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Measurement of the scaling of the dissipation at high Reynolds numbers
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We present experimental results from a mechanically driven turbulent flow in helium gas at low tem-
perature. A large range of Reynolds numbers, extending over three decades (up to 5000 for Rz) is inves-

tigated. We perform torque measurements and determine the dissipation locally by two methods, using
the third-order structure function and the energy spectrum. Related quantities, such as the Kolmogorov
and Taylor scales, and determined. Both methods give consistent measurements for Rq&1000 but
difFerences are observed at lower values. The scaling of the dissipation is determined by using a single
power law to fit the whole range of Reynolds numbers; we recover the classical value (exponent equal to
3) when dissipation is calculated by using a third-order structure function, while a significantly lower
value is obtained when a spectral method is used. The question of the viscosity dependence of the dissi-
pation is thus left open. Several issues, such as the anisotropy, homogeneity of the flow, and Taylor hy-
pothesis are discussed.

PACS number(s): 47.27.—i

I. INTRODUCTION

During more than forty years, outstanding experimen-
tal studies have been carried out in the field of turbulence
[1];despite this effort, there still remain several basic as-
sumptions which seem worthwhile to compare more pre-
cisely with experiment. This is the case for the law of
constancy of the dissipation, which states that the energy
dissipation rate remains finite as the viscosity tends to
zero, or equivalently that the dissipation scales as the
cube of the velocity of the energy containing eddies. This
"inviscid estimate" of the dissipation is considered as a
cornerstone of turbulence theory [2] because its validity is
a condition for the existence of an inertial range; if it is
violated, then viscosity invades all scales of the flow and
it is no longer possible to define a range where energy is
transferred, without loss, from large to small scales [3].
Up until now, no observation has contradicted this as-
sumption, but on the other hand, there is no compelling
experimental evidence for it. The fact that the drag
coeScient is roughly independent of the Reynolds num-
ber is generally understood as an indirect proof of this
law. Similar considerations apply for the friction factor
in duct flows. The law of dissipation has been checked
more directly some time ago, in a range of Taylor scale
Reynolds numbers extending from 50 to 500 [4]. In view
of its importance, one may wish to investigate the validity
of this assumption at larger values of the Reynolds num-
ber, where an asymptotic regime is likely to be reached.

We address this question with the present experiment,
which is designed to reach very high Reynolds numbers
and also span a wide range. Following the work on con-
vection by Heslot, Castaing, and Libchaber [5], we
achieve this using helium gas at low temperature. By
changing the density (from the critical point region,
T-5 K, p -2 atm, down to pressures of a few mbars at-5 K) we can vary the kinematic viscosity v by three or-
ders of magnitude, and cover the range 10 & Re & 10, or
in terms of the Reynolds number calculated on the Tay-

lor scale: 100 & R& & 5000 (see Sec. II for the definition of
Re and Sec. IV for that of Rz). The objective of this pa-
per is thus to present measurements of the dissipation
and related quantities such as the Taylor and Kolmo-
gorov scales. The dissipation is determined locally by
two different methods: the first one uses the third-order
structure function, and relies on the von-
Karman-Howarth relation, while the second one uses
the energy spectrum. We also present measurements of
the torque exerted on one of the disks.

II. EXPERIMENTAL SETUP

Figure 1 shows a schematic of the experimental system
that we have used in the present study (in some cases, we
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FIG. 1. Sketch of the experimental system. 1: dc motors, 2:
blades fixed on the rotating disks, 3: working fluid, 4: thermal
link, 5: copper plate, 6: vacuum; Positions of probes are indicat-
ed by letters A —D and F.
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shall refer to a smaller device, described in Ref. [6]). The
Qow is mechanically driven by two counterrotating disks
of diameter 20 cm enclosed in a cylindrical envelope.
The disks have the profile of a U (to counterbalance the
centrifugal force at the edge) and each of them is
equipped with six radial straight blades (of height 2 cm)
in order to increase the entrainment [7]. They are driven
by dc motors at frequencies between 1 —10 Hz. Without
blades it was found dif6cult to obtain large average veloc-
ities a few centimeters away from the disks, this condi-
tion being important from the point of view of the mea-
surement, because it ensures that the anemometer is sen-
sitive to only one component of the velocity (the one
parallel to the average flow). The gap between the disks
and the wall of the cylinder is a fraction of a millimeter,
so that the flow can be considered as closed. The separa-
tion between the disks is 13 cm, thus the aspect ratio of
the cell is 0.65. The whole system is enclosed in a tem-
perature regulated (-5 K) flask filled with He gas. The
cryostat is of the superinsulation kind, with a He reser-
voir of 801.

The delicate point of the experiment is the measure-
ment. We measure the streamwise component of the ve-
locity at one point by "hot wire anemometry. " The
probe is made from a 7 p,m thick carbon fiber [8] whose
resistivity behaves with temperature similarly to an Allen
Bradley resistance (i.e., the resistivity increases at low
temperature); the temperature coefficient 1/R (dR /d T) is
0.05 K ', at 5 K which is a factor of 10 smaller than a
typical Allen Bradley. The fiber is stretched across a rec-
tangular frame (6 mm X 12 mm) made from 250 pm
thick insulated steel wire, and glued to the frame with
silver epoxy (to make the electrical contacts) and a drop-
let of stycast epoxy (for mechanical strength). An eva-
poration of a good conductor (200 A of Cr followed by
4000 A of Au) is then performed on the fiber everywhere
except on a spot at the center, which is masked by means
of another fiber stretched perpendicularly to the first (this
mask is removed in the end). We thus realize a detector
that is a cylinder 7 pm in diameter and, depending on the
mask size, from 7—25 pm long, the support being 3 mm
away from each side. The resistance is typically several
hundred 0 at 5 K.

We mounted five such probes at different positions in
the cell (marked A Dand I' in Fig—. 1), the length of the
sensitive part being 7 pm for B and C, pm for 2, D, and
12 pm for F; the frames A and B were mounted on 1 mm
thick steel needles jutting out from the side of the cell,
whereas C, D, and F were mounted on a pair of 125 pm
thick steel wires stretched across the cell (a similar tech-
nique was used, for instance, in Ref. [9]). Both methods
gave satisfactory results from the point of view of
mechanical stability; at high Re we observe however a
series of peaks in the spectrum at high frequencies, which
we associate with the von Karman wake created by the
detector (the Reynolds number on the detector size varies
from about 1 at low densities to about 100 at high densi-
ties). Since these peaks are beyond the useful frequency
range of the signal, they do not disturb the measurement
and we filtered them out. Most of the measurements
presented here were obtained with probe 8, which is 3.5

cm away from the wall and 2 cm away from the upper
disk. This position was chosen in order to have a large
mean flow (in the direction of the disk rotation) and at
the same time be reasonably far from the walls. The
probe is operated at constant temperature (-20 K) by
homemade electronics. The signal over noise ratio of the
system is 80 dB in the best cases (high densities) and 50
dB in the worst (low densities); the bandwidth is about 50
kHz, limited by the speed of the amplifier. The calibra-
tion curves, which we obtain by rotating the disks in the
same sense, thus creating a rigid body rotation of the
whole fluid, are well represented by "King's law" [10],
and have been taken into account all the measurements
discussed here. The data are digitized by a 16 bit con-
verter controlled by a digital signal processing (DSP)
card. A typical sampling rate is 125 kHz, for a typical
acquisition time of 5 min.

We also have a global measurement of momentum Qux,

namely the average torque on the upper disk [11].
In this paper, we define the Reynolds number by the

expression
QR'Re=

where 0 is the angular velocity of the disks, R is the ra-
dius, and v the kinematic viscosity. Some measurements
of the statistics at a fixed Re (which were obtained in a
similar system, three times smaller in size) have already
been described elsewhere [6]; here we concentrate on the
Re dependence of the dissipation and related quantities.

III. THE LARGE SCALE STRUCTURE OF THE FLO%'

The structure of the mean Qow was characterized in a
previous work [12], using a similar setup, with the same
aspect ratio, and the same number of blades, but with wa-
ter as the working Quid; the methods used for character-
izing the Qow were visualization and laser Doppler velo-
cimetry. These studies show that the Qow is essentially a
mixing layer developing in an axisymmetric geometry. In
particular, the velocity profile, plotted along the rotation
axis, can be well fitted by a hyperbolic tangential func-
tion, like in ordinary mixing layers. The mixing layer
may be axisymmetric, or exhibit angular corrugations„
usually associated to an azimuthal wave number m =4.
This pattern may also rotate as a whole, at a velocity
much smaller than that of the disks. There is evidence
that, for the same external conditions, several states, of
slightly different spatial structures, are accessible. For
the helium experiment, we do not visualize, but, indeed,
it is possible to extract complementary information on
the large scale flow from the direct time recording; we
thus calculate the energy spectrum E(f) and we trans-
form frequencies into wave numbers k using Taylor's hy-
pothesis; the corresponding relation reads k =2~f /(u )
(where u is the velocity and the bracket denotes time
averaging). We find that the average velocity U= ( u ) is,
at all Reynolds numbers, 85% of 2m Rb fd, where fd is the
rotation frequency of the disk and Rb the radial position
of the probe. Thus expressing the spectrum in wave
numbers amounts to measuring time and lengthscales in
units of the rotation frequency of the disks and the size of
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value of A, which is 4.5 cm, is a fraction of the size of the
system. The relatively large fluctuation rate (35%) is
consistent with typical values found in mixing layers [14];
the resulting inaccuracies in the application of Taylor's
hypothesis will be discussed later. Concerning the large
scale structure of the flow, it thus appears that it is in-
dependent of the Reynolds number; one could say that
our flow belongs to the general class of confined systems,
for which the large scale structure is imposed by the
boundaries.
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IV. MEASUREMENT OF THE DISSIPATION
USING THIRD-ORDER STRUCTURE FUNCTIONS

FIG. 2. Power density spectrum of the velocity fluctuation,
at 908 mbar, and with a rotation frequency of 20 Hz. The cor-
responding value of Rz is 1900. A power law, with an exponent
of about —1.72, is apparent over two decades of variation of the
wave number.

the box, which are the physica1 units for this system.
Figure 2 shows an energy spectrum E(k} in the spec-

tral domain, for Re = 1.2 X 10 (see below for the
definition), obtained on probe 8; at this high Re, the
range of wave numbers where a power law is observed
covers more than two decades. The dissipative part of
the spectrum is well resolved. The peak at k=1 cm
corresponds to the passage of the six blades; this is the
scale at which energy is injected, and from there starts
the power law behavior (see also Ref. [13]}.

From the spectrum, we can determine several quanti-
ties that characterize the large scale structure of the flow:
these are the integral scale A (defined by
A=E(0}[f 0 E(k)dk] ') and the longitudinal fluctua-

tion rate u, /U (here, u, is the root mean square of
the velocity fluctuation —further simply denoted by u').
We plot these two quantities, in Fig. 3, against the Rey-
nolds number Re. There is significant scatter; we have
not precisely identified its origin, but it is reasonable to
relate it to the fact that on large scales, states of slightly
distinct spatial structures are accessible. It nevertheless
appears that, within 225% uncertainty, both quantities
are independent of the Reynolds number. The mean
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Figure 4(a) shows a typical evolution of the inverse of
the longitudinal third-order structure function, defined

by

F3(r)=([u(t) —u(t+r/U)] )

as a function of the separation distance r. In the above
expression, u (t} is the local velocity measured by the hot
wire, the brackets denote time averaging, and we have
applied Taylor's hypothesis to convert time into distance.
Figure 4 defines a domain where the structure function is
approximately linear in r, in agreement with the von-
Karman —Howarth —Kolmogorov relation [15]. A more
accurate inspection of the linear regime can be made by
plotting the ratio F3(r)/r, a—s a function of r, on semi-
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FIG. 3. Evolution with the Reynolds number of the integral
scale 4 and the fluctuation rate u, /U.
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FIG. 4. Third-order structure function —F,(r) for
R& =1900; (a) direct plot on logarithmic scales; (b) plot of the
ratio —F3 /r on semilogarithmic scales.
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logarithmic scales [Fig. 4(b)]; a plateau can be defined,
throughout a range extending over almost one decade in
scale. The evidence for the existence of a plateau is gen-
erally not as clear as in Fig. 4; one usually has weakly,
but significantly rounded plateaus. To investigate the
limits where such a plateau can be defined, we introduce
two lengths I;„f and l,„~, arbitrarily defined as the values
for which the ratio F3(—r) Ir is equal to 70% of its max-
imum value. The evolution of these two scales with the
Reynolds number is shown in Fig. 5. There is significant
scatter in the data, but one can see several trends: con-
cerning the lower scale, we observe first a decrease and
further a saturation at a value comprised between
60-120 pm. The decrease of I;„f is related to the fact
that, as the Reynolds number increases, the inertial range
extends farther into the small scale domain. However,
the saturation is unexpected in terms of the Kolmogorov
picture. Concerning l,„„,the scatter is somewhat large,
but, as a general trend, one could say that it slightly de-
creases with the Reynolds number. A typical value of
4+1 mm, i.e., one order of magnitude smaller than A,
can be suggested to characterize l,„ throughout the
whole range of Reynolds numbers investigated. The ori-
gin of this new scale is not obvious to discuss, on the
basis of single probe measurements. It probably
expresses the fact that for scales above l,„,turbulence is
anisotropic. The value of 4 mm, as an upper limit for an-
isotropic scales, is consistent with estimates extracted
from a numerical study of Taylor-Green vortex [16]. The
fact that this value is roughly independent of the Rey-
nolds number differs from observations performed in
open flows; this may reflect the fact that we work in a
confined geometry, where the large scale flow structure is
fixed, while in open systems, even the large scales are gen-
erated by the dynamics of the flow itself.

Using the linear region of F3 we can estimate the dissi-
pation per unit mass c according to the von-
Karman-Howarth-Kolmogorov relation, in the form

F,(r)= 4sr . ——

by
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The corresponding results are shown in Fig. 6; the ac-
curacy of the data for values of the Reynolds number
below 10 is questionable, since the extension of the
domain where a power law can be defined is small. Fig-

We have checked that the viscous term vdF2 /dr is negli-
gible in all cases. From c, one can determine several
quantities, such as the Kolmogorov scale g, the Taylor
scale A, , and the microscale Reynolds number R&, defined
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FIG. 5. Evolution with the Reynolds number of I;„fand I,„„.

FICx. 6. Reynolds number dependence of (a} dissipation c, (b}
Taylor and Kolmogorov scales, {c}microscale Reynolds number

R&. For this plot, the dissipation was determined using the
third-order structure function.



MEASUREMENT OP THE SCALING OF THE DISSIPATION AT. . . 3697

cR4 =0.013Re
pe

~—3OR
—0.75+0.03

R

—=4.9Re * R = 1.57Re
R

ure 6 shows the existence of power laws extending over
more than two decades in Reynolds number. The corre-
sponding forms are
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Using the third-order structure function one thus finds
values of the exponents in good agreement with the clas-
sical estimates, which are three for the dissipation, —

—,
'

for the Kolmogorov scale, —
—,
' for the Taylor scale and —,

'

for the Taylor scale Reynolds number. The above rela-
tions thus indicate that the form of the "inertial esti-
mate" for the dissipation reads

U
c=0.013

R '

or equivalently

l3
c-0 7-—

A

which is consistent with measurements performed at
smaller values of Re [4].

V. MEASUREMENT OF THE DISSIPATION
USING THE SPECTRUM

Here we compute the dissipation c per unit mass ac-
cording to [17,2]

100
10' 10
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FIG. 8. Log-log plot of Rq vs Re; the black triangles
represent the present experiment, and the white ones a smaller
system (R =3 cm) with the same aspect ratio [6]; the fit has a
slope of 0.65. For this plot, the dissipation was determined us-

ing the spectrum.
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R

R —0.30+0.10U
R

that is, with this method we observe deviations from the
classical scaling.

These exponents are not independent. It is easy to see
from the definitions given before that if

s=15vf dk k'E(k) .
0

(2) U
Re

R
Figure 7 shows, in the time domain, a typical dissipa-

tion spectrum f E(f), from which (2) is computed.
Again we determine from c the Taylor scale A, , the corre-
sponding Reynolds number R& and the Kolmogorov
scale q. Figure 8 shows the plot for R&. Fitting with
power laws, we find the following exponents:

then

q-R Re'- -""
and

Ree e

These measurements thus give a= —0.3+0.1, while
the measurements obtained from the structure function
give the Kolmogorov scaling a =0.

We now characterize the energy and dissipation spec-
tra more in detail. To this end, it is useful to have a good
fit, and we find that the form

2 3
log, (f/fd)

FICx. 7. Dissipation spectrum f2E(f} with the fit, for
Re=3.5X10,fr=4 Hz.

E(k) k ~/(e —1)
—k /ko(which behaves as k ' for k «k0 and as k 7'e

for k ))k0) fits all our spectra reasonably well (see Fig. 7,
which shows a typical fit for the dissipation spectrum in
the time domain). The cutofi' k0 is related to the Kolmo-
gorov scale g, and we find for k0 the same scaling ex-
ponent, k0R -Re . Using the fit we determine the po-
sition k of the maximum of the dissipation spectrum
(Fig. 7); let us call the corresponding lengthscale

=27r/k; we find (Fig. 9)
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FIG. 9. The position of the maximum in the dissipation spec-
trum, A, (in pm) vs Re; the fit has a slope of —0.60.

FIG. 11. Spatial evolution of the dissipation and the micro-
scale Reynolds number, measured in the smaller device [6].

VI. DEPENDENCE WITH THE POSITION
OF THE PROBE

that is, the scale at which the maximum dissipation
occurs scales differently from the Kolmogorov scale g.
This is related to the fact that the slope of the spectrum
(exponent y) keeps changing; in Fig. 10 we show the evo-
lution of —(y+ I), which is the slope of the energy spec-
trum in the inertial range; it decreases for increasing Re.
Consequently the dissipation spectrum k E(k) becomes
more and more flat (in the inertial range) as Re is in-
creased; the maximum broadens, and shifts to small wave
numbers when renormalized with the cutoff ko.

If we extract the exponent of the spectrum by simply
fitting a straight line to the "straight" (inertial range) por-
tion we find a similar evolution, but the actual values are
somewhat smaller, being comprised between —1.60 and
—1.80; this difference is due to the exponential term in
the fit. We thus agree with previous experiments in
finding slopes of —5/3 and smaller, but we show addi-
tionally a systematic evolution towards smaller exponents
as Re is increased.

An interesting issue is the spatial dependence of the
above characteristics of turbulence in our system. To
study that, we used a smaller device [10], and displaced
an anemometer mounted on a step by step motor. The
displacement was performed along a line parallel to the
rotation axis, 2 cm apart (in this setup, the radius was 3
cm). Figure 11 shows the evolution of the dissipation e, ,
and the microscale Reynolds number Rz, measured by
using the third-order structure function. On the figure,
z =0 represents the midplane and z =25 mm the lower
plane of the blades. One can see that the dissipation is
maximum at the midplane and decreases as we approach
the disk; this spatial evolution is consistent with known
characteristics of the mixing layer [14]. We find that the
spatial variations of Rz are much smaller; this is due to
the fact that both u' and c increase as we approach the
midplane; thus, R & can be taken as a constant
throughout the layer, and therefore, it provides a useful
parameter for characterizing the whole system.

VII. DISCUSSION ON THE TAYLOR HYPOTHESIS
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The high fluctuation rate (35%%uo) may introduce uncer-
tainties in the application of the Taylor hypothesis. This
is a point that certainly merits attention and experiments
are in preparation to estimate the effect of large fluctua-
tions. Several correction schemes have been elaborated
in the past [18],and more recently [19],to take this effect
into account. According to Ref. [18],the corrected value
c' of the dissipation reads
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FIG. 10. Semilogarithmic plot of the slope of the energy
spectrum (exponent —y —1) vs Re.
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l+ +2 +2
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in which v and m are the transverse components of the
turbulent fluctuations [see formula (36) of Ref. [18]]. In a
mixing layer, close to the edges, such quantities amount
to typically 60%o the longitudinal component u' [14];
thus the above formula shows that we overestimate the
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FIG. 12. Dimensionless torque I /pQ2 (arbitrary units) vs

Re. A power-law fit gives an exponent of zero within the errors.

dissipation by a factor of 30% while Ri and g are un-
derestimated by 15% and 8%, respectively. Another
consequence of the above formula is that, if the large
scale structure is fixed, the correction is independant of
the Reynolds number. In our case, as previously men-
tioned, we have a strong indication that this is the case,
since the longitudinal fluctuation rate, the integral scale,
and (according to Ref. [12]) the mean flow are indepen-
dent of the Reynolds number. Therefore, such correc-
tions should not change the values of the exponents that
we find and more generally the form of the functional
dependence of the dissipation with the Reynolds number.

VIII. EVOLUT1ON OF THE TORQUE
WITH THE REYNOLDS NUMBER

IX. DISCUSSION AND CONCLUSION

We first compare the two methods of determination of
the dissipation in the bulk (third-order structure function

We measure the torque I exerted by the fluid on the
lower face of the upper disk. At low densities we are lim-
ited by the sensitivity of the method, so that we have to
restrict ourselves to the range 5X10 &Re~10. Also,
we present only relative measurements, since the absolute
value has not been calibrated. Figure 12 shows that the
(dimensionless) measured torque I'/pQ (I is the torque,
p the density, and 0 the angular velocity of the disk) is
independent of v. The total power P=2I 0 is then also
independent of v. Thus the "inviscid estimate" holds for
the global dissipation per unit mass P/M (M is the total
mass of the He}. We note that P (estimated by using the
value of the electric power provided to the motors, sub-
tracting the contribution in the corotating mode) is found
much larger than the value of c integrated over the bulk
volume. Therefore, most of the power is dissipated in re-
gions outside the bulk. These can be located either be-
tween the blades or in boundary layers close to the walls.
In any case, the global dissipation per unit mass P/M
and the bulk value c are quite distinct quantities.

and the spectrum}. The problem that is raised by our
measurements is that the exponents found by the two
methods are not the same. If we compare Figs. 6 and 8,
we can fairly say that the two measurements are con-
sistent for Reynolds numbers above 5X10 . For lower
values, discrepancies are clearly visible; we can have a
factor of 3 between the two estimates of Ri (or s) at the
smallest Re. Both methods are based on the assumption
of statistical isotropy and homogeneity of the small scales
of the flow. If this condition is partially violated, it is not
immediately clear which of the two determinations of c
will be afFected most.

Concerning the structure function method, we remark
that the expected scaling of the function with r is of mod-
est quality. It has been argued [20] that edge effects are
responsible for the degradation of these power laws, but
there is no evidence that this is indeed the case. In any
case, for Re(10 the limited extent of the inertial
domain makes this determination of c problematic.

The method that uses the spectrum does not suffer
from the limitations resulting from a sma11 inertial range
at low Re; however, if the dissipative scales are anisotrop-
ic at low Re (due to the proximity, in wave-number space,
of the forcing) the coefficient 15 in (2) (which comes from
the fact that we measure a one-dimensional spectrum}
may actually take a different value, and may indeed de-
pend on the Reynolds number, for low enough Re.

In the present state of affairs, it is difficult to conclude
which of the two methods gives a better determination of
s. One of us (G.Z.) gives credit to the measurements of
the dissipation by the spectral method, and tends to con-
clude to the existence of deviations from the classical
scaling. Two of the authors (P.T. and H. W. } are in-
clined to think that a more direct measurement of the an-
isotropy is needed for drawing a definite conclusion. We
shall not elaborate here on the consequences that a
viscosity dependent dissipation would have for our un-
derstanding of turbulence: they are obviously far reach-
ing.
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