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Multifractality of large turbulent fluctuations and the topology
of strange attractors
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The connection between the local self-generation of turbulence by the Zaslavsky-Rachko scenario
(Zh. Eksp. Teor. Fiz. 7B, 2052 (1979) [Sov. Phys. JETP 49, 1039 (1979)]) and the multifractality
of turbulent energy is investigated. The effect of the topological singularities of the Zaslavsky
attractor on the multifractal asymptotic is shown. The calculated value of the asymptotic generalized
dimension is in good agreement with the experimental data. The model has also turned out to be
applicable to passive scalar dissipation 6elds and to the quantitative description of turbulent diffusion
in a stable strati6ed liquid.

PACS number(s): 47.27.—i

I. INTRODUCTION

It is known that the internal intermittency of turbu-
lent Bow leads to the existence of subregions with self-
generation of turbulence in liquid. In these subregions
quasilaminar motion becomes unstable and goes to chaos
by one or another scenario. The properties of such a
chaos depend on the type of scenario. . This phenomenon
is one of the sources of multifractal behavior of turbu-
lence. Figure 1 plots the energy of turbulent velocity
Huctuations taken from a grid-How experiment [1,2]. In
this figure an abrupt blip can be seen. If this blip is the
result of instability of the quasilaminar motion inside the
subregions, then the Landau approach can be used to
describe the collapse of the stable limit cycle upon tur-
bulence generation [3]. The idea of Landau consists in

the description of turbulence near the critical Reynolds
number Re, (here we speak of local Reynolds number),
taking into account the most unstable mode with the
complex frequency ur = uq + iaq/2 (uq » o.q) such that
o.q

——0 if Re=Re, . The Buctuations of the velocity field
are decomposed as

u = A(t)g(r, t),

with amplitude

A(t) s t awqt—

When aq & 0, Eq. (2) is valid only for small values
of t. To analyze the nonlinear stability problem, Landau
proposed the following amplitude equation:
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dt

under the assumption that the average over the time in-
tervals smaller than o.~ and larger than ~~ was taken.
The simplest nonlinear approach, for small ~A~, gives us

d/A/2

dt
= ~~ IAI'+ ~2IAI' (4)

with the nontrivial result for the asymptotic amplitude
(t -+ oo)

I
AI' ~ —~i/~2. (5)

Here nq ) 0 and cr2 ( 0 (supercritical case).
We investigate the local instability in stochastic media.

Let us rewrite the amplitude equations as

FIG. 2. Schematic sketch of P (I) for supercritical Hopf
bifurcation.

where ( ) denotes the dynamic terms, f (t) the external
stochastic force &om the turbulent environment, and *
defines the complex conjugation. If the correlation ra-
dius of external forces is smaller than typical times of
the dynamical problem, then we can assume (in the first
approximation) that f (t) and f'(t) are Gaussian random
functions with the mean value equal to zero:

(f(t)f*(t')) = 2~0~(t —t').

Denote probability density for I = ~A~2 as

Pt(I) = (~(IAI' —I)).
Then after averaging over the times of order ~~ and tak-
ing into account Eq. (4), we obtain the following Fokker-
Planck equation for Pt, .

OP, (I) 0
((crgI+ cr2I )P, (I)) + 20p I—

Bt

(6)

The stationary solution of (6) has the form

the collapse of the stable limit cycle. The authors of
[6] introduced into the Landau amplitude equation for
the supercritical limit cycle the interaction term that de-
scribes the interaction between modes along the entire
spectrum:

A = —' —t~g A+ ct2~A~'A+ ) .&a~. oA:or -~..
2

Here the interaction matrix elements VI,I„aredetermined
directly from the original equations of motion. The wave
number ko corresponds to the mode Io. Then the equa-
tion for I = ~A~2 can be written as

I = 2aoloII Io) + 222(4') Voo, aoao o, ),
where Ip ——~Ap~ = —o.q/cr2 is the original Landau cycle
(see Introduction). The interaction matrix elements are
approximated in [6] as

(10)

(7) where the quantity T has the meaningI' (II -exp
o (a,I+ 'I'))II(I)—

2~o2

where O(I) is the Heaviside function.
Maxima of P (I) correspond to the local stable states

and minima to the local unstable states (see [4, 5]). Fig-
ure 2 shows schematic dependence of P on I for aq ) 0
and n2 ( 0. The initial state, I = 0, is statistically
unstable and the state Ip —— n2/n2 is—stable [cf. with
dynamical result (5)].

However, the short approximation (4) [or (6)] is not
suitable for the investigation of high energy blips. Then
the principal question is how many terms in (3) should
we take into account to describe the large energy blip.

II. TOPOLOGY
OF ZASLAVSKY STRANGE ATTRACTOR

AND ORDER OF A.MPLITUDE EQUATION

Paper [6] deals with a general model of the appear-
ance of the strange attractor (Zaslavsky attractor) upon

I = p(I —Ip) + gq(Ip—, 8) ) h(t —nT),

8 = p)(I), (12)

where q(Ip, 8) = Ip cos 8, o2(I) = o2p + a(dp (I —Ip) /I, and

g and o. are dimensionless parameters. Introducing new
dimensionless quantities

y = (I —Ip)/Ip, z = 8/(27r),

we obtain the following mapping:

(Ek is the characteristic distance between neighboring
wave numbers of the excited modes aq). Let A = ~A]e's.
Substituting (10) into (9) we obtain the following system:



50 MULTIFRACTALITY OF LARGE TURBULENT FLUCTUATIONS. . . 3725

0.005 y„+q——y„+e cos 2mx„,

~ ~ ~ % ~ A ~
~

~ ~ ~ ~ ~ ~
~ ~ ~ ~

~ ~ ~

~ ~ Ot
~ ~ I 0 0 ~0

yg 0
~ ~

~ ~ ~ ~ ~ ~ ~ ~
~ ~ ~ ~ +

~ ~ae ~

00 a~ ~ ~ ~ ~
~ ~ OOOO ~ ~

~ ~O ~ ~ ~ ~ ~ ~ ~ leo100 ~ t ~ \0

~0 ~ % ~4

~ ~ ~ 0
~ ~ 0 ~ ~ ~

~ ~ ~ ee
0 ~

e ~ $ ~ ~ ~

~ ~
~ ~ ~

~ ~ 0 ~ ~ ~ % 0~ ~

B

~ ~ ~

~ ~ t ~ '+ ~
0 ~

-o.oos--
I \

0.0
I s I I

I I

0.5

y„+,= e r(y„+ecos27rz„), (13)

1 1
xn+y xn + 0 1 + pyn + —Kp cos 27rxn2' 2'

(14)

Here the brackets () denote the fractional part of the
argument, 0 = uoT, I' = pT, K = &crA, p = (1 —e )/I'.
Absence of dissipation corresponds to I' = 0:

FIG. 3. Zaslavsky strange attractor for e = 0.3, a = 0.3,
K = 9, and I' = 5.

1 1
x„+q—— x„+—0 1 +y„+—K cos 2+x„2' 27r

(16)

which is the basic model for the stochasticity of Hamil-
tonian systems.

In [6, 7], it is shown that, for the system (13) and (14),
the strange attractor occurs in the case of strong dissipa-
tion (1 ( I' ( K). Figure 3 shows a typical strange at-
tractor in the phase plane for the system. For any initial
condition the point of a trajectory lands after some time
on the structure depicted in Fig. 3. Numerical analysis
gives the existence of a stationary distribution function
p(z, y) in the strange attractor [6, 8, 9]. The distribution
function has two sharp maxima in the neighborhood of
points A and B (see Fig. 4 adapted from [6]). After the
averaging over the phases and smoothing over small os-
cillations of p(z, y), function P (I) can schematically be
depicted as in Fig. 5. Here I corresponds to the sharp
maximum of p(z, y) near point B, while I~ corresponds
to the sharp maximum of p(z, y) near point A.

The existence of these two maxima is caused by the
topology of the Zaslavsky strange attractor (in the case
of strong dissipation). We can see from Figs. 3 and 4
that the attractor consists of two types of strips diKering
in their slopes. These strips have the fractal structure
(see for example [10, ll]). In the vicinities of A and B,
these strips interact by the appearance of bridges be-

FIG. 4. Distribution func-
tion p(z, y) on the strange at-
tractor depicted in Fig. 3 [on
bottom: the subdivision of the
p(z, y) in the vicinity of point
B]
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p (i)fi —2/5 13/5
4

FIG. 5. Schematic sketch of P (I) for averaging over the
phases and smoothing distribution function p(z, y).

d22
dt

(17)

where the upper limit of summation, 4, is determined by
the presence of two maxima in Fig. 5 [i.e. , by topology of
a strong dissipative (I' ) 1) Zaslavsky strange attractor].

III. ORDER OF AMPLITUDE EQUATION
AND DIMENSION OF GOVERNING

PARAMETER

Local equilibrium states of the dynamical system (17)
are determined &om the condition that the right side
of the equation is equal to zero (i.e. , d]A]2/dt -+ 0 in
the vicinity of equilibrium). In our approach, see Intro-
duction, the term d~A]2/dt plays the role of Kolmogorov

1parameter e = (2] "z, ]) [13]. Thus, in the vicinity of the
local ( dynamic ) equilibrium, the Kolmogorov approach
does not work (s d]A] /dt ~ 0). Then what kind of
parameter governs our equilibrium states? If we suppose
that in (17) parameter o.4 tends to zero, then the local
equilibria are broken. ~ governs the balance between vor-
tex stretching and viscous dissipation in the real space,
while dynamical parameter o.4 governs the balance be-
tween stretching of the trajectories and effective diffu-
sion in the phase space of the Zaslavsky attractor. As in
the Kolmogorov approach (where from dimensional argu-
ments we obtain the energetic spectrum E s ~ k ~ ),
in the localized case we estimate scaling of the large en-

ergy blip as

tween them. At the bottom of Fig. 4, the subdivision
of the distribution function in the vicinity of point I3 is
shown. The existence of these bridges helps us to under-
stand the nature of the sharp maxima. Each point on the
strange attractor has its initial-data zone (IDZ) on the
phase plane. The value of probability density at a axed
attracting point is determined by the area of its IDZ. The
distribution of IDZ over these points has a short-range
order on the strip, whereas on the bridge, the order is
changed to the long-range one. This leads to the forma-
tion of sharp maxima of the probability density function
on the bridges. Thus, if the intersection of strips occurs
only in boundary points A and B [12], then the averaging
over the phases and smoothing function P (I) will look
as in the schematic sketch in Fig. 5. This type of depen-
dence of P on I corresponds to the following dynamical
prototype (see Introduction):

where r is the spatial scale of the energy blip (see In-
troduction and [14]). The dimension of a4 is defined by
Eq. (17): n4 - [T]'[I] '.

The experimental checking of (18) can be done by the
method of multifractal asymptotics [14—16]. Let us divide
the Quid volume of size I into cells of size r and de6ne
the q moment of the Geld u as

i=1
(L/r)"

where q is a real number (order of moment), i is a number
of cell, and d is topological dimension of the space. The
multifractal hypothesis can be formulated as

(20)

max u dv~r
V'

(22)

If the experimentally determined p,~ leads to linear
asymptotic, then the slope of the asymptotic is equal
to (d —D ) [2, 14, 15]. Figure 6 shows pq obtained from
the experimental data for grid How (Re~ = 70), bound-
ary layer How (Rep = 290), and jet How (Reg = 880) [1,
2, 17], and gives us the value of D 13/5 [i.e. , the same
as (18) and (22)].

The closed values of D were obtained in experiments
[18] ([19]) and in the direct numerical simulations of
Hosokawa and Yamamoto [20] (see also Discussion).

IV. LOCAL SUBREGIONS
OF LARGE GRADIENTS OF PASSIVE SCALAR

Any arbitrary vector field q(r) can be decomposed into
solenoidal part u and potential part Vg,

q=u+VQ.
Let us suppose, as in [21], that u satisfies the equation

2p

FIG. 6. Intermittency exponents pq for energy auctua-
tions in the grid-Sow boundary layer and jet [1, 2, 17].

with the intermittency exponent p,~ expressed versus gen-
eralized dimension Dq [16],

~q = (d —Dq)(~ —1).

In paper [15] it is shown that
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for the velocity field, while the potential part obeys the
following equation:

V. TURBULENT DIFFUSION
IN STABLE STRATIFIED LIQUID

B = 2= p/po —u I»
Z7t

where p is a pressure, po is a fiuid density, and 17/27t =
B/Bt + (uV). Then for q we obtain

Bq~ 0th~

Bt Bx;
' = —

q~ (23)

(without a viscous term). Let us describe a passive scalar
transfer by the equation

17c

1t (24)

(without molecular difFusion). Denoting the passive
scalar gradients as (; = Bc/Bz;, one obtains

(25)

max (Vc) dv Na4~ r
V

(26)

Equation (25) has the same form as (23). Thus in the
turbulent Bow the subregions with extremely high blips
of q2 coincide with the subregions of (2 blips. Hence the
scalings of q2 and (Vc)2 in the subregions are governed
by the same parameter, a4 ( see Sec. III).

For description of passive scalar transfer in Kol-
mogorov turbulence the governing parameter N =

(~ ~a'I ~)

(additional to e) is used (Sec. 21.6 in [22]), and the spec-
trum E,~ ¹ / k / is obtained. Then, similarly to
the derivation of (18), we estimate the scaling of (Vc)
from dimensional arguments:

Finally let us discuss the problem of turbulent dif-
fusion in stable stratified fluid (atmospheric and ocean
turbulence [22, 25]). It is known that in stable ther-
mostrati6ed media the appearance of large-scale vortices
is diKcult, because it needs a lot of energy to work
against buoyancy forces. Therefore the turbulence exists
in the form of internal random waves and spots contain-
ing small-scale vortices (Sec. 21.5 [22]).

In a stable strati6ed media, we can see the follow-

ing chain of turbulence production: instability of critical
shear layer provokes the internal waves [26] and instabil-
ity of these waves generates spots of small-scale turbu-
lence. The mechanism is similar to the Zaslavsky-Rachko
scenario (see Sec. II and [6]), in which the scaling law for
diffusivity (K,) has the form

1 80 g/5 4/5
6 dt

~ A4 (27)

Figure 8 shows the experimental data in a stable strat-
ified atmospheric boundary layer [25, 27]. This figure
demonstrates existence of two stages of smoke spot ex-
pansion (initial and final). Continuous straight lines
present these two stages. The dotted lines show scalings
0 t and cr ts~2 (Taylor's and Kolmogorov's disper-
sion laws). It is seen &oin Fig. 8 that the initial stage
of expansion obeys scaling law (28). This supports the
suggestion on small-scale turbulence production in sta-
ble strati6ed Bow by collapse of internal waves via the
Zaslavsky-Rachko scenario.

(0 is the efFective scale of the passive scalar spot). Then
&om (27), we obtain a dispersion law

(28)

i.e., for the field (Vc)2 D = ll/5.
Figure 7 shows y~ of (Vc)2 obtained &om experiments

[23, 24] and gives us D ll/5. This value coincides
with (26).

VI. DISCUSSION

In the paper the amplitude equations are linked to lo-
calized subregions which are not rigidly 6xed in the space.
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FIG. 7. Intermittency exponents p,q for passive scalar dis-
sipation (Vc) in laboratory turbulent fiows [23, 24].

FIG. 8. Dispersion laws for stable stratified atmospheric
boundary layer from experiment [27] (circles -xperimeutal
data).
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For our concrete aim the subregions with Lyapunov in-
dex corresponding to Landau cycles can be considered
as quasilaminar (i.e. , complexity of motion rather than
its energy plays the principal role at the initial stage).
The Zaslavsky-Rachko scenario can then lead to a rapid
increase of the complexity of motion and to the energy
"blip." There are three types of characteristic time in the
problem: (1) the characteristic time of the subregion's
(localized traveling waves, solitons, etc.) propagation,
r„;(2) the characteristic time "inside" of the subregion,
r, , and (3) the characteristic time (correlation radius) of
environment, 7.y. We assume that ~p & 7' &) wy. The
first inequality gives us a possibility to use the amplitude
approximation and the second one is used in the Fokker-
Plank approach. The inequality ~„&x; is a consequence
of self-consistency of the amplitude equation approxima-
tion, while the second inequality, 7; )) wf, is needed in
some a posteriori estimations. Indeed, according to our
approach the time scale associated with a blip at space
scale r is ~; a4 r ~ . The typical time of the "exter-
nal" forcing at the same scale can be obtained using the
Kolmogorov theory as rf (e) ~~sr2~s. The required
condition, v, )& ~f, will be satisfied only if r &) g„where
g, = (e) ~ n4 . Therefore the space scale g, can

—-5 s -3/8

be used as a small-scale boundary of the scaling inter-
val in this approach, instead of the Kolmogorov space
scale g = (K) ~~4vs~ . These scales have different ori-
gins, since o.4 governs the balance between stretching of
the trajectories and effective diffusion in phase space of
the Zaslavsky attractor. In the Kolmogorov approach g
should tend to zero with v —+ 0. We do not know the
behavior of the scale g, with v ~ 0, but this limit is not
a crucial point for our approach, unlike the Kolmogorov
one, because of the transitional type of turbulence in the
abrupt blip events.

The same reason makes the problem of theoretical def-
inition of the local ("blip" ) Reynolds number very dif-
ficult, because its self-consistency and parameter o,4
seem to be more relevant as a "critical" parameter than
molecular viscosity (or Reynolds number) in this case.
We have just seen above that this parameter replaces
the v at definition of the small-scale boundary of the
scaling interval. Also we cannot use the Kolmogorov es-

timation [aq] Ic ~ for the remaining Fourier modes
if we try to estimate whether the assumptions leading
to Zaslavsky mapping are satisfied by the transitional"
turbulence in local "blip." Therefore we can use only the
experimental evidence (such as multifractal asymptotics,
see above) for justification of this approach. A useful
example of concrete work with the Zaslavsky attractor
in the terms of the Fokker-Plank equation and demon-
stration of a bimodal (after averaging over the phases)
probability density function can be found in papers [8,
9]

Finally, one can use the Meneveau equation [18] which
connects the generalized dimensions for kinetic energy
(Dv) with the energy dissipation rate (D' ),

for estimation of D

D'( + 2D'

A local anisotropy of real turbulence is the reason for
variability of D' . It is shown in [14] that 7/3 & D'

5/2. If we take D2&s 2.9 [28] then we obtain 5/2 &

D & 8/3. Moreover, since D2&s & 3 the value D
13/5 leads to 2.4 & D' Thus o.ne can conclude (in the
framework of the Meneveau approach [18]) that physical
processes in the local subregions with a large turbulent
energy fluctuations can restrict types of instabilities in
the subregions with a large rate of energy dissipation [14].
This problem seems to be a very interesting theme for
future investigations.
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