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Burst and collapse in traveling-wave convection of a binary fluid
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We report experimental results of a traveling-wave burst and collapse process occurring in con-
vecting binary mixtures in a wide range of the control parameters. Analysis in the framework of
the one-dimensional complex Ginzburg Landau (CGL) equation reveals an alternative self-focusing
mechanism responsible for this behavior: faster than exponential bursting due to the destabilizing
effect of the nonlinearity and collapse due to suppression of the pulse growth at the edges, leading to
the destruction of the pulse by compression. The latter effect is associated with the strong nonlinear
dispersion of the system. Numerical analysis, based on the CGL equation, closely matches both ex-
perimental results and theoretical considerations. The limits of validity of the proposed mechanism
are also discussed.

PACS number(s): 47.27.Te, 47.20.Ky, 47.52.+j

I. INTRODUCTION

In this paper we report experimental, numerical, and
theoretical observations of wave collapse, occurring in one
dimensional (1D) traveling wave (TW) convection in bi-
nary mixtures. Wave collapse, namely, the formation, in
a finite time, of a singularity &om an initially uniform
amplitude field, has been the subject of intensive studies
in recent years [1]. This process, appearing, as an exam-
ple, in plasma physics, nonlinear optics, and nonlinear
surface waves is usually the most effective mechanism of
transforming wave energy into heat. Several mechanisms
explaining such behavior have been proposed, of which
the framework of the nonlinear Schrodinger (NLS) equa-
tion is the most advanced [1,2].

In the past few years, Rayleigh-Benard convection in
binary mixtures has been the subject of intense scientific
activity. The most important reasons for this interest are
the fact that this system undergoes a Hopf bifurcation
to a TW state as a first transition, in a wide range of
its parameter space [3,4], and the fact that the system
exhibits a wealth of fascinating TW patterns near the
onset of convection [3,8]. Moreover, the experiments can
be performed with excellent accuracy and the underlying
equations are well understood [5—7].

A thin, horizontal layer of a binary fluid mixture of
height d, heated from below, exhibits convective patterns
above a critical temperature difference AT, . There are
four control parameters, which completely characterize
the transition to a convective state in a horizontally in-
finite cell. The first parameter is the Rayleigh number
B, which is proportional to the temperature difference
AT applied across the layer. The second parameter is
the separation ratio Q, characterizing the relative impor-
tance of the concentration gradient induced by the Sor'et
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effect and the temperature gradient. The Prandtl num-
ber, P = —,and the Lewis number L = —(v is the
kinematic viscosity, D, v are the mass and thermal dif-
fusivities, respectively), characterize the Huid. In a finite
rectangular cell, the reHection coefficient of the TW at
the endwalls can be regarded as an effective fifth control
parameter [9,10]. If the convection cell is narrow enough,
convection patterns may be considered as essentially one
dimensional [3], and the nonlinear behavior of the system
close to the onset can be described by two coupled 1D
complex Ginzburg-Landau (CGL) equations [11,12]:

rp( clt ksB )A„i
= eA„i+.(1+ icr)(ocl A„i

+g (1 + ic, ) IA-, i I'A. , i + gi (1 + ics)
I Ai,.I'A. , i

Here A„i~i are the amplitudes of the right (left) TW re-

spectively, c =
&

' is the experimental control param-
C

eter (B, is the convection threshold value of B), s is the
group velocity of the TW, ro and (o are the characteristic
time and length, respectively, cz is the linear dispersion
coefIicient, c2 is the nonlinear dispersion coefIicient, and
g, gi, and e3 are real parameters. All parameters have
been calculated as a function of g, P, and I [5,6]. In the
experiments that we describe, g is positive (destabilizing)
and varies in the range between 0.15 and 0.22 [7]. We are
interested here in the dynamics of the TW state, charac-
terized by the chaotic repetitive formation and collapse
of TW bursts. This state is observed in both long enough
rectangular [3,8] and annular [15,16] convection cells, and
was called the "chaotic blinking" state [3]. Due to the
absence of reflection effects, the appearance of this state
is probably more spectacular in annular geometry. In
1983, Bretherton and Spiegel [13] showed that the 1D-
CGI equation exhibits such erratic behavior, if, in the
limit of c2 )) 1, one assumes the nonlinear term to be
purely imaginary. They showed that an initially grow-
ing inhomogeneity in the amplitude field decays due to
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an efFective decrease of ~, which is induced by the large
nonlinear dispersivity of the system. In this limit, the
amplitude growth can be described by a linear equation,
and the pulse width [defined at full width half maximum
(FWHM) of the pulse] is almost constant throughout its
growth. Recently, Kolodner et al. identified the source of
the "blinking" behavior in the strong nonlinear dispersiv-
ity of the system [15,16]. They showed that the dynamics
qualitahvely resemble the numerical simulations of Ref.
[13],as well as the result of more recent work [14], which
scanned the parameter space relevant to convection in
binary mixtures. Thus, the state was coined "dispersive
chaos" [15].

Here, we present quantitative studies of the burst and
collapse xnechanisxn analytically, experimentally, and in
numerical simulations. We found that the burst sup-
pression mechanism proposed by Bretherton and Spiegel
works only for the narrowest pulses. For initially wider
pulses, the bursting mechanism is strongly nonlinear, and
exhibits a self-focusing behavior, naxnely, much steeper
amplitude growth, accompanied by rapid narrowing of
the pulse before its collapse. The narrowing is completed
before the collapse, which occurs due to coxnpression of
the pulse &om its edges. The alternative approach sug-
gested in this paper provides a quantitative understand-
ing of all the main features of this state [17]. Sections
II and III present the experimental system and results,
together with n»merical simulations that we conducted.
Section IV describes the mechanism of bursting and col-
lapse and compares it to the previously suggested one.
We conclude the paper with a discussion and conclusions.

height of the caustic plane as a function of the convection
amplitude. Thus we were able to work in the linear opti-
cal signal regixne even for large amplitudes, in spite of the
fact that the dynaxnic range of the convection amplitude
in the "bursting TW" state was about 10 . We xneasured
the optical intensity along the cell length using a CCD
camera, with a resolution better than 10 pixels/roll.

Measurements of the optical signal intensity, as well

as measurements of DT and of q, the heat Qux applied
across the convection cell, were performed at prefixed
time intervals, at least four times per oscillation period.
Apart from background subtraction, no other filtering or
enhancement technique was applied to the data. We ex-
tracted of the left and right TW amplitudes Ai „(z,t)
and their phase by perforxning complex 2D demodula-
tion. The Hilbert transform algorithm described in Sec.
V of Ref. [19] has been used.

In order to compare our results with theoretical pre-
dictions, we also performed numerical simulations on the
CGL equation. The justification for this procedure will
be explained in the next section. Implicit, variable time
step algorithxn, with periodical boundary conditions was
used. The coefficient values were taken from Refs. [5]
and [6]. As initial conditions we used either a small am-

plitude, finite width pulse or a small amplitude analytic
solution of the NLS equation. The simulations were per-
forxned on either the third or fifth order CGL equation,
with no significant differences observed. The reason for
this will be clarified below.

III. EXPERIMENTAL RESULTS

II. EXPERIMENTAL PROCEDURE

The experimental apparatus is an improved version of
a previously described one [3,8]. The convective layer
is sandwiched between a sapphire window and a nickel
plated copper mirror on the bottom. The lateral walls
of the convection cell are made of polypropylene, having
low thermal conductivity (A = 1.2 mW/cm K) and low
absorption of the Quid. We used cells of height d in the
range d = 0.182—0.189 cxn. The uniformity of the height
was adjusted interferometrically to within 1 —2 pm. The
cells were of length l = I'd, with I' between 20 and
40.6, and width of 2d. Cooling water Bowing azimuthally
across the narrow side of the convection cell regulates
the ambient temperature to 31'C. The bottoxn plate
was heated electrically. The typical long term tempera-
ture difference across the layer was regulated to within
0.3 mK, allowing a resolution of 10 in R.

The experimental Buids were ethanol-water mixtures
with weight concentrations of 26—28.5%%uo. For this range
of concentrations the values of vP vary from —0.065 to
—0.005, respectively. The Prandtl and Lewis numbers
were alxnost constant at P 18 and L 0.012.

We visualize the Bow using shadowgraph visualization.
It can be shown [18] that if the image plane is far away
&om the optical caustic plane, then the image intensity
is linearly proportional to the convection amplitude. By
adjusting the position of the image plane, we mapped the

For the range of paraxneters relevant to our experi-
ments, the system becomes convectively unstable and un-
dergoes a subcritical Hopf bifurcation to a TW convective
state, above a critical temperature difference, AT, . In the
immediate vicinity of the onset (e ( 0.03), a sequence of
patterns, very different in character, appears. The first
state observed above the onset is the counterpropagating
waves state [3]. In this weakly nonlinear state left (right)
TW grow as they travel towards the left (right) endwall of
the convection cell. Near the middle of the cell, a source
of TW is formed, where the amplitudes of the left and
the right propagating waves are equal. This state is sta-
ble in a narrow range of the control parameter above the
onset (typically for e & 1 x 10 s) [3]. For higher values
of e (typically up to e 0.015 in our experiments), the
left-right symxnetry of the pattern is broken, and "blink-
ing" TW state appears. In this state the axnplitude of
the TW waves becomes spatially and temporally modu-
lated. In short enough rectangular cells, for small values
of e and at higher values of g [, the behavior is quasiperi-
odic, and regular "blinking" behavior was observed [3,4].
This behavior was observed also for specific, accurately
tuned values of the cell length [4,20,21]. In the case of ei-
ther longer cells, or larger value of e, or smaller values of
[@[,periodicity is lost, and convection is characterized by
repetitive evolution and collapse of TW bursts, which ap-
pear at random times and locations in the convection cell
[3,8]. This state and its dynamics are the subject of the
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present paper. At still higher values of e, a localized TW
state appears. In this state, a solitonlike coherent struc-
ture occurs: only a small part of the convection cell is
convecting, while the rest of the cell is conducting [3,8].
This state loses stability, with increasing ~, to the ex-
tended TW state, in which the convection TW becomes
absolutely unstable, and the convective state is charac-
terized by very low frequency (w/wo 0.01), where wo is
the TW frequency at the onset of convection [3].

Typical dynamics of the "chaotic" blinking state is
shown in Fig. 1, by means of a space-time plot of the
convection amplitude in the cell. This kind of behavior is
observed in very long cells (I' & 30) for all values of e & 0,
up to the transition to the localized TW (LTW) state
[3]. Figure 2(a) demonstrates the amplitude at one point
in the cell as a function of time. Figure 2(b) presents
the power spectrum of the same data. The amplitude is
highly irregular, with a power spectrum that is essentially
Hat in a wide band between the neutral frequency ~o and
the frequency at which LTW appear (at about ~o/2).
This erratic behavior persists for very long periods of
time. Our longest run was over two weeks with the same
experimental parameters, without noticeable change in
the behavior.

There are several factors which contribute to the spa-
tiotemporal dynamics of weakly nonlinear TW. These are
selective linear spatial growth, end wall reHection, nonlin-
ear saturation, nonlinear wave interaction and nonlinear
dispersion. The relative contribution of each of these fac-
tors varies with changing the control parameters e, g and

the aspect ratio 1. For convection cells of moderate as-
pect ratios (I' & 20), for @ & —0.05 and for values of r
well below the transition to the LTW state, the amp¹
tudes of the left- and the right-going waves are usually
of the same order of magnitude. In this case, the linear
growth, reHection and nonlinear wave interaction domi-
nate the dynamics. Thus, counter propagating waves or
regularly modulated TW (coined "blinking" TW) were
observed in cells of 1 = 12, and in the longer cell of
I' = 20 for Q = —0.058, e & 5 x 10 [3]. As e increases
the regular state gives is replaced by the "chaotic blink-
ing" state. This transition was described in detail in Ref.
[3].

In either longer cells, or at ~Q~ & 0.05, the process of
bursting and collapse can be completed, as indeed hap-
pens rather often (Fig. 1), before the high amplitude
TW packet reaches the lateral wall. Thus, the amplitude
near the lateral wall are usually very small, and reHec-
tion does not play an important role in the evolution of
subsequent pulses. In order to verify this point, we calcu-
lated the cross-correlation function between the left and
the right TW amplitudes for the cell of I' = 40.6 at sev-
eral values of ~. If reHection should play any role in the
dynamics of the state, one would expect appearance of
a peak in the cross-correlation function at a time delay
which is of the order of the cell traversing time. No such
behavior was found, pointing out that the bursts appear
at random. This result should be compared with Fig.
1(b) of Ref. [3], which shows clear periodic behavior for
the regular "blinking" state.

Typically, at the position of a burst, the ratio of the the
amplitudes of the left- and right-going waves is O(100).
Thus, the role of the nonlinear wave interaction becomes
insignificant, can be neglected, and the amplitude equa-
tions for the left- and right-propagating waves are uncou-
pled. Close to the collapse, the convection amplitude is
"spiky. " The relative amplitude growth rate at the end
of bursting, & exceeds, by at least an order of magni-
tude, the expected linear amplitude growth rate (e.g. , in
Figs. 1 and 2). We may safely neglect, in this case, non-
linear saturation, which is expected to produce rounding
efI'ects. Thus, only cubic nonlinearity is needed in the
amplitude equation which becomes
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FIG. 1. Spatiotemporal topographical representation of
the chaotic "blinking" state. The solid and dashed lines show
equal amplitude contours of the right- and left-going TW, re-
spectively. 1/) = —0.032; s = 0.0094; F = 40.6. r, the vertical
difFusion time, is equal to 32.3 sec.

where A stands for either A, or A~. Numerical simula-
tions based on this equation in the limit of very large
nonlinear dispersion ~c2~ && 1, where the real part of the
nonlinearity is neglected, show dispersive chaos [13]. Re-
cently [14], it was found that for the range of values of
cz and c2 relevant to our experiment, the system exhibits
bounded, chaotic solutions. These studies strongly sug-
gest that it is the large value of the nonlinear dispersion
coefficient, which dominates the dynamics.

In order to verify the relation between the collapse phe-
nomena and the large nonlinear dispersion, we measured
the value of c2, as a function of vP, by two methods. The
first method uses the fact that the frequency of the TW
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in a burst depends on the amplitude of convection. The
change in the TW &equency, L~, during the pulse evolu-
tion is given by bur = —gc2/Tp~A[ . We use this relation
in order to extract gc2/70. Then, the value of g is found
by fitting the amplitude evolution of the pulse to Eq. (2).
The value of c2, shown as circles in Fig. 3, is obtained by
averaging over many pulses. The second method, which
was already used in Ref. [8], is based on the dependence
of u, on e which follows from Eq. (2). By substituting
the ansatz solution A exp [iu(k)t + ik2:] into Eq. (2),
one finds (neglecting the spatial derivatives), Tp &

= c2.
Then, the value of c2 was obtained kom the dependence
of the &equency of the localized TW state on e. The

results at different values of g, are shown as squares in
Fig. 3. The values of c2 obtained by the two methods
are consistent, although the results of c2 obtained by the
second method at smaller values of ~g~, are more negative
(by about 30'%%uo). In accordance with previously measured
[8,16], and calculated [6,7] results, the value of the non-
linear dispersion coeKcient becomes more negative as ]vP~

decreases. Thus, for longer cells, at higher values of e and
smaller values of ~Q~, the dynamics of the "blinking" state
become dominated by the nonlinear dispersion. Figure
2(c) shows the temporal behavior of the amplitude in
our numerical simulations, which is qualitatively similar
to that of Fig. 2(a).
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FIG. 2. (a) Temporal dependence of the intensity of the shadowgraph signal for the same values of parameters as in Fig. 1.
(b) Power spectrum of the data shown in (a). uc is the critical TW frequency. (c) Temporal dependence at one spatial point,
obtained from numerical integration of the 1D CGL equation. e = 0.01,cq = —7. Note the qualitative sinai&arity to (a).
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evolution of the amplitude and width of such a single
pulse (the width is defined at FWHM of the pulse, and
is measured in units of the cell height d). The solid lines
in Fig. 5 are results of numerical simulations, performed
at e = 0.004, (p ——0.148, 7p ——0.1, ci ——0, g = 0.2, and
c2 ———9 . One can divide the pulse evolution into three
stages: linear exponential amplitude growth, followed by
a faster than exponential growth due to the nonstabiliz-
ing effect of the nonlinear term in Eq. (2), and finally,
the collapse. During the linear growth, the pulse am-
plitude increases exponentially, and the pulse becomes
slightly wider. During the nonlinear stage, the ampli-
tude growth is followed by accelerated narrowing of the

I

II
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I
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0.00 0.02 0.04 0.06

FIG. 3. The value of the nonlinear dispersion coeKcient c2
as a function of Q. Circles: values of cq obtained from the
dependence of the frequency on the amplitude of the pulses.
Squares: values of cz obtained from the dependence of the
frequency on e in the localized TW state. The diamond point
is taken from Ref. [13]. The dotted line is a power law fit
to the theoretically computed values of c2 [7]. The full line

is a power law fit to the experimental data. The experimen-
tal fit parameters deviate from the theoretical parameters by

15%.
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The complicated temporal behavior described above
suggests that the phase of the convection amplitude
should rapidly lose coherence. Thus we checked the
cross correlation of the phase field ]G](Az, At)
[(P(z, t)P(Az + z, bt + t))], where P is the local phase
of the measured amplitude A = a exp i/. Unexpectedly,
in addition to an algebraic decay near Az = 0, At = 0,
we found that the cross-correlation function was not de-
caying to zero for large decay times, At. In fact, small
amplitude irregular behavior (which is definitely above
the noise level) was observed, even for very large values
of bt. Figure 4(a) clearly points out on this behavior.
We suggest, that this behavior can be related to radia-
tion of small amplitude waves during the burst collapse,
and their absorption during bursting. We consider the
bursts as the coherent structure: thus, the small am-
plitude field that is radiated at the collapse should be
coherent with the burst, generating the tail of G. In
Fig. 4(b) we show results of the absolute value of the
cross-correlation function computed &om numerical sim-
ulations of the 1D-CGL equation. The similarity with
the experimental results is obvious. The oscillations of
the the cross-correlation function indicate the existence
of some long time scale in the system, which remains to
be explained. It is not, however, related to the round trip
time of the traveling waves. We could not find any sig-
nificant dependence of the algebraic exponent coeKcient
on E.

Let us now concentrate on the spatiotemporal evolu-
tion of a single burst. Figure 5 presents the temporal
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FIG. 4. (a) Envelope of the phase autocorrelation func-
tion of the optical signal ~G[(At). g = —0.019;e = 0.007;
cq = —8.8;I' = 40.6. (b) Envelope of the phase autocor-
relation function obtained by numerical simulations of CGI
equation at r = 0.01, c2 ———10. The insets show' the details
for the small amplitudes at longer delays.
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rate IEq. (3)j. This efFect, however, is less significant for
the high amplitude parts, where nonlinearity becomes
the dominant factor determining the pulse shape. Fig-
ure 9(b) shows a geometrically scaled version of the same
profiles. As will be shown in the next section, the CGL
equation predicts self-similar evolution for only a very
limited part of the burst and collapse processes during
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does not play an important role. We also assume that
far from its edges, the burst is uniform, i.e. , a is small.
In this case, Eq. (3) can be solved explicitly to yield the
faster than exponential evolution:

100000 -„

10000 =

~ 1 ~

E
a = —(exp [2e/7o (t* —t) ]

—1j
g

Here, a singularity is reached at a finite time t m t*.
For times close to t*, the solution reduces to a
(t* —t) ~, where t* is the theoretical collapse time. How-

ever, a real singularity cannot be reached, since the de-
scription by the CGL equation loses validity at su%-
ciently large amplitude. Nevertheless, we found that the
maximal amplitude of the pulse could be described by
Eq. (5), almost up to the experimental collapse, which
starts at t = t, . From Fig. 6(b), we can see that un-

til very close to t, the wave number distribution at the
peak is fiat. Collapse occurs only when the width of this
plateau becomes close to the roll size. We found that
t' —t is 1Q&0, i.e., the pulses approach the singu-
larity rather closely. Thus, we conclude that dissipation
efFects become important only very close to the collapse
moment.

In order to further compare the experimental results
with the theoretically derived solution, let us check the
statistical characteristics of the burst evolution. We now
introduce the probability distribution function (PDF) [2]:

f dtdzb(lhl —la(x, t) I)

f dtdx

By substituting the solution given by Eq. (5) and inte-
grating over the pulse evolution time, we get

1

lhl(~+ 2glhl')

Figure 11 presents experimental PDF data. One can
clearly distinguish three regimes in the data. The linear
regime, having a slope of (—1) corresponds to the early
evolution of the pulse. The nonlinear evolution stage,
showing a slope of (—3), and the approach to collapse,
showing much steeper dependence on the amplitude due
to the renormalization of e by fo2k2. Thus, we are able
to explain most features of the burst evolution in the
framework of the CGL equation.

The central question of the bursting process concerns
the behind the pulse collapse. From Eq. (4) one can
easily see that wave number deviations are induced by
amplitude gradients. At early evolution, the pulse pro-
file is wide and essentially fiat. Thus, the largest am-
plitude gradients occur near the pulse edges, which act
as a source of large k. At the edges, the pulse growth
is suppressed by Qk2, while at the core of the pulse the
amplitude continues to grow more rapidly than an ex-
ponential, following Eq. (5). This process causes self
focusing of the pulse (see Fig. 5) which rapidly becomes
higher and narrower. Eventually, collapse occurs due to
compression. It is only when the wave number deviations
become sufficiently large (as the pulse width reduces to

1d), that the effective growth rate (a+ ga —(ok ) be-
comes negative, and collapse takes place. The value of k

1000 =

100 =

I t

10
A (arb. units)

l I I I I

100

FIG. 11. PDF of the amplitude during the burst evolu-

tion. The data shows gradual transition from P A ' (the
solid line has a slope of —1), to P A (the dotted line),
and a sharp decay due to to dissipation at high amplitudes.

g = —0.022, e = 0.008, I' = 34.7.

continues to grow even after collapse has begun [see the
second term on the right hand side of Eq. (5)], acceler-
ating the amplitude decay to very small values. Figure
6 shows the development of k profiles during the burst
evolution and collapse.

Let us now look more carefully on the differences be-
tween the Bretherton-Spiegel [13], and the mechanism
suggested by us. The presence of the nonlinear term ga
in Eq. (3), which is neglected in the numerical treatment
of Ref. [13], is of the most crucial importance for under-
standing the high amplitude bursting behavior, and leads
to entirely diH'erent dynamics, coined by us "self focus-
ing. " Figure 7(b) compares the results of numerical inte-
gration of the CGL with (thick lines) and without (thin
lines) this term. Upon neglecting ga, Eq. (3) becomes
linear, and the pulse evolution is slower than exponen-
tial. The decay is generated due to the renormalization
of e by the wave number deviations, and the width of the
pulse remains almost constant until a moment which is
very close to the beginning of the amplitude decay.

The mechanism suggested by us is nonlinear and shows
clear self-focusing behavior. The growth is faster than ex-
ponential, and destruction occurs through compression oII'

the pulse from the sides, as explained above. Thus, nar-
rowing begins as the amplitude increases, and is acceler-
ated as the amplitude evolves, through Eq. (4). Due to
the nonlinear term in Eq. (3), the amplitude continues to
grow even after the renormalized growth rate (e —(ok ),
becomes negative. Figure 7(b) clearly demonstrates the
sharper and narrower profile of the pulses evolved accord-
ing to Eq. (3) relative to the behavior observed while

neglecting the nonlinear term of this equation. The fact
that the burst evolution is a threshold phenomenon [Figs.
8(a), 8(b), and 8(c)], strongly supports the distinction
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voAq ——(oA» + g(1 + ic2) ~A~ A. (8)

In this limit, the CGL equation has the following symme-
try: if A(z, t) is a solution, so is AA(Ax, A2t). Thus, the
pulse is expected to grow self-sixnilarly, with its height in-
versely proportional to its width. Note that this relation
should be valid for only a small part of the pulse evo-
lution. At early evolution the linear part cannot be ne-
glected with respect to the nonlinear part. On the other
hand, for too large amplitudes the CGL equation loses
validity. Thus, it is rexnarkable that the pulse evolution
shown in Fig. 8, is found to be self-similar at alxnost all
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0 t'.—at
~ t.+ht

Q

& 0.S-
M

0

o'. ~'
„00**

0.0—100
I I

0
x sea e

0

p» 0* 00

100

FIG. 12. Numerical simulations of spatiotemporal evolu-
tion of a single pulse presented in scaled variables. The time
step between profiles is Et = 57. . The solid line is a singular
solution of the NLS equation.

suggested above: for initially narrow pulses wave num-
ber deviations afFect the center of the pulse almost im-
mediately after evolution begins, thereby activating the e
renormalization mechanism suggested by Bretherton and
Spiegel [13] and used by Kolodner et al. [15,16], and
destroying the pulse before it could grow significantly.
Note that, when considering the nonlinear mechanism,
the large value of the nonlinear dispersion coef6cient c2
is crucial solely to the collapse process, while it is the real
part of the nonlinear coeKcient which afFects the growth
of the pulse and its self-focusing behavior.

A numerical analysis of burst and collapse occurring
in the quintic CGL equation was recently considered [2].
In this paper, singular solutions of the 1D-CGL equa-
tion with quintic nonlinearity were studied in the inviscid
limit. In this lixnit, the CGL equation reduces to the NLS
equation which has a singular solution blowing up in a
finite time. In this model, growth and collapse are shown
to be self-similar. This is true for the third order CGL as
well. When the pulse amplitude is strongly nonlinear, the
linear term eA in the CGL equation is small with respect
to the nonlinear term, and the CGL equation becoxnes
the NLS equation:

stages. The self-similarity continues even at the decay
stage, although the scaling changes. The inset in Fig.
8(b) shows the scaling of the burst width with its am-

plitude during most of the evolution. As expected, the
slope is close to —1. Figure 12 shows scaled profiles of a
pulse at difFerent moments of its evolution and collapse,
as obtained from numerical simulations. Self-similarity
during evolution and collapse is evident.

V. CONCLUSIONS

In this paper, we presented experimental results on
one-dixnensional TW convection of a binary Quid in rect-
angular geometry, which is characterized by repetitive,
chaotic bursting and collapse of the wave amplitude. In
rectangular geometry, left- and right-going TW are usu-
ally present, and their interaction, as well as reBection
at the endwalls, are important to the dynamics in short
convection cells and at large values of the separation ratio
[vP~, where the nonlinear dispersion is weaker [3]. This be-
havior manifests itself in the regularly xnodulated "blink-
ing" state, and was observed experimentally in cells of
small aspect ratio I' = 10, 12 [3], for specially tuned val-
ues of the aspect ratio [21], and also in the numerical
sixnulations performed by Cross, where dispersion was
not taken into account at all [11].

The situation changes draxnatically as the experimen-
tal parameters are changed. By reducing the value of ~Q~

one can increase the nonlinear dispersion of the system.
Increasing e accelerates the growth, causing nonlinearity
to become important sooner. Finally, the role of reflec-
tion from the lateral sidewalls, as well as the role of non-
linear interaction between the left- and right-going TW
become less important as the convection cell becomes
longer. Thus, even at moderate aspect ratio I' = 20,
a transition between regularly modulated and chaotic
blinking TW was observed [3]. In this paper, we pre-
sented results obtained in very long cells ( I' = 34.7, 40.6),
in which only chaotic behavior was observed. The fact
that the interaction between the left- and the right-going
TW is negligible enabled us to analyze the results in the
fraxnework of a single CGL equation. It is interesting
to note, however, that in a recent numerical study [22],
we found that even in the case that the nonlinear inter-
actions are included in the model, the dynamics do not
change qualitatively.

Analysis of the CGL equation suggests that bursting
occurs due to the destabilizing role of the real part of the
nonlinear term in the equation, which leads to the for-
mation of a singularity in a finite time. This singularity
cannot be actually reached, though, due to the strong
nonlinear dispersion of the system, which, through phase
winding causes compression of the pulse and its collapse.
Thus, one has to consider both the real and the ixnaginary
parts of the cubic nonlinear term in the CGL equation, in
order to fully account for the observed behavior. Our ex-
perimental results, as well as the nuxnerical simulations
performed by us, show that a single 1D-CGL equation
can quantitatively describe all the main features of the
state.
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The spatiotemporal behavior observed in our experi-
ments is very similar, at least qualitatively, to the obser-
vations presented in Refs. [15] and [16]. In annular cells,
endwall re8ection does not exist. Also, in this geometry
a state of unidirectional TW can be prepared. Thus, the
use of Eq. (2) can be rigorously justified [16,15]. While
the dynamics observed in an annular geometry is prob-
ably more spectacular, it is essentially identical to the
dynamics observed in long rectangular cells for similar
parameters.

The mechanism suggested above reduces, for initially
narrow pulses (tu ( 10d), to the linear mechanism of Ref.
13. At higher values of e, close to the transition to the
LTW state, our mechanism breaks down, and "double
hump" bursts, showing much slower amplitude decay ap-
pear. Thus, the validity of our mechanism is limited by
the Bretherton-Spiegel mechanism &om one side, and by
the nonvariational eHects that lead to the appearance of
the LTW state, on the other.

A few questions remain open. At the beginning of the
evolution, a wide "hump" is formed. What is the mecha-
nism responsible for the creation of this hump remains to

be understood. We cannot provide a satisfactory quan-
titative explanation as to the long time behavior of the
phase cross-correlation function ]G]. The fact that the
amplitude of ]G] stays well above the noise level even for
long time delays, as well as its seemingly periodic behav-
ior, which we could not connect to any experimental time
scale, remains a puzzle to us.

In conclusion, our experiments revealed a pulse self-
focusing and collapse mechanism that originates in the
large nonlinear dispersion of the system and the large
phase gradients at the edges of the pulse.
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