform of
NA N. Thus the square root singularity of M at
co, = ,' r ly results in —th—e mean field expression

5y2 ¹0Atc-N ~ e '. Corrections due to fluctuations are
calculated in perturbation theory near the critical value
v=0, M=r jy+0. Thus our scaling parameter a has a
genuinely nonzero value as long as we are right below the
percolation threshold.

Introducing an external length scale p ', we easily
determine the canonical scaling behavior s-p'"
s-p'"+ ' g-y, ' ' f-p ' from (20). The
scaling of the coupling constant g shows that the critical
dimension is 8 and that near this dimension f is ir-
relevant for critical behavior. In fact, it seems that f is
irrelevant in the neighborhood of the nontrivial fixed
point of the theory up to d =2, as is suggested by com-
parison between the theoretical and numerical results for
the bulk properties of the animals [11]. Now neglecting
the irrelevant terms of (20), we get the relevant dynamic

+f d 'y so[cso iHO
'—

fZ'x—Zfas (22)

It is the animal line which will be mapped to the Yang-
Lee edge.

It is well known [17] that the form of the dynamic
functional depends on the way time is discretized in the
definition of the functional integral. The cumbersome
point is the discontinuity of the propagator
(s(tj'f(t')) O~(t t-') Up to—now. we have assumed a
so-called prepoint discretization corresponding to the
definition of the step function 8(t)=0 if t ~0. In a di-
agrammatic perturbation expansion this definition deletes
all diagrams with closed propagator loops and ultimately
leads to causality. But independent of any definition of
the step function unwanted diagrams with propagator
loops can be eliminated by the introduction of anticom-
muting "fermionic" Grassmann fields ("ghost fields" )

with appropriate couplings to the "bosonic" pair of fields

s,X By the fermionic ( —1) rule for each ghost loop all
unwanted diagrams are compensated by diagrams which
possess corresponding closed loops of Grassman fields. A
closer look at the diagrams shows that this mechanism
will only work if the dangerous loops are isolated from
each other. Diagrams with propagator loops which have
some parts in common are not fully compensated. For-
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tunately, our functional cF„& (22) contains only quadratic
terms -s with field independent factors besides the
linear terms of the response field, so that such digrams do
not arise. Thus we complete it by a pair of ghost fields 1{,
P and in this way avoid any consideration of time discret-
izations and time ordering in the following. The comp-
leted dynamic functional for our animal problem now
reads

x + 'T 5+ gip g EH+

+Q(~ t} +—
igqr )g

+ d" 'y ceoeo —)Hogo+c o o

8=8„,~+ f dt f d x /[/+A(r 6+i—gs)P)

+f1" 'y A,cgpgp

As a consequence of the purely static noise term
-(fdt s) of 8, the correlator &s(t, x)s(t', x')) =C(x,x')
of the perturbation theory is independent of time. Thus,
after Fourier transformation, only zero frequencies
"flow" in the correlator lines of the diagrams. Therefore
is we now cut all correlator lines each diagram breaks
down to a collection of tree diagrams with propagator
lines (which cannot build closed loops alone) in which
consequently no internal frequencies appear. Thus set-
ting the external frequencies to zero our diagrams are
now constructed only from the zero-frequency part of 8.
This static or "frozen" part 8t, can be set up by specializ-
ing the fields to s(t, x)~y(x) and Afdt s(t, x. )~y(x)
with the same procedure for the Grassmann fields. This
construction leads to the frozen functional

Of course we can also obtain this functional following the
line of arguments given by Parisi and Sourlas [11] as
demonstrated in [13]by one of us. First of all one recog-
nizes that the relevant dynamic functional (22) represents
a stochastic differential equation with a quenched noise.
The static part of this equation can then be written again
in the form of a functional integral. The Jacobian in this
integral is exponentiated with the help of Grassmann
fields yielding the frozen functional (24). But we prefer
the introduction of the fermions as ghost fields, thus clar-
ifying their role as a tool to delete unwanted diagrams in
the sense of McKane [18].

The generating functional Z([j,q], to, cop) (17) can now
be calculated with dt (23). Especially from the properties
of dynamic functionals we recognize that
Z( [0,0],co, cop) = 1. Thus the cumulants are calculable as

5 5lnZ(fj, q], tp, tpp)
G(x&p ~ ~ . , Xg ', co, cop)=

5j(x)) 5q(x„)

after replacing the sources by their time independent
counterparts as remarked after (18). Using the substitu-
tions (19a}and (19b}we obtain the relations

G(x(, . . . , x„,xtt, tp, cop)='&m(x, ) . m(x„)if(x„,O))'"

= f dt, . fdt„&s(x„t, ) s( x„,t„) (st, 0)&'"

= &q(x, ) q(x„)q(x„)&'"

@(X)=y(x)+@(x}8+8$(x)+88'(x)
the frozen dynamic functional can be written as

(27)

where the last cumulant has to be calculated with the
frozen functional St, since it is a zero-frequency correla-
tion.

Now we show that the frozen functional 8t, (24) exhib-
its a restricted supersymmetry (the full homogeneity and
isotropy in the superspace is broken by the surface). We
introduce anticoming orassmann coordinates
8,8(8= —8} with the usual integration rules

fd 88= fd88=1, fd8= f18=0, supercoordinates
X=(x,8,8}, [X=(x,—8,8)] with a metric in the
(d +2}-dimensional superspace given by X X=x +288,
and a corresponding superspace Laplacian
6 =dk+28&B&. Introducing a super6eld

+fr ~ss

d xdOdO ~ —4 w —b, +—4 4—iH41 Eg

2 SS

+fd 'y d8d8 @p imp@—p—
This Hamiltonian &„explicitly shows the restricted su-

persymmetry (in variance against super-rotations and
-translations) in the [(1—1)+2]-dimensional subsuper-
space f(y, 8, 8~ y&R ']. Of course the surface breaks
the full supersymmetry in the full sup erspace
[x=(y,z, 8, 8)~ yEIR ', O~z(ao]. But the restricted
supersymmetry su%ces for Cardy's nonperturbative proof
of dimensional reduction [19]as long as d ~ 3. This proof
consists of the construction of a Hamiltonian interpolat-
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( rr~(*,.y„.=o)).=(ne(*,.)),
a a

(29)

where the mean values ( )„are calculated with the Ham-
iltonian %„and ( ) with the corresponding scalar Ham-
iltonian of the theory in d —2 dimensions

1&=2m' d x ~ q)[r —Q+ —p]y —jHq) .—
6

+217fd p (pp lHpg)p (30)

ing between the supersymmetric one and the scalar one
reduced by two dimensions and shows the independence
of the cumulants from the interpolation parameter. In
fact, this proof requires supersymmetry only in a (2 +
2)-dimensional subspace with coordinates

Yll yll'8'0 ' yIIER . Labeling the complement of Y
by x,=(y„z), y, ER" ', O~z& ~, the dimensional
reduction reads for the correlation functions

The overall factor 2~ can be removed by a sim le
transformation (p~V 2m.(p, H ~~2m.H, g~gl 2m..

To relate the cumulants (26} to quantities of the re-
duced theory we again use the supersymmetry. Consider
the expression

M, N 1l) ' ' 'XM+N, l)
M —1

(* l, Y II=0)4(XMl, YII)
a=1

M+N
x 11 fd'yjde'de'e(*), Yj))'„. (3))

P=M+1

Supersymmetry demands that CM N is a function of the
[xl] and Yll' ll=yll+ ee "y " ws

CM N( [xl] ) Yll. Yll )

=CM N([xl],yll )+2 '
2

88 (32)
M, N( [ l], yll )—

and

~CM, N([xlI yll)
fd'VIIdedeCMN([xl] YII YII}= 2fd—'yII

~CM, N( [ ] yll }~f dyll z =2~CMN([xl], 0) (33)

[CM N([xl], ao }=0by cluster decomposition of the cu-
mulants]. This yields

2mCM N( [XJ])0)=CM 1N+1( [XJ ])0) . (34)

Using the representation (27} of the superfield 4, from
the last equation recursively follows

(
M M+N

n e(*.'y. =o) n J'd*y„e(*„y„)),
a=1 P=M+1

M+N

II &(*.„y.) =o))'
a=1

M+N
=(2 ) "( ri, (*.,))'

a=1
(35)

n

0 d yllm xal~yll
c~

a=1

-(n.(*.))-. (36)

The last cumulant has to be calculated with the Hamil-

where the last expression is defined in the dimensionally
reduced scalar theory. Finally from (26) we obtain for
the Laplace transformed "layer"-density correlations of
the branched polymers rooted at the point
xp=(xp, yp =0)

(1)(Xi ) ~ ~ ~ ) X„)xp)$)gp)

I

tonian & (30} and shows the full symmetry in the argu-
ments xp

The Hamiltonian ff describes the critical properties of
an Ising order parameter in a half-infinite system at the
Yang-Lee edge singularity [20]. As usual the form of this
Hamiltonian is derived from a Landau-Ginzburg-Wilson
functional with surface terms and imaginary bulk and
surface fields by shifting the order parameter by an imagi-
nary part and reducing to relevant terms only.

IV. RESULTS FROM THE ONE-DIMENSIONAL
ISING MODEL

In the last section we have shown that the problem of
d-dimensional branched polymers near an adsorptive wall
is mapped to the problem of a half-infinite Ising magnet
in imaginary bulk and surface fields at the Yang-Lee
singularity in d —2 dimensions. Therefore, if we are in-
terested in the three-dimensional polymer problem, we
will have to consider the one-dimensional Ising chain
with one open end in imaginary fields. This is of course
textbook matter, and here we will only report the main
results for completeness.

The probability distribution of a chain of N+1 spins
o.;=+1, i =0, . . . , N, is defined by

P([o'] )= e T(~P ~i } ' T(&N 1~N}e—
(37)
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with the transfer matrix

T(o or) eKau'+cH(cr+a')l2

=
& o ~+ &co. & + ~o &+ & cr

~

—&a) &
—

~
o & .

The eigenvalues are given by

=e (cosH+'}/e —sin H )

and the eigenvector of the eigenvalue co+ is

(38)

(39)

With the lattice constant denoted by a, the correlation
length is given by /=a [ln(co+/co )] '. lt diverges at
the Yang-Lee edge as I/v'h . The critical properties are
universal at the entire singularity edge and therefore in-
dependent of the coupling constant E. Thus we simplify
all expressions without losing their universal properties
by choosing the "low temperature*' region E && 1 keeping
go=ac finite. Choosing now go as a unit for the length
scale, we have a suitable device for performing the con-
tinuum limit a ~0. In this limit we find for the correla-
tion length

&ol+ & =&(1+iMo)/2, (40) (=go&(1+h)/4h (47}

sinH

&e 4~—sin'H

= I/v'T

where iM denotes the bulk magnetization

3 lnco+M= —i&+Io I+ &=-
BH

(41)

and the relation between H and h follows as
h =2(1 e2 H—). From (44) and (46) we get the magneti-
zation profile and the correlation function

M(z)=(1 —e ' ~)M+e ' ~M

Z =cog& A i+ ) &+ iE &, (42)

and o denotes the matrix [0,]. For N »1 the parti-
tion function is given by

C(z, z')=e ' '' «[1+M(min(z, z')) ],
where z denotes the distance from the surface.

The dissipation-fluctuation theorem

(48b)

where ( A
~

and ~E ) are defined by

( A
~
cr ) =e' ',

& cr ~Z &
=e' -'

For the magnetization iMo at the surface we find

(43)

QC

(cr, &=i (cr,o, )/2+ .g &cr, o, &

BH

in the continuum limit reads

. &A[o/+&

(sf+�)

. e ' +i[(1+i&h )/(1 iv'h )—]'r
e ' i [(1+i—v'h )/(1 i &h )—]'~

(v'h +&h+1)t+1
(v h +&h+1) t— (44)

&o,ok &=& ~IT'+T" '&l+)/(~k+(a~+))
= —[1—(co /co+ )" ']M M+ (a) /co+ )".

(45b)

(with j k), from which we get the correlation function

&cr, o„&'" =(o,o, &
—&o, &&o„&

j(1+M, ) .

with t =tanH0.
Equations (41}and (44) show the one-dimensional bulk

Yang-Lee edge singularity for h = (e sinH) —1 =0
and the zero-dimensional surface Yang-Lee edge singu-
larity at the surface transition line t =&& +&6+1. The
surface-bulk multicritical point is given by the parameter
values h =0, t = 1, and the crossover exponent is /= —,'.

We find the mean values

&o, &=& ~IT"el+ &/(~~+& ~l+ &)

=i [1—(co /co+ )"]M+i (co /co+ ) Mo, (45a)

aM(z)
Bh 2g'0 o

V. SURFACE ADSORPTION OF BRANCHED
POLYIVIERS IN THREE DIMENSIONS

Now we are in the position to calculate exactly many
properties of the adsorption transition of branched poly-
mers to a two-dimensional surface of a three-dimensional
bulk system. If d =3, as a consequence of (35}we find for
the layer-integrated correlation functions

G'"(z, , . . . , z„,zo, a), coo)-C(z„. . . , z„,zo, h, ho), (51)

where C( . ) are the correlation functions of the one-
dimensional Ising model near the Yang-Lee edge. There-
fore the moments defined by (11) are given, as a conse-
quence of (16), by the inverse Laplace transforms
f'",. dcoe C( . ). The integration path has to be
chosen so that the singularities of C( . ) are to its left
side. Equation (21) tells us that co is a linear function of
the magnetic field H which itself is hnearly related to h.
Thus by a suitable redefinition of the scale of Xwe get

Z"'(z) = J dh e" M(z),
2'lT'l —i oo

2Z'"(z, z'}= dh e C(z,z') .
2lTE —i co

(52b)

From the magnetization profile and the correlation func-
tion (48) we now find the fundamental results
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Z"'(z)= [1+e ~ [1—2~ere'"+~' erfc(r+g)] j,N (53a)

2ZN" (z,z') =erfc( g—g') —2 erfc(g)+ erfc( g+ g')+ 4e'"+&' ~ erfc(I +g)

+Sre '~+~~ [(r+g+g')e' +~+~~ erfc(r+g+g') —1/v 1r] . (53b)

g=z/~N, I =(1—t)v N -(E, E)~—N (54}

near the critical value E, of the adsorption energy. From
the definition of the crossover exponent
I —(E, E)Nt', —we read off

—1

2
(55)

The expressions (53) have the same structure as the
corresponding quantities in the problem of the surface
adsorption of ideal linear polymers as presented in the

I

Here the last equation for ZN"(z, z') =Zz"(z', z} is written
down for z ~z' and erfc denotes the complement of the
error function: erfc(x}=(2/~m) J„"exp(—y )dy. If z is

measured in units of go, the variables g and I' are defined

by

I

work of Eisenriegler, Kremer, and Binder [3]. Thus we
follow their discussion.

Up to the nonuniversal exponential growth factor A, ,
Z~"(z) is proportional to the (Boltzmann weighted) num-

ber of polymer configurations with one monomer rooted
in the layer z. For z~ ~ this quantity changes over to
the animal number AN-N A, in the bulk without a
wall, and with the exponent 8=—,

' independent of E

Z~ '(z)~ZN =1/VnN -NA, A~ . (56)

In the general case we have to distinguish between the
three cases nonadsorbed (E &E, }, critical (E=E,}, and
adsorbed (E)E,). Because N»1, these cases corre-
spond to the limiting values of the scaling variable I »1,
I =0, and —I »1. We fin

(1—e ~ )+I' '[2g+r ']e &, E &E, ,

Z'"(z)= '(1+e ~ ), E=E, ,
1 2

1+4'/7r/r/e~ '~ ~' E)E, .

(57)

For E &E„ZN"(z) approaches the bulk value 1/v'nN
for z large compared to the correlation length g-~N.
However, this is not the case for E & E„where

Z"'{z)/Zb~" —1=4' n ~r~exp[(z —z)/M ], (5g)

which defines two more length scales

Mo= —,'{t—1) '-(E E,)—
z = (t —1}—-N(E E)—N

0 C

(59)

E&E, ,

A (E)- N s~ A+ E=E, ,

N 'A, ' E&E
In the nonadsorbed case E &E„we thus find—8AN(E)-N 'A, with an exponent 8, = —,

' =8+1. The

with the orders of magnitude Mo«g«zo. If one
moves the root towards the surface, at the characteristic
distance z=z0 the physical properties rapidly change
within a small interval of width M0 around z0 from bulk
to adsorbed behavior.

The (Boltzm ann weighted) number of polymer
configurations rooted in the surface follows from the
asymptotic form of Zz'(0). These animal numbers for
surface-rooted branched polymers can be defined in anal-
ogy to the bulk animals by Az(E)-A, Zz '(0)/N It fol-.
lows in the three cases that

I

last relation between the bulk and the surface exponents
was found for all dimensions by De'Bell and co-workers
[7] for lattice trees by rigorous arguments. In the critical
case E=E„ the animal numbers are AN(E)-N 'A,

with 8, =—,'. In general dimensions below 8, the exponent

8, depends on the bulk exponent 8 and the crossover ex-
ponent P. We have derived the relation

d —38, = (8—1)+(2—P)d —2
(61)

using field-theoretic renormalization group methods [21].
In the adsorbed case E &E„we find
AN(E)-A tt

—N A.
' with 8'= 1, and a modified
(t —1)2growth factor A, '=A,e" ". This result shows that the

adsorbed branched polymers are indeed quasi-two-
dimensional animals. In general 8' is the exponent in
d —1 bulk dimensions.

We now consider the monomer density pz(z~z'} of
branched polymers in the layer z that are rooted in the
layer z'. In general, we have the relation

dz Z"'(z,z') =NZN"(z'),
0

which follows from the dissipation-fluctuation theorem
(50) of the Ising inodel by inverse Laplace transforma-
tion. Therefore the monomer density is correctly normal-
ized by the definition

p~(z Iz'}=Z~"(z,z')/Z~ '(z') .

For N » 1 we find the asymptotic forms of (53b)
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2ZN '(z, z')=erfc(g —g') —2erfc(g)+erfc(g+g')

41 '
I (1—g/I —I '/2)e & —[1—2(/+g')/I —3I /2]e '&+& '

) /+Fr, E & E, ,

+ 4erfc(g), E=E, ,

16I'e I

if z &z'. In particular (57), (62), and (63) yield the asymp-
totic forms of the monomer density of a surface-rooted
polymer

length Mo -(E E,—) '. In this case the monomer den-
sity is generally given by

2e &(g+r '), E&E, ,

p~(z ~0) =&N i n. erfc(g), E =E, ,

2(l /e-"" E &E

(64)
erfc(~z —z'~/g)+161" e

1+4&~~r~e ' '

The monomer density of the surface-rooted polymer at
the wall is generally given by

N
~me erfc(I')(2I' +1)—2I

pNOO = N
1 —~irl e erfc(I )

(65)

The limits of this crossover scaling expression for X &&1
are

2/(1 t), E &E,—,

p~(0~0) = &mN, E =E,
2(t —1)N, E&E, .

(66)

Note from (64) that in the adsorbed case E &E, the
thickness of the polymer at the surface is given by the

The monomer distribution of the branched polymer then
shows the following behavior: if one moves the root to-
wards the surface, at the distance zo the distribution rap-
idly changes from the symmetric bulk form
-'t/N erfc(~z —z'~/g) to the practically root indepen-
dent adsorbed form -N exp( —z/hzo) within the small
interval Azo. In the last case, the root is connected to the
adsorbed monomers only by a very thin monomer bridge
(see Figs. 1, 2, and 3).

Unfortunately, the results from the one-dimensional
Yang-Lee problem do not give us any information on the
shape of the branched polymer parallel to the surface.
But with the help of the formulas (62) and (63), we calcu-
late the characteristic perpendicular lengths R~, R~
defined in (14) and (15). We find

Ri(z)+=Z&"(z) '~N + ( —', g
—

—,'+4I '(+21" )e ~ —((+I ') erfc(g)
3 n 7r'

—[4g'+I.g'(2+1 -')+g(2 —I ')+I ' —I ']e' "'erfc(I +g)

Ri(z)z=[2ZN'"(z)] ' (2g +4I (+2—I )e" + ~erfc(I +g)— —(2(+I ')e ' +((+I ') erfc(g) [ .

We first discuss surface-rooted polyiners. For z =0, (68a)
and (68b) reduce to

1 —
—,'&7rl ' —

—,
' V ~(I —I ')e erfc(I )

R i(0)~ =
p2

1 —~el e" erfc(I )

(69a)

't/mN 1 —2I'/&ir+(21 —1)e erfc(I )
i p24r 1 —Mm 1 e erfc(l )

with the limiting behavior

1, E&E, ,

Ri(0)N=N —,', E=E, ,

I 2/2, E&E, ,

1, E&E, ,

Ri(0)~=&mN/2. —,', E=E, .
,

~l ~-'/&~, E&E, .

In all three cases, the eccentricity Ri(0)z is clearly
greater than zero because the surface-rooted polymers
can only grow in the bulk direction. %hereas for E ~E,
the perpendicular thickness is of order g-&N, for
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FIG. 1. Plot of the normalized monomer density profile

pN(zIz')I1/N against the scaled variable g=z/~N in the case
of an attractive (1 =—10) surface situated at z=0 [Eqs. (53)

and (62)]. The various drawings show the changeover from

nonadsorbed to adsorbed behavior within a small interval if the

root g is moving towards the surface.

E ~E, this length is suddenly reduced to du0.
We now discuss how the bulk values R~( ~ )N=N/3,

Rt(ee)&=0 approach the limits (70a) and (70b) at the
surface For. the nonadsorbing case E&E„(68a}and
(68b) yield

2
2

R j(z)1v/R 1 ( ~ )„=1+, [2 3~nfe& erf—c(g)] (71)
e&' —1

~Z 0.6

N
N 0.4
Z

Q

0.2

0

(' = 0.5 ' =2.5 t,
' = 8.0

10

with the limiting behavior for g « 1, g » 1, respectively,

3(1 Mng), (1——g e ~ ), (72

and

FIG. 2. (a) shows the normalized monomer density profile,
Eqs. (53) and (62), versus g for different values of the root

g =(0.5,2.5, 8.0) at the adsorption threshold 1 =0. (b) Same as
in (a) in the nonadsorbed region I =10. Compare these draw-

ings with Fig. 1.

(73)

with the limiting behavior

(M1r —2g), ge (74) and

(1—3v trg/2), (1+/ e ~ }, (76)

At the threshold E=E, we obtain roughly the same
behavior as for E &E„
R i(z)N/R i( m )1v

&
—(1+/ )erfc(g) 2(e &—/v'tr

J z N 1r
1+e

with the limiting behavior

(77)

=1+ [4g—3~1r(1+/ )e~ erfc(g)] (75)
e~+1

with the limiting behavior

(~n/2 2g), —2—ge &. (78)

We turn now to the most interesting adsorbing case
E & E, . Then we get from (68)

R1(z)N/R1( ~ }
1+6' trII'Ig el"l'l"l ~'erfc(g —II I}
1+2~xII Ie "' " ~'erfc(g —II I)

(79a)

2Ri(z)~/ N = v 1rg erfc(g) —2' ~ +2~~(1+$2—2II'Ig)elrl&lrl —2~ erfc(g —II I)
1+2v'1r

I
I

I
e lrl& lrl —

2&'erfc(g
I
I'I )

(79b)
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2-
r = -10

calculate properties which should easily be accessible to
enumeration or Monte Carlo simulation methods. %e
consider the number A~ „ofpossible configurations of
branched polymers made from X monomers with n ~ l
monomers at the surface. The various weighted moments
are defined by

C)
N
z:1

CL

0
0.5 1.5

m =it g n~A~„e"
@=1

factoring out the nonuniversal growth factor k . Going
over to the continuum description, with the help of (11)
we have

FIG. 3. Density of monomers rooted in the surface
pjv(z~O}l&N is plotted as a function of sealed variable g for
nonadsorptive I =10 and critical I =0, as well as for the ad-
sorptive I = —10 case.

mp =Z~ (zi =0, . . . , z =0) .

The moments can be derived by successive differentiation
with respect to the variable E E, ———I /&¹ The gen-
eral relation is

The limiting forms are now

R i ( 00 )z for z &zo,
R ()~='

z for Mo ((z (zo,

0 for z &zo,
—z for Mo ((z (zp, (80b)

apart from the rounding region of width Mo around zo.
Since zoz »R~i( ao )N =N/3, the perpendicular length
rapidly increase by a factor )&1 within the rounding re-
gion. As already discussed above, the form of (80) sug-
gests that, as the position z of the root is decreased
through zo —N, the branched polymer is suddenly
stretched and is captured by the adsorbing wall. It
remains there as z is further decreased.

As a last point in our consideration of the adsorption
phenomena of the single branched polymer at a wall, we

where we have defined a generating function

p2
Fjv(I )=Nmo=e erfc(I ) .

This function can be inferred from (53a) with z =0 and
(83) with p= 1. Of course, we have not displayed any
nonuniversal factor. Thus one can equally well use
redefined quantities Flv~aF&, and m&~P'm~, where
the constants a and P are arbitrary. Mean values may be
defined by

(nJ')=m /mo .

The ratio of the second and the first moment is equal to
the monomer density pN(0~0) (65). The asymptotic ex-
pressions can be read off from (66). A quantity that is
universal up to the scale of the scaling variable
I -(E, E)v'N is defi—ned as

[1+I —&7rI (I + —,')e erfc(I )][1—&ne" I erfc(I )]

[I —&~(1 + 1/2)e erfc(I ) ]
E(E

4/m, E=E, for N»1 .

As a last topic, let us now consider properties of dilute
solutions of branched polymers. We will follow
Eisenriegler s discussion of the case of ideal linear poly-
mers [22]. The monomer density p(z) of the solution is
given by the monomer density pz(z ~z') of the single poly-
mer rooted in the layer z', times the number of polymers
with that root and integrated over z'. The normalization
has to be chosen so that the density is equal to the bulk
density p& if z ~ Oo . As a consequence of the
dissipation-fluctuation theorem and (62), we get

p(z) =&n N Z~ '(z)pb,

where &n.NZz"(z) is given by (53a). The asymptotic
forms of the density in the three cases may be inferred
from (57) (see Fig. 4). We discuss a few limiting cases.
At the adsorption threshold E=E, the density decreases
from twice the bulk density at the surface to the bulk
density within a surface layer of the thickness g=&N.
For the case E &E„we have the limiting behavior near
the wa11
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2.5 VI. CONCLUSION

r =-10

1.5
Ll

CL
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CL

0.5

00

FIG. 4. Monomer density pro51e in a semidilute solution of
branched polymers as a function of the scaled variable g [see
Eq. (87)] for several values of the parameter I' as indicated. The
density is normalized by the bulk density.

p(z)/p =((+I' ')'. (88)

Thus the density decreases quadratically in z up to a sur-
face layer of thickness Mo. This is de'erent from the
behavior -(g+ I ') for the monomer density of a single
chain fixed with one end at the wall in the same limit; see
(64). Finally consider the case E & E, . Then the limiting
behavior is

p(z)/p» —1=4'.II'Ie (89)

p(0)/p» =2—2v n I e" erfc(I )

'r-', E&E, ,

(90)

Finally, the total monomer excess is defined by

p.,= f, dz[p(z) p ] . —

Its explicit form is

p2
p,„,/pb =&nN (e erfc(I )——,

' )

(91)

On approaching the wall from large z ~here p=pb, the
density increases dramatically at the distance z0 from the
wall. This phenomenon is of course generated by the fact
that the single polymer already senses the surface for
z =zo. For the monomer density at the surface we arrive
at

—1

2

in all spatial dimensions.

(93)
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In this paper the statistical properties of large random-
ly branched polymers in a three-dimensional bulk system
near a two-dimensional adsorbing wall were investigated.
We started with modeling the branched polymers by an
epidemic process and showed by some transformations
using supersymmetry that our model can be represented
as a semi-infinite Yang-Lee singularity problem in one di-
mension. Therefore we were able to obtain a lot of exact
results for the single polymer and polymer solutions in
three dimensions. But we have to admit that with the
typical supersymmetric dimensional reduction we lost all
information on the structure in layers parallel to the sur-
face.

It would be interesting to compare our results, e.g.,
with Monte Carlo simulations. We are aware of only two
such simulations. In [6] the authors "measure" a type of
specific heat ((n ) —(n ) )/N and find a value /=0. 714
for the crossover exponent. In [23] the authors simulate
vesicles and "measure" the mean value ( n ) of the num-
ber of plaquettes on the surface. This mean value should
be proportional to N& at the adsorption transition (N is
the number of all plaquettes). The authors find
/=0. 70+0.06. Both values for P are inconsistent with
our result P= —,'. But in a recent analysis of the compara-
ble case of adsorption of linear polymers Hegger and
Grassberger [24] have obtained /=0. 496&0.005 for the
crossover exponent which is in contrast to earlier results.
Their improvements were possible by simulating rather
long chains (up to N =2000). The authors conclude that
all their data show substantial correction to scaling.
Thus in the more complicated case of branched polymers
and their modeling we cannot trust the values produced
in [6,23]. There the comparable values of N are much
lower and the authors do not subject their data to any
correction to scaling analysis.

In a forthcoming paper we plan to present the mean
field theory of our model and the renormalized perturba-
tion theory leading to the e expansion around eight spa-
tial dimensions. Using results from conformal invariance
of the Yang-Lee problem we get some information on the
four-dimensional branched polymer problem near the
surface. From all these results we find reliable extrapola-
tions for the statistical properties of large branched poly-
mers in a two-dimensional bulk system near a one-
dimensional adsorbing wall. The exact results for dimen-
sions d =3, d=4, d &8, and the O(e) result in d=8 c-
lead to our conjecture on the superuniversality of the
crossover exponent

—l, E&E, ,
=&rrN /2. 1, E=E, ,

4e", E&E, .
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