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We present an extensive experimental and theoretical study of the flow in an open Taylor-Couette ap-
paratus with radius ratio r, /rz=0. 738 and imposed axial through-low. Emphasis is given to the
amplification of noise observed when the base flow is convectively unstable. Parameter boundaries for
absolute and convective instability with respect to axisymmetric disturbances are determined experimen-

tally and theoretically for axial Reynolds numbers R ~ 4, with excellent agreement between experiment
and theory. Above onset a sustained pattern of traveling Taylor vortices is observed downstream of the
inlet. In the case of absolute instability, the pattern is periodic within experimental resolution as evi-

denced by a narrow frequency spectrum in the time series of the Taylor-vortex velocity at a fixed point.
In contrast, the patterns in the convectively unstable case arise via spatial amplification of microscopic
noise. There results a broadened frequency spectrum caused by the pattern phase executing a pseu-
dorandom walk. Virtually all aspects of the observed behavior are captured quantitatiuely by numerical-

ly integrating a complex Ginzburg-Landau (CGL) equation with an additive, spatially distributed, sto-
chastic term. Precise measurements of the spatial amplitude profiles were made using fluids of various
viscosities. The noise power required to fit the data has a viscosity dependence consistent with thermal

noise, i.e., it has a "white" spectrum over at least a decade in frequency. Within our experimental uncer-

tainty, the noise power is independent of the axial Reynolds number over the range 1.5 5 R ~ 4. Simula-

tions of the stochastic CGL equation indicate that the noise corresponds to rms velocity fluctuations,
which are smaller than typical fully developed secondary flows in our experiment by a factor of about
10 . However, numerical evaluation of a recent theoretical result for the thermal noise power in the
Taylor-Couette geometry with no through-flow turns out to be about 270 times smaller than the experi-
mental result.

PACS number(s): 47.20.—k, 43.50.+y, 47.27.Sd

I. INTRODUCTION

"A deaf man might have seen the harmony.
" So

remarked Leconte upon observing a torch flame dancing
in synchrony to the strains of a cello [1]. This response
to acoustic excitation is but one of many examples of the
sensitivity of open flows to perturbations. It is well
known that many open flows such as wakes [2], heated
jets [3], free convection [4], and boundary layers [5—8]
can respond to controlled, harmonic perturbations by
amplifying a band of frequencies and wave numbers
[9,10].

Amplification Uia instability renders open flows sensi-
tive to noise as well as to periodic disturbances. This pa-
per aims to demonstrate, by quantitative experimental
and theoretical study, how macroscopic flow patterns can
arise from amplification of intrinsic microscopic noise in
a convectively unstable system [11,12]. Noise
amplification is of great practical importance since all
flows have unavoidable thermal or other noise sources. It
is also central to the fundamental issue of stochastic
efFects in hydrodynamics [11,13], and in nonequilibrium
spatially extended systems in general. This topic has

'Present address: Digital Instruments, Inc. , 520 E. Montecito
St., Santa Barbara, CA 93103.

stimulated a recent surge of attention, with little quanti-
tative experimental work so far.

The system we studied was an open version of Taylor-
Couette flow [14]. It consisted of fluid contained between
two concentric cylinders with the inner one rotating and
with through-flow imposed in the direction of the
cylinders' axis. For a significant range of control parame-
ters, rotating the inner cylinder causes the structureless
base flow to become conuectively unstable, i.e., individual
perturbations of the base flow grow in a comoving frame
but are advected downstream and out of the system
[11,15,16]. No permanent secondary flow would exist in

this regime in the absence of persistent perturbations or
noise [12,17—19]. Yet one observes sustained, macro-
scopic patterns of traveling Taylor vortices downstream
of the inlet [20—26]. We interpret these patterns as aris-
ing from the amplification of a persistent noise source by
the convectively unstable system. The relevant noise is
very small, having rms velocity fluctuations that are
about 10 times smaller than typical velocities af the fully
developed vortex pattern.

The work presented here focuses on small axial Rey-
nolds numbers for which the primary instability is to
traveling axisymmetric vortices. The topics we address
are as follows.

Stability. The featureless base flow has parameter re-
gimes of both convective and absolute instability. In the
absolutely unstable case, disturbances grow in time at
fixed positions and can fight their way upstream, nearly
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filling the entire system with a secondary vortex-flow
structure that is periodic and insensitive to noise [15].
The simplicity of the Taylor-Couette geometry facilitates
both a precise experimental measurement of the boun-
daries between the stability regimes, and a numerical cal-
culation based on the Navier-Stokes equations. We find
excellent agreement between experiment and theory
[20,21].

Amplitude description. Virtually all observed proper-
ties of this system are captured quantitatively by a one-
dimensional, complex Ginzburg-Landau (CGL} equation
with a spatially distributed additive stochastic term and
coefficients derived from the Navier-Stokes equations.
This CGL equation should be applicable close to thresh-
old. It affords a clear exposition of stability and the
amplification mechanism, and provides for useful and
efficient numerical simulation.

Characterization of noise-sustained structure. The
convectively unstable system amplifies microscopic noise
and leads to traveling vortex patterns [12,20,21,24—26].
Within the context of a stochastic Ginzburg-Landau
equation, early emphasis has been given to these "noise-
sustained structures" by Deissler [12]. The vortex ampli-
tude grows spatially from an extremely small value at the
system inlet to a nonlinearly saturated state sufficiently
far downstream. Time series of the axial velocity at axial
positions where the amplitude has saturated are nearly
periodic in time, but their power spectra have nonzero
width. The width is caused primarily by phase wander as
opposed to variation in the flow amplitude. The
difference between the measured phase and a perfectly
periodic signal at the mean frequency executes a pseu-
dorandom walk, i.e., the root-mean-squared phase devia-
tion increases as a power law in time, but with an ex-
ponent slightly greater than I/2. Properties of the secon-
dary flow, such as spectral bandwidth and the phase au-
tocorrelation time, are captured quantitatively by the
linearized stochastic CGL equation.

Noise properties. We obtain an estimate of the experi-
mental noise strength by comparing measurements of
spatial amplitude profiles with CGL equation simula-
tions, for which the noise strength is the only free param-
eter. We also numerically evaluate a recent theoretical
calculation by Swift, Babcock, and Hohenberg [27] for
the Taylor-Couette geometry, and find that at Reynolds
number R =3.0 the experimental noise power is approxi-
mately 270 times larger than the prediction for thermal
noise. Using a wide range of viscosities, and hence time
scales, shows that the noise power is proportional to v
as predicted by theory, or, equivalently, that it has a
white spectrum over at least a decade in frequency. We
also find that the noise power is, within the resolution of
our measurements, independent of R for 1.5 & R ~4, and
that it is an order of magnitude smaller in our experiment
than the noise Boor reported by Tsameret, Goldner, and
Steinberg [26] for R ~ 2.

In sum, the simple Taylor-Couette geometry allows
precision experimental measurements and a detailed un-
derstanding of how instability of the primary flow
amplifies intrinsic noise and leads to secondary flow
structures. Experimental resu1ts can then be compared

quantitatively with theoretical treatments of stochastic
effects drawn from first principles. Furthermore, the
streamwise constant boundary conditions and centrifugal
nature of the instability avoid many of the complications
typically found in the shear instabilities of most open
flows, such as conditions that vary streamwise, secondary
instabilities, and ill-defined boundary conditions.

This work can also be viewed as part of a larger effort
to understand stochastic effects on pattern formation in
nonequilibrium, spatially extended systems. For exam-
ple, convective instability and noise amplification occurs
also in closed systems with a Hopf bifurcation to travel-
ing waves [28] and has been studied experimentally in
binary-mixture convection [29]. In closed systems near
bifurcations to a time-independent pattern, where the
susceptibility of the pattern order parameter can become
extremely large, noise-induced fluctuations can also be-
come observable. This effect has been studied experimen-
tally in electroconvection in nematic liquid crystals [30]
and in gases at elevated pressures [31]where, just below
the convection threshold, fluctuating patches of convec-
tion rolls arise in response to noise. An analogy can be
drawn with order parameter fluctuations near equilibri-
um phase transitions. Noise amplification in open flows
is perhaps more dramatic in that it leads to fully
developed secondary flows, and occurs not just near bi-
furcation points but over the entire range of external con-
ditions which render a system convectively unstable.

The paper is organized as follows. Section II describes
the geometry and experimental setup. Section III gives
an overview of the observed states and their stability vs
control parameters. Section IV describes measurements
of the onset of convective instability, and the numerical
stability analysis used to calculate this boundary. Section
V introduces the complex Ginzburg-Landau equation
which we use to model noise amplification, and discusses
the significance of absolute instability. Section VI
discusses the onset of absolute instability from experi-
mental and theoretical standpoints. Section VII describes
noise-sustained structure, and how the essential observed
properties can be understood in terms of the CGL model.
Section VIII presents profile measurements which probe
the power and viscosity dependence of the noise. The
noise level is estimated by adjusting the noise power in
simulations of the CGL equation to match the data.
These results are compared with recent theoretical work
[27] on thermal noise in the Taylor-Couette geometry,
with our previous, less accurate measurements [21], and
with the work of others [26].

In the remainder of this paper, we use a tilde to denote
dimensioned lengths, times, and velocities in cases where
confusion might arise. For the corresponding scaled
variables the tilde has been dropped. The only exception
is the parameter Z, the dimensionless distance from the
convective instability boundary.

II. EXPERIMENT

Our experiments used a concentric-cylinder Taylor-
Couette apparatus with the inner cylinder rotating; the
basic design is described in Ref. [32]. The outer cylinder
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R —= (w )d/v, (2.1)

where (S)=Q/rr(Fz —Fi) is the mean axial fiow veloci-
ty. It was determined with an accuracy of 0.1 —0.5 % and
remained constant over several hours.

For the experiments described here, it is critical that
the flow be introduced to the working volume with
minimal velocity disturbance and a high degree of azimu-
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FIG. 1. Scale drawing of the inlet region of the apparatus.

was machined from Lucite with an inner diameter
2r2 =5.160 cm, 2.29 cm thick walls, and a total length of
1 m. The inner cylinder was machined from aluminum
and finished with a Magnaplate [33] "HCR" hardcoating
to resist nicks and prevent leaching of ions that promote
unwanted Qocculating of seed particles. The inner-
cylinder diameter was 2r, =3.806 cm, giving a radius ra-
tio g =—r

&
/rz =0.738 and a gap d = r2 —r, =0.677+0.002

cm. The total length of the working volume was I.=97.5
cm, yielding an aspect ratio L=L/—d=144. We will
scale lengths by d and time by the momentum diffusion
time rd —=d /v, where v is the kinematic viscosity.

Hardened stainless steel shafts were attached to the
inner cylinder and aligned, and the cylinder ends were
finished with Delrin caps to prevent galvanic corrosion
and to provide a smooth, azimuthally uniform surface
that minimized disturbance of the incoming Qow. As
shown in Fig. 1, Delrin endcaps were attached to the
outer cylinder, and held stainless steel ball bearings that
supported the inner cylinder. The working fluid was con-
tained by radial shaft seals made of a proprietary high
molecular weight material [34] that minimized shaft
wear. The cylinders were mounted horizontally, and
were concentric and straight to +0.004 cm.

Through-flow was generated by a recirculating gravity
feed with a fixed pressure head. The volume fiow rate Q
was controlled by an adjustable clamp applied to Qexible
tubing and was measured by a Manostat 36-547 TF
flowmeter. The axial Reynolds number was defined as

thai symmetry. Figure 1 shows a scale drawing of the
fluid inlet region in the endcap which was used to distri-
bute the Qow. The fluid first entered an annular channel,
then passed through a machined Lucite annulus contain-
ing eight holes, each of diameter 1.09 mm, producing jets
of uniform intensity. After passing through another ring
of 24 holes of diameter 2.26 mm, the flow was deflected
by a Qange. It then passed through two layers of stainless
steel mesh with grid spacing 0.44 mm (aperture size 0.24
mm) and entered the cylinder gap. Measurements of the
axial velocity vs aximuthal angle at constant radius
within z =3 of the entry point showed that the Qow was
uniform to +1%. Some of the earlier experimental work
[20] used a fiow distributor with a single ring of holes.

Over the parameter range explored by us, the flow in
the bulk of the apparatus was insensitive to the means by
which it was extracted from the downstream end. In par-
ticular, it did not matter if the Qow first passed through a
layer of mesh, or simply passed through a hole at a single
azimuthal position. The latter caused minor disturbances
in the two or three vortices nearest the outlet, but did not
affect the fiow further upstream [25].

The working Quid consisted of water-glycerol mixtures
ranging from pure water to 61% glycerol by volume, cor-
responding to a range of kinematic viscosities
0.935&v&10.0 cS, and diffusion times 4.6&~d &49.0 s.
The temperature of the fluid was maintained at 23.3'C to
a precision of 0.01'C rms as it entered the apparatus. At
the downstream end the temperature varied less than
0.04'C, typically much less.

The inner cylinder was rotated by a stepper motor
(Portescap model PH 632-508) driven by a microstepping
driver (Parker Compumotor DB Drive). Depending on
rotation frequency, we used between 400 and 5000
steps/revolution with step size chosen to optimize
smoothness and frequency resolution. The latter was lim-
ited by the 1 ps resolution of a PC timer used to control
the motor driver. Frequency resolution was always
better than 0.1%, and could approach 0.01% as needed.
High resolution was essential for determining parameters
used in the noise estimates of later sections.

For Qow visualization, the fluid was seeded with a Kal-
liroscope suspension [36]. We typically used 0.5 —1.0%
by volume. Digitized images of the flow were captured
by computer from a CCD camera. Seeding the fluid in-
stead with 1.0 pm diameter polystyrene latex spheres
with an approximate number concentration of 10/cm
allowed point measurements of the axial Qow velocity to
a resolution of 0.005 cm/s using a home-built laser-
Doppler velocimeter (LDV) [37] with a 1 s measuring
time. The LDV was mounted on translation stages
driven by stepper motors. To prevent Qocculating of seed
particles, the circulation loop included a cannister con-
taining 2 cm of 16—30 mesh beads of Dowex anionic and
cationic resins (Dow-Corning No. 7780306).

The kinematic viscosity of the working fluid was mea-
sured using the known value of the Taylor number 7' at
the primary onset to Taylor vortices with no through-
flow. Linear stability analysis of the Navier-Stokes equa-
tions (Sec. IV) gave 7;=2131.8 for the critical Taylor
number [38,39] for the radius ratio q =0.738 assuming an
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infinite geometry, where

V'=2Qz„pPd /[v (1—
vi )], (2.2)

0.10

0.08—
and Qpyf is the angular frequency of the inner cylinder.
Precise measurements of the onset frequency Q,„&,were
obtained by measuring the intensity of reflected light as a
function of position. Alternatively, a very small
through-flow was set up with negligible efFect on onset
(R «1; see Sec. IV), and time series of axial velocity or
reflected?ight were recorded as vortices slowly passed a
fixed position. The resulting measurements were fitted to
a harmonic function a cos(Qt+Pu) and the amplitude a
extracted. The amplitude obeyed the expected relation
a ~ Q,„&/Q,„,,—1. Rounding at onset due to finite size
effects [32,40] was minimal due to the large aspect ratio.
The kinematic viscosity v was then given uia 'T, with a
typical overall precision of 0.02%.

III. OVERVIEW

This section gives a brief overview of stability and ob-
served flow states that will be referred to in the rest of the
paper.

Two control parameters describe the externa11y im-
posed conditions. One is the axial Reynolds number R
given by Eq. (2.1}. The second is the reduced angular ro-
tation frequency of the inner cylinder

0.06—

0.04—

0.02—

0.00 —=

FIG. 2. Stability diagram for axisymmetric traveling vor-
tices. The lower solid points and solid curve are the experimen-
tal and theoretical results, respectively, for the onset of convec-
tive instability at e, (R). The upper solid data points mark the
experimental boundary between a broadened and a sharp fre-

quency spectrum, and the upper solid curve is the theoretical re-
sult for the absolute instability boundary «, (R). The dash-

dotted curve is the absolute instability boundary of the
Ginzburg-Landau equation. The open squares are the minimum

e at which noise-sustained traveling vortices were observed with

fiow visualization at z=100. The crosses mark parameter
values for the space-time plots of Fig. 4 below.

e—=Q,„i/Q,„),(0 ) —1, (3.1)

where Q,„,,(0} refers to the onset of Taylor-vortex flow
at R =0.

Except for a short inlet region to be discussed later, the
featureless base flow is a superposition of azimuthal
Couette flow Vo(r)8 and axial Poiseuille flow Wo(r)f,
where we use right-handed cylindrical coordinates
(r, H, z) For a gi.ven Reynolds number R, this flow state is
observed for suSciently small e. Discussions of stability
refer to this base flow.

Figure 2 shows the parameter regime on which this pa-
per is focused. There are two principal stability boun-
daries which we describe briefly; details of their measure-
ment and calculation are given later.

The lower solid curve and data points locate the onset
of conuectiue instability, denoted e, (R ). Below this
boundary, the featureless base flow is stable. For
e & e, (R ), the base flow is unstable to the growth of trav-
eling Taylor vortices. Perturbations can grow and
spread, but are advected downstream and out of the sys-
tem. An example from experiment is given in Fig. 3,
which shows the development of an externally generated,
macroscopic pulse of Taylor vortices. The boundary
e, (R) curves up quadratically for small R, reflecting the
we11-known result that the axial flow suppresses the onset
of vortex flow. This primary instability to traveling vor-
tices was the subject of several early experimental and
theoretical studies, although its convective nature was
not emphasized [41]. More recent work has been direct-
ed toward exploring the rich variety of flow regimes, in-
cluding traveling spirals and complex time-dependent
states, that can be observed over a range of axial Rey-
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FIG. 3. Growth of a pulse of Taylor vortices in the convec-
tively unstable regime; R =16.5 and a=0. 160. At time t=0.2,
the apparatus was rocked back and forth once about its axis.
The length shown is about I./6.

nolds numbers and rotation rates greater than those con-
sidered here [42-44].

The upper solid curve in Fig. 2 is the result of the nu-
merical evaluation of the onset of absolute instabHity

e, (R ) based on the full Navier-Stokes equations. Above
it, disturbances of the base flow grow in a fixed frame,
i.e., they can fight their way upstream. After transients
die away, the system becomes nearly filled with a travel-
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ing vortex pattern, except near the inlet where the vortex
amplitude must grow from zero, or near zero, because the
flow enters with no rotation. The nearby data points
mark the experimental minimum e for which the travel-
ing vortex pattern is periodic; for smaller e, the spectrum
becomes broadened. We show below that this transition
corresponds to the boundary e, (R) between the convec-
tive and absolute instability regimes. The dot-dashed line
is the transition from convective to absolute instability in
the Ginzburg-I. andau description presented in Sec. V.

Figure 4 shows space-time plots obtained by flow visu-
alization of the observed steady-state flow at various e for
Sxed R =3.0. In all cases, no external perturbations were
applied, and transients were allowed to die down. In (a)
and (b), the baseflow is absolutely unstable. A fully
developed pattern of traveling vortices that grows spatial-
ly from zero at z =0 has been established in each case. A
characteristic length, or healing length lz of this growth,
can be de5ned as the distance from z =0 required for the
pattern to reach half of its saturated amplitude. The
healing length increases as e decreases, as can be seen in
Fig. 4.

In Figs. 4(c) and 4(d), the base flow is convectively un-
stable. Sustained patterns of travelling vortices persist in
this regime despite the fact that no external perturbations
are applied. Numerical studies of thermal convection
with through-flow have found that, in the absence of
noise, patterns resembling those in Fig. 4 arose only in
the absolutely unstable regime [17—19]. As e was re-
duced, the characteristic length /z diverged at the bound-
ary e, between convective and absolute instability, and
no patterns whatsoever were observed for e & e, . We will
show that the patterns of Figs. 4(c) and 4(d) arise from

the ampli6cation of microscopic noise. Such noise-
sustained patterns are in fact observed throughout most
of the convective1y unstable regime e, (e & e, . The
square data points of Fig. 2 show the minimum e at
which macroscopic vortex patterns were observed with
flow visualization at z =100. As will be shown in Sec.
UIIID these smallest detectable flow amplitudes corre-
spond to vortices with an axial velocity amplitude of
about 13 p,m/s superimposed on the axial base flow.

The parameter space we consider is for the most part
restricted to R &4.0 because, at larger R, spirals are ob-
served within the convectively unstable region, and they
compete with the axisymmetric modes [20,44-46].

We now turn to a detailed discussion of stability.

IV. CONVECTIVE INSTABILITY

A. Measurement of onset

To determine the onset of convective instability we
used arti6cially produced pulses of traveling vortices
similar to that shown in Fig. 3. The pulses were pro-
duced by rotating both cylinders back and forth once

(a) I™
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FIG. 4. Space-time plots of traveling vortex patterns, with no
external perturbations, for the parameter values shown as
crosses in Fig. 2. The Reynolds number was R =3.0, the viscos-
ity was v=0.025 S, and t. was (a) 0.10, (b) 0.08, (c) 0.06, and (d)
0.035. The base flow was absolutely unstable for (a) and (b) and
convectively unstable for (c) and (d). Note the increase of the
healing length lz as e decreases. About 4 of the apparatus is

shown.
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FIG. 5. (a) Time series of rejected light as vortex pulses

passed a Sxed axial position z = 100, and corresponding discrete
Fourier transform moduli, for R =6.8. Top to bottom:
e—e, =0.0087, 0.0048, 0.0009, —0.0030. (b) DFT peak power
vs e for R =6.8 (left) and 13.2 (right).
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through a small angle about their axes. Reproducible,
macroscopic disturbances were created by mounting the
apparatus on bearings, and rotating with a stepper motor
linked by a belt to an endcap. Typical rotations were 1'
during 0.1 s, with a pause of 1—2 s before reversing direc-
tion; the resulting disturbances were considerably smaller
than the one in Fig. 3. Fluid dragged azimuthally by the
stainless steel mesh in the upstream endcap gave a local-
ized disturbance with broad frequency and wave number
content overlapping the band of amplified modes [47].
The result in the case of convective instability is shown in
the space-time plot of Fig. 3. A visible pulse of two or
three vortex pairs appeared at the inlet and traveled
downstream. The pulse initially decayed over a fraction
of the distance (w)rz, which is approximately that re-
quired for the inlet Bow to attain the angular momentum
of the base 6ow. The pulse then spread, grew in ampli-
tude, and was advected out of the system.

Onset was measured by recording time series of light
re6ected from the Kalliroscope as pulses passed a point
z =100 from the inlet; see Fig. 5(a). The amplitude of the
fundamental peak in the discrete Fourier transform
(DFT) was found for pulses at various e for given R. Re-
ducing e caused slower pulse growth, and hence weaker
signals at the observation point. As shown in Fig. 5(b),
the intersection of the DFT peak amplitude with the
noise baseline was taken as the onset [48] of convective
instability e, . The data points in Fig. 6 show the results
for R 5 20. At larger R, spiral modes [46] grew and com-
plicated the measurements [20]. These observations
agree with recent calculations by Deissler [45] which pre-
dict spirals at onset for R ~ 18 in our geometry.

B. Numerical stability analysis

We performed a numerical stability analysis of the base
flow for our radius ratio to determine e, (R) for compar-
ison with experiment. Similar calculations for different
radius ratios have been done previously [41,46]; we
present an outline of the calculations for completeness.

Using right-handed cylindrical coordinates (r, 8,5, the

(dimensioned) base flow in the idealized infinite system is
Vo(F }8+Wo(f )fwhere

and

Vo(F)=Q,y)(F)/F —ri F)/(1 —g ) (4.1a)

We let (u, u, w) be the dimensionless velocity deviation
around this base flow. Scaling length by the gap d, time
by d /v, pressure p by pQ, „&v/d, and in this section only
velocity [49] by Q,„&F„

the Navier-Stokes equations
linearized around Eq. (4.1) appear in cylindrical coordi-
nates as

Bu +R g 0 Bu 0 +RW BuV 2uV

dt r 88 r 'a
p 2 1 2 Bu+ V ——u ——

'dr rz r2 Q8

+R + + +RW
V BV uV

dt r 88 Br r 'Bz

1' 2 1 2 Bu+ V ——u+-
r 88 r2 r2 Q8

(4.2a)

+R +R Wo +
V BW

dt r 88 Bz dr
+Vw,a

az

and continuity is

(ru }+— + =0 .18 18u Bw

rdr r 88 Bz
(4.2b)

In Eqs (42) Vo=Vo/Qc„if' and Wo=Wo/QcyiFi, and
the azimuthal Reynolds number is

[1—(F/Fz } —(1—g )ln(F/F2)/In(rt))
Wo(r)=2($)

[I+g2+(1—ri )/ln(ri}]

(4.1b)

R =Q,y F,d/v—= I V'(I+g)/[2(1 —g)] j'
Equations (4.2) admit traveling-mode solutions

(u, u, tu, p ) = [u (r), u(r), w(r), p(r) ]e' (4.3)

0.10—

0.05—

0 5 10 15 20

where k and 0 are in general complex, and m is real and
describes the azimuthal pitch. We will focus on axisym-
metric structures (m=0). Stability analysis for spiral
modes (m %0) has been done elsewhere [45,46].

Inserting (4.3) into (4.2) gives a series of ordinary
difFerential equations for the complex radial functions
(u, u, w, p). These can be recast as a first order system for
U=(u, u, w,p, du/dr, dw/dr )

=AU (4.4)
dr

FIG. 6. Convective instability boundary e, (R). Data points
were obtained by observing pulse growth. The curve is the
linear stability result.

where A= [a;J ] is dependent on the parameters k, Q, R,
and R

We solved Eq. (4.4) by a shooting method. Three in-
dependent solutions U'(r), U (r), U (r) were generated



3676 BABCOCK, AHLERS, AND CANNELL

by numerically integrating Eq. (4.4) from r =r, to
r =r, + 1 using initial values (0,0,0,1,0,0), (0,0,0,0, 1,0) and
(0,0,0,0,0, 1). The solution U=CiU'+C2U +C&U must
satisfy no-slip boundary conditions U, = U2 = U3 =0 (i.e.,
tt = u =w =0) at r =r

i and r =r, + 1. This gives three
homogeneous equations for the C; that define a complex
eigenvalue problem which has a solution when

Ui

F(k, Q, R,R )= Uz

Ul

U'2 U'3

U2 U3

(4 5)

at r =r, + 1 with k constrained to be real. For given axial
Reynolds number R, the goal is to find R, , i.e., the
minimum of R with respect to k for which the growth
rate Q'—:Im(Q) =0.

In practice the ordinary differential equations (ODE's)
Eq. (4.4) are integrated using a fourth-order Runge-
Kutta routine with at least 100 radial steps. For given R,
a secant search determines the complex frequency
Q(k, R ) that satisfies Eq. (4.5), with a zero constraint
better than 10 on the determinant. For given R, this
is repeated for various k to find the value ko for which
the growth rate Q' is a maximum. R is then adjusted
until Q'(ko)=0, giving the critical values R, , k„and
Q,'=Q"(k, ). The whole procedure is done for a range of
axial Reynolds numbers R. Initial guesses at critical
values stem from the known values for R =0. Fits to the
results gave

onset of convective instability [51] gives the one-
dimensional complex Ginzburg-Landau description of
the amplitude of the traveling vortex pattern:

ro( A +sA') =Z(1+ico) A +go(1+ic, ) A"

—g(1+icz) ~
A

~
A+ f„(z,t ), (5.2)

where primes denote spatial derivatives 0/Bz. Equation
(5.2) contains the absolute instability and spatial
amplification of perturbations. Furthermore, we will
show in Secs. VII and VIII that numerical integration of
Eq. (5.2) with the additive stochastic term f„(z,t) pro-
vides a quantitative simulation of the physical system
that yields information about the magnitude and spectral
properties of the noise.

A. Coef5cients

The control parameter

'F—:Q,„i/Q,„i,(R )
—1 = [E e,—(R ) ]/[1+e, (R ) ]

measures the distance above the onset of convective in-

stability (in contrast to other variables in this paper, the
tilde in this case obviously does not indicate a dimen-
sioned variable). Coefficients of the linear terms were ob-
tained according to standard definitions [51] uia the sta-
bility analysis described in Sec. IVB. These were found
numerically for g=0.738 and then fitted to the lowest
two orders in R having the proper symmetry. The results
are

and

k, =3.136+0.000104R (1—0.00014R ),
Q, =3.677R(1+0.000020R ),

e, —=R, (R)/R,s(0)—1

=0.000381R (1—9.3X10 R ) .

(4.6a)

(4.6b)

(4.6c)

1 BQ'

aR'

=0.0379—0.000024R (1—0.00046R )

for the time scale,

aa, ' =1.230R(1+0.0000041R )
Bk

Equation (4.6c) is shown in Fig. 6 and as the lower solid
curve in Fig. 2. The agreement between experiment and
theory is excellent. Equations (4.6) also agree with in-

dependent calculations by Recktenwald and co-workers
[50].

V. GINZBURG-LANDAU DESCRIPTION

We have found that virtually all observed phenomena
in the open Taylor-Couette system are captured quantita-
tively by a stochastic, complex Ginzburg-Landau equa-
tion. We write the dimensionless axisymrnetric vortex
flow field as

V(r, z, t)=A(z, t)U(r)e ' ' +c.c. , (5.1)

where as before length and time are scaled by the gap d
and the difFusion time d /v respectively, but where veloc-
ity henceforth is scaled by v/d. The complex radial
eigenfunction at onset U(r) was obtained in the course of
the linear stability analysis of Sec. IV. Here U is restrict-
ed to the velocity components (u, u, w). For each value of
the axial Reynolds number R, an expansion around the

for the group velocity,

2R,' ak'

=0.0725 —0.000048R (1—0.000 53R ')

for the correlation-length amplitude,

an"
co= ~OR, =0.007 20R(1 —0.00038R )

for the linear frequency shift, and

~o 0 0'
2g Bk

=0.0235R (1+0.000 26R )

for the dispersion. All derivatives are taken around the
critical values of Q, k, and R . Over the parameter range
of Fig. 2, the imaginary parts c; are small, indicating that
dispersion and frequency shifting are not significant.
These results also agree with independent calculations by
Recktenwald and co-workers [50].
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The amplitude scale is set by the nonlinear coefBcient g
and the normalization of the eigenfunction U. We chose
a normalization I,'U{r) U (r)r dr =1, where U(r) is re-

stricted to its first three (velocity) components. The value
of go (the nonlinear coefficient at 8 =0) was determined
experimentally by establishing a traveling vortex state
with a very small value of R and measuring the vortex
contribution to the axial fiow velocity. This contribution
is described by the axial component of Eq. (5.1), which
can also be written as V, = W(r)cos(kz —Qt+P) for a
uniform amplitude Sow state. The measurements were
made at a fixed value of z and as a function of time. (Al-
ternatively, measurements of V, with R =0 and as a func-
tion of axial position gave equivalent results. ) The LDV
was set to the radius r where the measured W(r) had a
maximum. Time series of the axial velocity for various e
were fit to a background term plus V„giving the ampli-
tude W(r ) as a function of e For .a spatially uniform
pattern near onset with k =k„Eqs.{5.1) and (5.2) give

W(r )=2+X/go
~ w(r~ ) ~,

where w is the axial component of the eigenfunction [Eq.
(4.3)]. Numerically we find

~
w(r ) ~

=0.300 with
r =r&+0.256. Fitting W(r ) to the form above then
gave go=(8.35+0.1}X10 . A recent theoretical calcu-
lation [50] found go =8.40X 10 in this scaling, in excel-
lent agreement with our experiment. Experimentally, we
found only a small change (& 5%) ing for R up to 3.

For the imaginary nonlinear coeScient, which gives a
nonlinear frequency shift, we used c2=0.0113R in our
COL equation simulations. This value was calculated by
Muller, Lucke, and Kamps for convection with through-
flow [17]. Our results did not depend on the particular
value of cz so long as it was small [52].

B. Absolute instability

5A(z, t)= f 5A(q)e' ~' ' "'~'}'dq,

where

(5.6)

q=k —k,

and

are deviations from the critical wave number and fre-
quency. Equation (5.2) gives the complex dispersion rela-
tion for linear perturbations

(Zq 2

co(q) =qs+ (i ——co )+ (c, i ),—
+0 +0

(5 7)

where co and q are in general complex. Using the method
of steepest descent, the long-time behavior of Eq. (5.6)
along a ray described by fixed zlt is dominated by the
saddle point q, defined by

dco
Re

dq

dN
Im

—z

q

=0.
(5 8)

which says that the perturbation will grow at fixed z if it
moves downstream more slowly than the rate at which it
spreads in a frame moving at the group velocity. Equali-
ty in Eq. (5.5) would be the result for the velocity of a
pattern front [53].

The condition for absolute instability can be examined
in a more general way that extends usefully to numerical
stability analysis [12,15,16]. An amplitude perturbation
of arbitrary shape can be expanded in traveling modes ac-
cording to

It is straightforward to calculate the boundary for ab-
solute instability within the context of Eq. (5.2). As a
first illustration, consider the evolution [12) of a Gaussian
amplitude perturbation 5Ao(z) =ae ' . Under the
linear parts of Eq. (5.2), its evolution is dominated by the
exponential factor

(5.3)

In the limit of large time, the amplitude at a fixed value
of z will grow when

~)gCGL

4$o(1+c, )
(5.4)

which is in fact the rigorous condition far absolute insta-
bility. The boundary e is plotted vs R as the dot-
dashed line in the stability diagram Fig. 2. We may
rewrite this condition as

s & 2 Q'5 1+c,},
70

(5.5}

~o(z st)—
5A(z, t)~exp Z—(1+ico}—

4t go(1+ic, )

That is, in a frame moving at velocity zlt, the amplitude
is eventually dominated by the least stable mode with a
(real) group velocity equal to zlt, and the growth rate
along this ray is Re[iq, z/t ice(q, )].—A wave packet that
eventually grows in some frame is confined between two
rays on which the growth rate is zero [16].

To examine absolute instability, we consider a fixed po-
sition z at large times (z/t~0) Equatio. n (5.8) shows
that the amplitude is then governed by the mode with
zero group velocity. Relative to k„Eqs.(5.7) and (5.8)
give for the saddle point

5%0l-
2g (1+ )

(5.9}

q,'=c,q,
' .

The growth rate co'(q, ) determines the nature of the insta-
bility. Setting co'(q, )=0 yields the onset for absolute in-
stability e, as in Eq. (5.4). For absolute instability,
co'(q, ) & 0, and a packet grows at a fixed point, whereas
co'(q, ) & 0 corresponds to convective instability, so long as
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there is some ray z/t along which the growth rate is posi-
tive [54].

The transition from convective to absolute instability
thus involves the frame of reference, but no new instabili-
ty mechanisms. Any sustained secondary flows in a con-
vectively unstable flow must originate from a persistent
source of continuous forcing or noise. However, as the
above treatment indicates, any small forcing is relatively
unimportant in the absolutely unstable case, because such
a flow is dominated by the mode with positive growth
rate co'(q, ).

C. Simulation with noise

To model stochastic effects, we use a complex additive
noise term [13,21,55,56] f„(z,t) with the properties

(f„(z,r))=(f„(z,r)f„(z',r'))
= (f„'(z,r )f„'(z',t') ) =0,

(f„(z,t)f„'(z',t')) =2$0roF„5(z—z')6(t r') . —
(5.10)

This form for the noise term gives fluctuations in the
(linearized) amplitude response [57]

(5.11)

The stochastic CGL equation produces sustained pat-
terns in the convectively unstable regime much like those
shown in Figs. 4(c) and 4(d). Figure 7(a) shows a longer
space-time plot of the sustained pattern observed in the
experiment for R =3.0 and e, & @=0.044 & e, . We rnim-
icked the experiment by integrating Eq. (5.2) and plotting
the "velocity function"

+=Re[ A(z, t )exp[i( kz —Q, t)] }

at successive times for R =3.0,

1=0.040 (@=0.044) .

The result is shown in Fig. 7(b). The noise level was ad-
justed until the characteristic length /„ roughly matched
that of the experiment, with the result I"„=—2. 1X10
This is only a rough estimate of the noise level because
the nonlinear response of the flow visualization makes the
determination of /& problematic; a more precise measure-
ment of the amplitude pro61es and of the noise level is
discussed in Sec. VIII. As shown in Refs. [20] and [21]
and discussed more fully in Sec. VIII D, the noise is mi-
croscopic in the sense that the corresponding rms veloci-
ty fluctuations are several hundred times smaller than can
be measured using flow visualization techniques.

for Z(0 and 8 =0. A discrete version of Eq. (5.2) was

numerically integrated using a Crank-Nicholson implicit
forward-differencing algorithm [58]. An aspect ratio of
L =120 was used in most cases, with a maximum spatial
step of hx =0.1, and a maximum time step of ht =0.01.

Noise was included by adding a random complex num-
ber f=ye'~&(htlbx) at each integration time step to
the amplitude at each grid point, where y is a real-valued
Gaussian random variable [59] with variance 2(oroF„.
The phase P was random. We also tried a deterministic
phase factor P= —(k,z —Q, t), but in no instance did we
find simulations of Eq. (5.2) to depend on this choice.
The factor &ht jb,x gives proper scaling for uncorrelat-
ed noise, i.e., it ensures that ( ~

A
~ ) is independent of b,x

and ht.
At the upstream end we used the boundary condition

(BC) A(z =0)=0. One might argue that the amplitude
at the inlet should not be Sxed, but rather that it should
be allowed to fluctuate under the influence of the noise.
However, this de'erence turned out to be unimportant
for the downstream part of the system. To show this, we
added a section between z = —0. 1 and z =0 with
Z= —0. 1. In the subcritical part, the fluctuating ampli-
tude reached the rms value given by Eq. (5.11) and at
z=0 the value of A thus fluctuated in a manner deter-
mined primarily by the noise level and by the subcritical
value of Z. A short distance into the main section z) 0
with Z & 0, the rms value of the amplitude was nearly the
same as before the addition of the subcritical section. At
the downstream end, we tried various BC's. They had
very little influence on the behavior in the system interi-
or. For much of the work, we used vanishing-derivative
BC's.

}

io —(a)

2—

C) 0—
Cfj I

io —(b)

z (units of d)
FIG. 7. Space-time plots of noise-sustained structure in the

convectively unstable regime. (a) Experimental flow visualiza-
tion with Kalliroscope for 8 =3.0, v=0.025 S, and X=0.040.
(b) Integration of Eq. (5.2) with noise level F~ =2. l X 10
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VI. ABSOLUTE INSTABILITY IN THE FULL SYSTEM

A. Navier-Stokes equations

In this section we calculate the onset of absolute insta-
bility in the full Eqs. (4.2}. We employ a numerical pro-
cedure similar to that used in the calculation of the onset
of convective instability in Sec. IVB, except that the
wave number q is allowed to be complex. Again, for a
given value of axial Reynolds number R, the onset of ab-
solute instability occurs at the minimum value of R for
which the growth rate c0'(q, )=0, where q, is located at
the saddle of the dispersion relation co'(q). The shooting
method of Sec. IV B is used with the complex frequency
co adjusted to satisfy the zero determinant condition, Eq.
(4.5). The growth rate co' is found over a grid of q' and
q". Quadratic fits of c0' in the directions of q' and q' lo-
cate the saddle point q„and give the growth rate co'(q, }.
This procedure is repeated to find the critical value of R
for which co'(q, ) =0, and repeated overall for a range of
axial Reynolds numbers R. Initial guesses for the critical
azimuthal Reynolds number and the saddle point were
taken from the Ginzburg-Landau expressions Eqs. (5.4)
and (5.9).

Figure 8 shows the real and imaginary parts of the
complex dispersion relation [the growth rate
Q'(k)=co'(k) and the frequency 0"(k)=co'(k)+0, ] over
a range of complex k=k, +q for convectively unstable

(a) 2

0.0

—1.0

2.0 3.0
r

4.0

FIG. 9. Contour plot of growth rate Q' vs complex wave
number for a=0.036 and R =3.0. Contour spacing is
EQ'=0.40, and the dashed contours locate Q'=0. The marker
at the saddle point indicates the direction of steepest descent.
Growth occurs for the band of real wave numbers hk.

conditions e, (a=0.036&@„atR=3.0. The saddle
structure is clearly visible in Fig. 8(a}. Figure 9 shows a
contour plot for the growth rate O'. The dashed curves
correspond to 0'=0. Their intersections with the real
axis (k'=0) shows that there is a band of real wave num-
bers for which perturbations grow, indicative of e & e, .
Since 0'(0 at the saddle point, e&e, . Increasing R
raises the dispersion surface with negligible change of
shape.

The results for onset are well fitted by

,a=0.00 782R (1—0.0043R }, (6.1)

shown as the upper solid curve in the stability diagram
Fig. 2. This result is close to the Ginzburg-Landau ex-
pression obtained by putting the coeScient values of Sec.
V A into Eq. (5.4), with the result

(b) 2
ecGL P QQ7 89R 2(1 P PPQ8R 2) (6.2)

Equation (6.1) is also in excellent agreement with the ex-
perimental result described in the next section. The close
match of the CGL result Eq. (6.2} with the experiment
and with the full equation result Eq. (6.1) suggests that
the CGL Eq. (5.2) applies well throughout the parameter
range of Fig. 2.

B. Exyerimental measurement

FIG. S. Imaginary and real parts of the complex dispersion
relation Q(k) in the Navier-Stokes equations for convectively
unstable conditions @=0.036 and R =3.0. (a) Growth rate Q'.
(b) Angular frequency Q".

To locate e„onemight appeal to the definition of ab-
solute instability and attempt to determine the e for
which a vortex front (separating the base flow at smaller z
from vortex flow at larger z) moves neither upstream nor
downstream. We tried this by launching vortex pulses
such as that shown in Fig. 3, with the system initially
convectively unstable (e, &E&E,). The pulses were al-
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lowed to reach the middle region of the system, whereu-
pon e was suddenly increased into the absolutely unstable
region. For large jumps in e, pulses responded by begin-
ning to spread upstream. We then attempted to locate
the boundary e, by adjusting the jump in e until the
upstream edge was stationary after transients had died
down. However, this method proved to be problematic.
The time scale for the pulse boundaries to reach an
asymptotic form is long enough that noise-sustained vor-
tex structures such as those shown in Figs. 4(c) and 4(d)
grew and engulfed the pulse, rendering the method use-
less.

We have found that sustained patterns such as those in
Fig. 4 have characteristic signatures that serve as an al-
ternative probe of the absolute instability boundary e, .
For given e and R, we recorded time series of light
re6ected from Kalliroscope as the vortices passed
z=100d, far downstream of the inlet. As noted in Sec.
III, the vortices persisted when e was only slightly
greater than e, . However, the frequency spectrum of the
time series underwent a striking change when e was in-
creased suSciently far above this boundary.

Figure 10 shows portions of time series, each covering
about 160 periods, and corresponding discrete Fourier
transform (DFT) moduli for various e at R =3.0. In Fig.
10(a), e =c, +0.0896, the data appear periodic and of
nearly uniform amplitude, and the fundamental DFT
peak is very sharp. In contrast, for e=e, +0.0318 [Fig.
10(b)], the time series remains fairly uniform in ampli-
tude, but the DFl' peak has become broadened. Sus-
tained patterns persist even for e e, =0.0—077 [Fig.
10(c)],but the amplitude now shows time variation. This
is because the characteristic length I& has grown to near
the measuring point z = 100, and the amplitude in this re-
gion fluctuates.

A measure of the spectral width is the normalized
second moment of the fundamental peak in the power

spectrum o 2 = ( (0—( 0 ) ) ) /( 0), calculated by in-

tegrating over frequencies in the vicinity of the funda-
mental component and normalizating by the first moment
( 0 ). Figure 11(a) shows results of measurements for
R =3.0 and z =100, where the vortex amplitude was sa-
turated. We will show in Sec. VII that broadened spectra
re6ect a random wandering of the vortex phase that
stems from noise amplification. There is a sharp corner
and rise in spectral width o. as e is reduced. We located
this corner for various R; the results are plotted in the
stability diagram Fig. 2 as the upper set of data points.
They agree closely with the numerical evaluation of e,
based on the Navier-Stokes equations and given by Eq.
(6.1), indicating that the onset of spectral broadening cor-
responds to the absolute instability boundary e, .

Simulations of the COL equation (5.2) support this as-
sociation. For these simulations, g was set to 1, and for
this section anly noise was modeled by choosing random
values for the real and imaginary parts of A(z=0) at
each time step, with values uniformly distributed between
+n. The resulting velocity function

%=Re[ A(z, t)exp[i(k, z Q, t—)]I
at z=100d closely resembled its experimental counter-
part. As shown in Fig. 11(b), the second moment cr un-

dergoes a transition that is also remarkably similar to
that seen in the experiment. The location of the transi-
tion varied less than 5e=+0.005 for 10 ~n 10
where onset is taken to be the point where o. first departs
from its baseline. The vertical dashed line in Fig. 11(b)
corresponds to Z, (Eq. (5.4)) for R =3.0. The onset of
spectral broadening is clearly identified with Z, ". Thus
spectral broadening is characteristic of patterns in the
convectively unstable regime, and the sharp transition in

0
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FIG. 10. Time series of rejected light, agd their DFT moduli
near the fundamental peak, at z =100 for 8 =3.0. About 4 of
each series is shown. (a) e—e, =0.0896. (b) e—e, =0.0318.
The DFT peak shows considerable broadening. In (c), structure
persists at small e—e, =0.0077.

FIG. 11. (a) Normalized second moment of the fundamental

peak in the DFT power vs e at 8 =3.0 for experimental time
series at z =100. The transition at @=0.065 indicates the onset
of phase noise. (b) Corresponding results for Eq. (5.2) for inlet
noise levels 10 (+), 10 (E), and 10 (o), respectively. The
dashed line locates e, "=0.071.
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spectral width provides an excellent diagnostic for locat-
ing the stability boundary e„even in cases where the
noise source or strength is unknown. It would be of in-
terest to test the generality of this signature in other open
systems, such as wakes and jets, known to have both con-
vectively and absolutely unstable parameter regimes [15].

VII. NOISE-SUSTAINED PAL-IRRNS

In this section we characterize the noise-sustained pat-
terns observed in the convectively unstable regime
e, & e & e„and show how they arise from very small am-
plitude noise through the amplification mechanism of
convective instability. Much of the experimental data
can be understood in terms of spatial growth in the
linearized CGL equation, as well as from simulations of
the nonlinear, stochastic CGL Eq. (5.2). The patterns
can be succinctly characterized by a vortex phase that ex-
ecutes a pseudorandom walk relative to an average linear
increase in time.

per oscillation. ) A slight narrowing of the spectra with
increasing z is also apparent. Velocities for z &15 ap-
proached the experimental resolution and could not be
measured efFectively. In the next section we will show
that the effective noise level is well below the experimen-
tal resolution.

The solid oscillating curve in Fig. 13 shows the nor-
malized temporal autocorrelation function of the axial
component of the vortex velocity at z =100. The flow is
not perfectly periodic, but rather loses its correlation
over a number of periods. The dotted curve and the en-
velope are results derived below from the CGL equation.

B. Spatial amplification in the CGL equation

Many of the observed properties can be understood us-
ing the linear parts of the CGL equation (5.2) to charac-
terize the amplification of perturbations. Following
Deissler [12],the amplitude can be expanded as

A. Observed properties of noise-sustained structure
A(z, t)= f dc0 Ao(co)e@"' (7.1)

Basic features of noise-sustained patterns have been
shown in Figs. 4 and 7. Again, the amplitude of the
secondary flow grows from near zero at the inlet to a ful-
ly developed traveling vortex pattern over a characteris-
tic length I&. In this section we focus on parameter
values X=0.035 (@=0.039) and R =3.0, near the middle
of the convectively unstable regime of Fig. 2, for which
l& =37 in the experiment.

Figure 12 shows time series of the axial velocity taken
via LDV, with mean values subtracted, and correspond-
ing power spectra, at various axial positions. The data
for z (ll, show large variations in their oscillation ampli-
tudes, whereas for z &II, saturation renders the ampli-
tudes nearly constant. (The time series at z = 100 appears
slightly nonuniform on the scale of a few periods due to
beating effects produced by sampling only a few points

Here the frequency co is real, the wave number P is com-
plex, and both represent deviations from their critical
values. One may picture noise or other drive sources at
the upstream end z =0 having Fourier transform Ao(co)
which are amplified further downstream. This spatial
amplification is described by the real part of P. Although
the actual noise source may be spatially distributed, this
picture is conceptually useful because the noise furthest
upstream has the most time to grow before reaching a
given axial position. The "spatial" dispersion relation
from the CGL equation (5.2) is [12]
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FIG. 12. Time series of the measured axial velocity and
scaled power spectra showing their spatial development for (top
to bottom) z=20, 35, and 100, for R=3.0 and a=0.0385
(1=0.035). The dashed lines locate the edges of the CGL
growth band co~, and the dotted line is the maximal growth fre-
quency ~ (see text, Sec. VII B).
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FIG. 13. Normalized temporal autocorrelation function of
the axia1 component of the vortex velocity for 8=3.0 and
X=0.035. The solid oscillating curve is from experiment, and
the dotted curve is from the CGL equation with noise level
F„=4.3X10,both for z =100. The solid envelope is the re-
sult from the linearized CGL equation at z =35, shown for com-
parison with the nonlinear state at z = 100.
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sro —Qs Hz
—4'(1+ic, )['F(1+ico)+icoro]

2'(1+ic, }

(7.2)

The spatial growth rate P" and wave number P' are plot-
ted vs m in Fig. 14 for R =3.0 and X=0.035, with other
coeScients taken from the linear stability results of Secs.
IV and V. The system responds with spatial growth for
the band of frequencies for which P"&0. The limits of
this band are found by imposing P'=0. (Again, co is real,
signifying zero temporal growth at a given spatial posi-
tion. } One obtains co &co&co+ with

co+=(Z/ro)(c, —co)+s+Z/go .

0.2

0
0 0.2 0.4 0.6

~ ]~CGL

0.8

The driving frequency which gives fastest spatial growth
is found [60] from c}P"/Bco=0, giving [12]
co = (8/1 o)(c, +co). The corresponding maximum
growth rate

FIG. 15. Maximum spatial growth rate for the linearized
CGL equation; R =3.0. Note that P' (Z, )%1.0.

s&oP' =P"(co ) = [1—Q 1 —Z/Z ")
2g (1+ )

a (7.3) C. Spatial dependence of the power spectrum

is plotted in Fig. 15 vs Z. These extremal values should
dominate in the case of a broadband noise source over-
lapping co . Indeed, co closely matches the center fre-
quencies of the peaks in the experimental spectra of Fig.
12. Note that spatial growth is defined only in the con-
vectively unstable regime 0(Z&Z, . In the absolutely
unstable case, this picture is not relevant because tem-
poral growth occurs at fixed z, i.e., co'&0, and P' is
undefined. In that case, the growth of the envelope from
zero at the inlet (as in the top frame of Fig. 4) is deter-
mined by nonlinear saturation rather than linear
amplification.

0.3

If a convectively unstable system is driven by a broad-
band noise source, i.e., one which drives the system uni-
formly over the range co (cu &co+, the system response
depends strongly on axial position. Assuming the noise
induces an amplitude response A o(co) having a
frequency-independent modulus, the power spectrum of
A(z, t) obeys

~
A(z, co)~ e ~' '. Thus small distur-

bances can be amplified enormously for suSciently large
z. For example, with R =3.0 and 1=0.035, the power of
perturbations near z=0 with co=a grows by about am

factor of e "=10 by z=lh=35, at which point non-
linear terms begin to saturate the growth. Since the spa-
tial growth rate P"(co) is frequency dependent, the shape
of the power spectrum evolves strongly with z. Frequen-
cies near co are more strongly amplified than others, re-
sulting in spectral narrowing with z, as shown in Fig. 16.

0.2

r
0.1

0.4

1 0

A(co)

A(co )

0.2

—0.8—3

FIG. 14. Spatial growth rate {top) and wave number {bottom)
vs frequency in the linearized CGL equation for R =3.0 and
1=0.035.

CO

FIG. 16. Spatial development of the spectrum in the linear-

ized CGL equation. Top to bottom: z=1,5, 10,25, 35. The
maximal growth frequency co is marked by the dashed line.
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The Fourier transform of the spectral shape e~' ' with
respect to co gives the temporal autocorrelation function
of the amplitude, shown as the solid envelope in Fig. 13.
This linearized picture is valid up to only z = li, =37. The
corresponding autocorrelation time is slightly smaller
than that measured at z =100 (and that of the numerical
CGL result described below}, most likely because spectral
narrowing continues in the nonlinear regime by phase
difFusion.

Numerical integration of the CGL equation (5.2) shows
how the amplification acts on noise-induced perturba-
tions. Using spatially distributed white noise as in Eq.
(5.10},the velocity function

%=Re[ A(z, t)exp[i(k, z Q, t—)]J

was generated vs time for various axial positions z. For
the results shown here, the nonlinear coefficient g was set
to 0.000835 and the noise power to F„=4.3X10, as
motivated in the next section.

The time-averaged profile of the velocity function,
(4 (z))'~, is shown in Fig. 17. The profile grows from
an extremely small value near z=0 determined by the
noise level to a saturated value close to +Z/2g at large z,
an amplification of 105 in amplitude or 10'0 in power.
The characteristic growth length lI, =37, as in the experi-
ment. Figure 18 shows time series of the velocity func-
tion at various positions z together with their spectra. As
in the experiment (Fig. 12), the velocity functions for
z (ll, show large variations in their amplitude, whereas
for z & li, saturation renders the amplitudes nearly con-
stant. Spectral narrowing is very evident. The spectral
properties correspond closely to the analytic results for
the growth band limits t0 /2n = —0.40 and
co+ /2n =0 42, an. d maximal growth frequency
co /2n = —0.01, giving P =0.298.

The dotted curve in Fig. 13 shows the temporal auto-
correlation function of the COL velocity function at
z =100. The solid envelope is again the result from the
linearized COL equation for z =

I& =35. The correlation
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time, here defined as the time lag at which the autocorre-
lation function drops to half maximum, agrees well with
the experimental result shown as the solid oscillating
curve. We do not have an explanation for the slight fre-
quency difFerence between the experiment and simula-
tion.

In sum, the COL equation shows quantitatively how
broadband noise near the inlet is amplified and spectrally
narrowed, leading to a macroscopic traveling vortex pat-
tern correlated over several vortices.

FIG. 18. Spatial development of the velocity function and its
power spectrum in the stochastic CGL equation at (top to bot-
tom) z=1,5,20, 35, 100 for R=3.0, 1=0.035, and noise level

F& =4.3X10 9. The CGL growth band limits co~ are shown as
dashed lines and the maximal growth frequency co by the dot-
ted line.

D. Pseudorandom phase walk

/2

I

20 40 60 80
I

100

z (units of d)
FIG. 17. Time-averaged root-mean-square velocity function

obtained by integrating the stochastic CGL equation; R =3.0,
1=0.035. Arrows mark the locations of time series used in Fig.
18.

The fully developed traveling vortex patterns can be
succinctly characterized vitt their phase [21]. We write—iQ~tthe velocity time series as v=B(t)e +c.c., where
B(t)=~B(t)~e'+". The frequency Qz is chosen so that

f0$(t)dt =0, thus removing as much of the fast variation
as possible from the complex amplitude B(t) For z » l.i„
the amplitude is saturated (~B ~

=const) and the features
of interest reside in the phase P(t), which represents the
deviation of the vortex phase from that of a perfectly
periodic signal of frequency 0&.

To extract the phase, we demodulated the time series
by removing the peak in the DFT at —Q& and shifting
the peak at 0& to zero frequency. Inverting then yielded
B(t)= ~B (e'+". Assuming ~B ~

=const (an approximation
good to within a few percent for large z, as shown below),
/=tan '[Im(B}/Re(B)]. The demodulation frequency
Qz is adjusted until f0$(t)dt =0. In all cases we exam-
ined, Q& was within a few percent of Q =Q, +co
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Figures 19 and 20 show the results of this procedure
for CGL integrations and experiment, respectively, with
parameters again X=0.035 (@=0.039), R =3.0, and
z =100. In the experiment, the viscosity was 0.059 S. In
the simulations, E„=4.3 X 10, and g =0.000835. The
modulus»8» is shown in parts 19(a) and 20(a} over
several thousand oscillations. It is nearly constant in
time, yet the real part of the amplitude in (b} reveals an
irregular time variation which can be traced to the time
variation of the phase P in parts (c}. The time derivative
shown in parts (d) gives the local deviation from the
mean frequency, dg/dt =0—Qd. The phase can thus be
viewed as an accumulation of random, bounded fluctua-
tions in the frequency, and so might be expected to
resemble a random walk.

Figure 21 shows the rms deviation of the phase P from
its mean of zero vs the duration of the time series T, aver-
aged over several time series for experiment and CGL
simulations. In both cases, the deviation obeys a po~er
law (P )'~ ~ T with a=0.59+0.015. Further CGL
simulations showed that both the exponent [61]and mag-
nitude of the deviations are insensitive to the values of
the imaginary coef6cients c;, and to the magnitude of the
noise level, for noise powers up to two decades greater
and less than the value used to generate the results of Fig.
21. The value a)0.50 suggests a process with "per-
sistence, " analogous to the time series of many natural
processes [62], although the mechanism responsible in
the present case is unclear. It is interesting that such an
"anomalous" exponent (differing from the simplest ran-
dom walk value —,'} arises in a truly one-dimensional sys-

tem, as evidenced by its appearance in the one-
dimensional CGL equation. Also striking is the fact that
the exponent a does not depend on the noise level in the
simulations.

2.0
~Ff r ~W 7

A o.o

li ii IIllk

15
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1000 2000 3000
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FIG. 20. Same as Fig. 19, but for experimental LDV mea-

surements, with the same R and Z, and v=0.059 S.

VIII. NOISE PROPERTIES

Quantitative knowledge of stability properties and the
arnplification mechanism, in combination with the CGL
equation (5.2) for which the noise strength is the only ad-
justable parameter, allow us to determine the power of
the experimental noise. We compare the results with
theoretical predictions for thermal noise.

A. Noise magnitude

8.0 Figure 22 shows amplitude profiles for 8 =3.0, kine-
matic viscosity v=0.059 S, and various e. In the experi-
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FIG. 19. Demodulation of the velocity function in the CGL
equation at z=100 for R =3.0, 4=0.035, and F„=4.3X10
Shown top to bottom are the modulus, real part of the ampli-

tude, phase, and phase derivative vs time.

FIG. 21. rms deviation of the phase from its mean of zero vs

the length of the time series, for R =3.0, X=0.035, and z = 100.
Circles are for experiment, squares from CGL integrations with

F 4 =4.3 X 10 . Straight lines compare power law exponents.



50 NOISE AMPLIFICATION IN OPEN TAYLOR-COUR I IE FLOW 3685

0.5—

same profiles A,„/~A ( ao ) ~
are obtained for various g if

Fz is changed in proportion to 1/g. We used Z corre-
sponding to experiment, and set g=g0=0. 000835 as
found in Sec. V A. This assures that the amplitude scale
is correctly related to the physical velocities by Eq. (5.1}.
(We ignored the small R dependence of go.) A single
noise level

V
1

1 0-1

10
0 20

I

40 60 80 100 120
z (units of d)

FIG. 22. Normalized velocity profiles v(z) from experiment
(data points) and CGL simulation (curves) for R =3.0 and
viscosity v=0.059 S. Left to right: 1=0.055, 0.040, 0.025,
0.0175 (a=0.059, 0.044, 0.029, 0.021). In the top half, U(z) is
given on a linear scale. The bottom half shows the same data on
a logarithmic scale and reveals the initial exponential increase
of U(z) with z. A single noise level F& =4.3X10 was used in
the simulations.

FA(v=0. 059 S)=4.3X10

produced the solid curves in Fig. 22, which closely match
the experimental data for each e.

A fit to the data at a given e yields a small uncertainty
for F„dueto the scatter in the velocity data. However,
errors in F~ due to uncertainties in e are larger. On the
basis of systematic deviations of data at a given e from
the curves in Fig. 22 (which are too small to be obvious
on the scale of that figure) we estimate that the uncertain-
ty in F„is about a factor of 1.5 or 2. In addition, there
are possible systematic errors associated with entrance-
length efFects discussed in Sec. VIII 8 below, yielding a
total uncertainty in F„ofabout a factor of 3.

In order to illustrate the smallness of the noise level

F~, we estimate the physical velocity fluctuations which
would be induced by such a noise level in the system
without through-flow and below the onset of Taylor vor-
tices. We use Eq. (5.1) to give the amplitude of the
dimensioned axial velocity

W(r)=2(v/d )( A(z, t)([w(r)(,

where w(r) is the axial component of the radial eigen-
function obtained from linear stability analysis. For
Z(0, Eq. (5.2) gives for the magnitude of the velocity
fluctuations

( g'2&=4(v /d )Iwl (Fg/2lgl'/z) (8.1a)
ment, a LDV time series covering at least several hun-

dred periods was recorded at an axial position and the
rms deviation of the axial velocity from its time average
determined. Measurements were repeated at a number of
axial positions. For the plots of this section, rms veloci-
ties were normalized by their saturated values at large
z» ll, to produce a scaled velocity profile u(z). In the
top half of the figure, u(z) is given on a linear scale. The
logarithmic plot of the bottom half shows the saturation
at small u(z) because of the experimental noise floor, as
well as the initial exponential increase of u(z} with z. As
in Fig. 4, the healing length II, increases as e is decreased.

We estimated the noise strength by comparing the
measured profiles u(z) with those of

A.„=(
~
A(z, t) ~'&'"

where the angular bracket indicates a time average. Here
A,„wasgenerated numerically from the stochastic CGL
equation (5.2), for which all coefficients are known. For
comparison with u(z), A,„wasdivided by the saturation
value

~ A,„(~}~ =(F/g)' . The noise strength F„was
adjusted until the profiles matched the data. It is impor-
tant to note that the value of Fz obtained from this com-
parison depends upon the normalization of A, which in
turn is determined by the value of g. Specifically, the

To achieve a specific comparison, we set - = —1, corre-
sponding to no rotation. Although the amplitude-
equation description can be expected to be valid only for
small Z, this choice approximates the equilibrium state
and also gives a crude estimate for the conditions near
the inlet of the apparatus where the low has no rotation.
Using ~w(r }~=0.30 as in Sec. VA, and v=0.059 S as
in Fig. 22, gives

+( W &=0.024 JMm/s . (8.1b)

This may be compared to typical velocities in the fully
developed vortex flow at large z» I„:

W =2(v/d ) ltu I+Z/g, (8.2)

which for a typical value 1=0.035 gives 8', =0.34
cm/s, about 10 times larger than the rms noise veloci-
ties.

B. Effect of entry length

To be precise, we should account for the entry length
of the base flow when using amplitude profiles to estimate
the noise magnitude. Fluid enters the apparatus with no
rotation, and requires some (typically small) streamwise
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distance I, to acquire the Couette rotation profile. The
entry length depends on R: at larger R the fluid can
move a greater distance in the time required to acquire
rotation. The entry length is apparent in Fig. 3, in which
a pulse of Taylor vortices initially decays upon entering
the upstream end of the apparatus [63], indicating that
the fluid has not reached full rotation and that effectively
e & 0. In effect, e increases from —1 at z & 0 to its asymp-
totic value near z = I, . Simulations of the CGL equation
could in principle account for this, with the result that
the numerical profiles would be shifted further down-
stream for given parameters and noise strength, and that
the estimate of the experimental noise level would in-
crease accordingly.

At the small Reynolds numbers considered here, we
find this shift to be small. Precise measurement of the az-
imuthal component of the base flow is problematic close
to the inlet. Another method for estimating the length l,
is to measure the amplitude profiles in the absolutely un-
stable regime e & e, . In that case the flow is insensitive to
noise, and the noise strength is removed as a parameter.
Comparing profiles in experiment and simulation gives a
relative axial shift which can be used as a measure of the
entry length for the convectively unstable regime. Such
measurements at R =3.0 indicate a shift of at most 1.5.

To estimate the noise power that would be inferred if
the entry region were taken into account, we can use the
spatial growth rate P' to calculate the factor by which
the mean-squared fluctuations of the amplitude increase
over the distance I, . This factor should be a reasonable
estimate of the increase in noise power required to gen-
erate the same (measured} downstream amplitude, well

away from the entry region. The result is
2PF„'=F„e '=1.8F~ using the measured profile shift

l, =1.5=z, —zz and P" =0.20 (R =3.0, I=0.025).

~ok~ T
Fth I,

277((pd v

with

(8.4a)

which assures that a closed system will relax to therrno-
dynamic equilibrium, and there will display fluctuations
of the proper amplitude. The noise power contains a
characteristic ratio of the microscopic thermal energy
k~T to the macroscopic energy [64] (pd )(v/d ), which
is approximately the energy of a fluid element of volume
d for the developed flow. This ratio is very small in
macroscopic systems (about 10 " for our case), so that
thermal noise cannot normally affect a developed flow.
This is not the case, however, for flows very near thresh-
old, or for systems for which the characteristic dimen-
sions are suSciently small. Recently, experimental atten-
tion has been given to exploring situations where stochas-
tic effects are observable in pattern-forming systems
[29—31,65].

Considerable effort has been devoted to carrying the
noise term through to reduced dynamical equations such
as the amplitude equation Eq. (5.2) that describe non
equilibrium systems [13,27,55,56,66—69]. In doing so,
the assumption is made that the equilibrium expression
for the noise correlations Eq. (8.3) remains valid near
threshold since the macroscopic dynamics are relatively
slow. An example is the Swift-Hohenberg [13,56] equa-
tion describing convection, in which thermal velocity
fiuctuations produce a real noise terra which we used in
earlier work to compare to the experimental noise we ob-
serve in the Taylor-Couette system [21,70]. A calculation
of the noise power F„'"in Eq. (5.10) specific to the
Taylor-Couette geometry (but for R =0) was done recent-
ly by Swift, Babcock, and Hohenberg [27] with the result

C. Thermal noise magnitude

X (5;i5) +5; 5 I ), (8.3)

We naturally mould like to compare the noise level
F„=4.3 X 10 found in the experiment (Sec. VIII A) to
the thermal noise level F„'".A simple order of magnitude
comparison can be made between the vortex flow velocity
corresponding to the experimental noise level [0.024
pm/s, Eq. (8.1b)], and the root-mean-square thermal ve-

locity of the center of mass of a fluid element having the
volume of one vortex:

(6k~T/pn rd )' =0 0016 pm/s. ,

about a factor of 15 smaller. This corresponds to a factor
of 225 in noise power (which is proportional to Fz), but
this comparison can only be regarded as approximate.

More detailed theoretical treatments of stochastic hy-
drodynamics [11]account for random molecular motion
by adding a Langevin noise term V.S to the right-hand
side of the (dimensionless) Navier-Stokes equations (4.2a).
The stochastic part of the stress tensor has a Gaussian
distribution and correlations [11]

(S,, (x, t)Si (x, t'}}=(2k~T/pdv )5(x x)5(t t')— —

Xf k, iv i+ —iku + w

+— (ru )
1 d

p dp
(8.4b)

Here, V = (u, U, w ) is the radial eigenfunction of the
adjoint eigenvalue problem at critical parameter values,
and X, is the overlap of the regular and adjoint eigen-

functions N, = f „'V(r) V'(r)r dr Equations .(8.4) hold
1

for the case of no through-fiow [27,71]. Note that I de-

pends on g, but not on r
&

and r2 separately, as these have
been scaled by the gap d =I 2

—r, .
It is worth noting that once a relationship between

physical velocity, the amplitude A, and the eigenfunction
w(r) has been defined, and a normalization chosen for the
eigenfunctions, the nonlinear coeScient g in the CGL
equation is fixed. Again, we used Eq. (5.1), scaled veloci-
ties by v/d, and chose a normalization

f„'U(r).U*(r)r dr = 1. This fixed g =0.000 835, as
1

found in Sec. V A.
Using the methods of Sec. IV B, we numerically evalu™

ated the adjoint eigenfunctions and their normalizations
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at onset for g=0.738 and found [72] N& =0 4. 16 —0 7.74i
and I=40.57. With ~0=0.038, we find

Fth 1 6X 10
—11

for v=0.059 S and d =0.677 cm, about 270 times smaller
than the experimental value determined in Sec. VIIIA.
A similar conclusion has been reached recently by
Deissler [68] from numerical simulations. Since the rms
velocity fluctuations vary as F„' [see Eq. (8.la)], the
thermal fluctuations in the axial velocity are about
v'270=16 times smaller than the experimental value
0.024 pm/s, or

1O'

1O'

1O'

102

10

104
25 50 75

z (units of d)
100

Q ( W,„)=0.0015 lum/s . (8.5)

This result is remarkably close to the naive estimate of a
factor of 15 made at the beginning of this section.

D. Comparison with our previous work

In two previous publications [20,21] we presented re-
sults for noise-sustained structures which were obtained
with Kalliroscope flow visualization rather than with
LDV, but in the same apparatus as the one used for the
present work. We can combine those results with the
current work to determine how the experimental noise
compares with thermal noise calculations for a range of
Reynolds numbers R.

Measurements of the minimum value Z, at which sus-
tained patterns are first detectable were made at three ax-
ial positions z=25, 50, and 100 and for various R (see
Fig. 6 of Ref. [20] or Fig. 1 of Ref. [21]}.This was done
by taking time series of the optical signal at various 'F,

Fourier transforming the series, and extrapolating the
power under the Fourier peak to zero. We estimate the
experimental uncertainty in Z, to be no larger than
+0.002.

A link to our current work can be made by using the
CGL equation to determine the amplitude A,„'"that cor-
responds to Z, for R =3. We integrated the stochastic
GL equation, using the Z, values 0.0304, 0.0170, and
0.0074 found in Ref. [20] for z =25, 50, and 100, respec-
tively, and for R =2.99. The fluid viscosity in that work
was 0.025 S, i.e., a factor of 0.025/0. 059 smaller than for
the data in Fig. 22. Since Fz varies as 1/v (see also Sec.
VIII F below), our present work implies a noise power
F„(v= 002 S5) =2.4 X 10 . This value was used in the
integrations. The results for A,„areshown in Fig. 23.
The vertical dashed lines correspond to the axial posi-
tions of the measurements of Z„and their intersections
with the corresponding A,„(z)yield the detectability lim-
it. Based on the results for z=25 and 50, we adopt a
value [73] A,„'"=0.06 for the analysis of the experimen-
tal F, values at all R. It is shown as the horizontal dash-
dotted line in Fig. 23. The measurements at z=100,
which give A,„'"=0.04, are somewhat less accurate be-
cause the value of e, is small and its relative uncertainty
rather large. Setting QZ/go=A, „"=0.06 in the last
equation of Sec. VA, we have 8'=0.036, which with
v/d=370 pm/s gives 13 pm/s as an estimate of the
smallest detectable velocity amplitude.

FIG. 23. Root mean square of the modulus of A, on a loga-
rithmic scale, as a function of the axial position z for (from left
to right) 1=0.0304, 0.0170, and 0.0074 and for R =2.99. The
vertical dashed lines are the axial positions at which the Z,
values were determined for the detection of noise-sustained
structure with Kalliroscope. The dash-dotted horizontal line is
the detectability limit which was adopted for further data
analysis.
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FIG. 24. Ratios of experimental noise power to theoretical
predictions of thermal noise power. Open circles correspond to
the data of Ref. [26], and solid symbols to the present work.
The solid horizontal line represents the best fit to the data in
Fig. 22. The horizontal dashed line is the plateau value quoted
by Tsameret, Goldner, and Steinberg (Ref. [26]).

Using the values e, measured at various z and R in the
previous work, we can now determine the Reynolds num-
ber dependence of the noise power in that experiment.
The noise power F„wasadjusted in the integration of
the stochastic CGL equation until A,„(Z„z,R )
= A,„'"=0.06. Since Fz depends on the gap d and the
viscosity v of a particular experiment, a direct compar-
ison of experimental values for F„is not very illuminat-
ing. More revealing is the ratio F„/F„',which is in-
dependent of d and v. Figure 24 shows this quantity as
solid circles [74], with Fz"(v=0.025 S}=8.4X10 ".The
horizontal solid line corresponds to our present best
value F„/F„'"=270,based on the LDV measurements
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shown in Fig. 22. The error bars for all the points over-
lap this best value, which we believe to be accurate to
within a factor of 3 or so. Thus, within the resolution of
the Kalliroscope data of Refs. [20] and [21], there is no
dependence of the noise level in the experiment on Rey-
nolds number for E. 4.

In the previous publication [21] we quoted an estimate
of a noise amplitude 0„=(2.5+1.5)X10 for v=0.025
S, which is related to F„by

cr„=(2rogogF„)'~ (8.6)

E. Comparison with work by others

Recently, the noise intensity in a Taylor-vortex system
with through-How was examined by Tsameret, Goldner,
and Steinberg (TGS} [26]. Their radius ratio was 0.77,
which difFers only slightly from ours. Thus it is a good
approximation to use the parameters ~0=0.037 and
go=0. 27 (which we presented above in Sec. V A) for the
calculation of their thermal noise intensity. Their viscos-
ity was 0.03 S, and the gap between their cylinders was
0.95 cm. With these parameters we find from Eq. (8.4a)
the thermal noise intensity F„'"Tos =4.4 X 10

Although the authors present several different ways of
analyzing their data, we Snd it diScult to make a direct
comparison with their derived measures of their noise
amplitudes. They compare some of their results with nu-
merical integrations of Eq. (5.2} with f„=O,but with
fiuctuating boundary values A(z=O) with a Gaussian
distribution and a variance o„zrather than with spatial-
ly distributed noise f„(z,t) with correlations given by Eq.
(5.10). From numerical studies of Eq. (5.2) they find

empirically, for their parameter values, that

On a=on

The quoted value of cr„was obtained from CGL simula-
tions using g = 1. Had they been carried out with

g =0.000835, the result would have been larger by
(1/0.000 835 ) '~, giving o „=(8.6+5.2) X 10 . Our
present value of Fz (v=0.025 S)=2.4X 10 yields
cr„=2.2X10, somewhat below the previously quoted
lower limit. Our previous conclusion that O.„wasof the
order of thermal noise was erroneous because we did not
allow for g%1 in comparing with thermal noise esti-
mates, and because of the extreme sensitivity of Kalliro-
scope methods which we did not fully appreciate when
comparing the experiment to the CGL equation (Fig. 2 of
Ref. [21]).

the data. They derive a relationship between Po and tr„ii
from separate measurements as a function of externally
injected noise. It is given by Eq. (9) of Ref. [26]. Howev-
er, one of the authors suggested [75] to us that this rela-
tionship is not very accurate.

One unambiguous way for comparison with the data of
TGS remains. In their Fig. 13, they show measurements
of the time average of the velocity as a function of axial
position for R =3.5 and K=0.0367. We reproduce these
measurements in Fig. 25, together with a fit of Eq. (5.2) to
them which was carried out in the same way as the fits to
our results in Fig. 22. We obtained F„Tos(v=0.03
S)=2.5 X 10, corresponding to cr„=2.07 X 10 . The
value of F„TGsderived from the experiment exceeds the
thermal noise Fz"Tos by a factor of about 6X10 . This
ratio is shown in Fig. 24 by the open square. Also shown
in Fig. 25, as dashed lines, are solutions of Eq. (5.2) with
Fz larger and smaller by a factor of 2 than the best-fit
value. These curves illustrate that the precision of the
determination of F„(cr„)is better than a factor of 2 (1.4).
For comparison, we show the results of Fig. 22 for
F=3.0 and 1=0.040 (see Fig. 22} as solid squares. The
line going through these points is the fit to our data in
Fig. 22, which corresponds to F„=4.3 X 10 =274E„'".

For the data in their Fig. 13, TGS obtained a value of
0'o =2. 7 X 10 cm/s. Assuming proportionality be-
tween f o and o „aswas done by TGS, we find from the
above the calibration

f'o/o „=1.3 cm/s

which is in good agreement with Eq. (9) of TGS and their
observation that o„=o„z.Now we have somewhat
greater confidence in using the numerical factor in Eq. (9)
of TGS for a further analysis of their results.

Further comparison with the data of TGS is possible
only under the assumptions that the empirical relation-
ship Eq. (9) of Ref. [26] holds, and that o„s=o „assug-

gested by the data in Fig. 2 of Ref. [26]. We showed

0.8—

—0.6—
V

0.4—

0.2—

(see Fig. 2 of Ref. [26]), where in our notation o
„

is given

by Eq. (8.6) (note that our o„iiis called cr„byTGS}.
However, it is known that the relationship between o.„~
and o.

„

is in general quite complicated. It has been dis-
cussed in detail by Swift, Babcock, and Hohenberg [27]
(see in particular Sec. IV of that paper). A further com-
plication is that the most detailed analysis provided by
TGS consists of a fit of their data for a time average of
the measured velocity amplitudes to a deterministic in-
tegration of a time average of the amplitude equation
[their Eq. (8}],adjusting the boundary value P'„soas to fit

20 25 30 35 40 45
z (units of 8)

FIG. 25. Normalized velocity profiles u(z) from experiment
(data points) and CGL simulation (curves). The solid circles are
from Fig. 13 of Ref. [26], and are for R =3.5 and '@=0.0367.
The solid line through them is a fit of Eq. (5.2) to these data
which yielded F& =2.5X10 '. The dashed lines are for noise

intensities a factor of 2 larger and smaller than this best-fit

value. For comparison, data from Fig. 22 for 1=0.040 are
shown as solid squares. The line through them is the same fit as

in Fig. 22 (F„=4.3 X 10 ).
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above that both of these assumptions seem to be well
satisfied for R =3.5; but they have to hold over the entire
experimental range of R. In their Fig. 14, TGS show
values of f'0 as a function of R. We converted these data
to cr„s,using Eq. (9}of Ref. [26j, took cr„~to be equal
to 0.„,and obtained the noise intensity F„used in the
present paper from F„=(cr„)/(2r+Og). Here we need
to divide by the value g=0.000835 because it corre-
sponds to the normalization used in the theoretical noise
estimate and because TGS used g=1 in their fits. We
plotted F„/F„'for the TGS data in Fig. 24 as open cir-
cles. As pointed out by TGS, their noise intensity at
large R increases with R. At large R, the results agree
well with the open square which we derived from the
data in Fig. 13 of Ref. [26] as described above. TGS be-
lieve that, for R ~ 2, their data become independent of R
at a value corresponding to f'0 =2 X 10 cm/s. Such a
"noise floor" would correspond to F„/F~"-2500 —for
their experiment, and is given in Fig. 24 as a horizontal
dashed line. It is an order of magnitude larger than our
R-independent noise level.

F. Noise spectrum

In addition to the magnitude, one can test the
relevance of thermal noise by examining the dependence
of F„eeksT/(pdv ) on experimental parameters. It is
difficult to produce an observable change in the ampli-
tude profiles by varying the temperature, since the
characteristic lengths lI, are only logarithmically depen-
dent on the noise strength, and a sufficient temperature
change is impractical while keeping other experimental
parameters constant. Instead we probed the stronger
dependence on kinematic viscosity v, which varies with
the relative concentrations of water and glycerine in the
working fluid.

Figure 26 shows amplitude profiles for R =3.0 and
1=0.025 (a=0.029) and various viscosities. The experi-
mental and CGL simulation profiles were generated in

the same way as for Fig. 22. The viscosities were 0.011,
0.016, 0.059, and 0.105 S, which cover a range of glycer-
ine concentrations from 5% to 60% and of time scales
4.4&d /v&42. 0 s. Figure 27 shows that the noise levels

QFz required to fit the data of Fig. 26 are indeed linear
in 1/v.

Nonthermal noise, such as certain types of boundary
noise, may also give a 1/v dependence since the velocity
in the CGL equation (5.2) is scaled by v/d. However, the
I/v form holds for a decade in frequency, indicating that
the relevant experimental noise is "white" over at least a
decade. This would seem to rule out many obvious noise
sources, such as pump vibration, mechanical resonances,
and other sources which tend to be spectrally narrow.

As a check, we varied several experimental features
that seemed candidates for the noise source. For exam-
ple, we changed cylinder motors, pumps, and details of
the flow distributor (Fig. 1), the last of which could pro-
duce fluctuations in the incoming fluid velocity. In no in-
stance did we observe a change in the apparent noise lev-
el.

It may not be too surprising that many common noise
sources are unimportant with regard to amplification.
The relevant noise must meet two conditions: its spectral
content must overlap the bandwidth of amplified frequen-
cies (i.e., it must contain power near co ), and its spatial
variation must be such that it couples to the traveling
modes Eq. (4.3}. Many obvious candidates fail the first
test since the range of amplified frequencies in our experi-
ments was roughly 0.04&co /2m&0 4Hz. , m.uch lower
than, for example, typical pump or motor resonances.
The second condition rules out, for example, rigid, non-
rotational vibration of the entire apparatus.

To sum up, the magnitude of the experimental noise is
independent of Reynolds number R for 1.5 & R & 4, and
is a factor of 270 larger than the current best theoretical
estimates for thermal noise. It has a "white" spectrum
over at least one decade in frequency. The source of the
noise is at present unclear. The characteristic growth
lengths are only logarithmic in the noise amplitude.
Thus, even if the noise source in the experiment were
comparable to the thermal levels predicted by theory,

1.0— n 0

2
CO

0.0
70

I I I I I I

40 50 60

z (units of d)
FIG. 26. Normalized velocity profiles from experiment (data

points) and CGL simulation (curves) for R =3.0 and @=0.029
(X=0.025). Left to right: v=0.011, 0.016, 0.059, 0.105 S, and
CGL noise levels 10 F„=12.4, 5.8, 0.43, 0.13.
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FIG. 27. Experimental noise magnitude vs inverse viscosity.
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there would be only a minor shift in the amplitude
profiles relative to those observed. For example, for
8=0.025 and R =3.0, the spatial growth rate is
P" =0.20 and the healing length is lh =58; see Fig. 22.
An order of magnitude increase in noise power
(F„'/F„=10)would produce only about a 10% shift in
the healing length:

Alt, /lt, =(1/2p' )ln(F„'/F„)lh=5.8/58 .

IX. CONCLUSIONS

We have presented an extensive, quantitative study of
noise amplification uia convective instability in open
Taylor-Couette Sow at low axial Reynolds numbers.
Theory and experiment agree in nearly every respect, and
most phenomena are described quantitatively by a com-
plex Ginzburg-Landau equation. Detailed knowledge of
the stability properties and arnplification mechanism al-
lowed us to determine properties of the noise source.

The simplicity of the Taylor-Couette geometry allows
for precision experimental work and relatively simple and
accurate numerical analysis. Except for a short inlet re-
gion, the base Qow is independent of streamwise position,
and the stability properties are global. There are no ob-
served secondary instabilities at low R, and the system is
essentially one dimensional, as evidenced by the close
agreement between experiment and the one-dimensional
CGL equation derived from the Navier-Stokes equations.

Other open Bows, typified by jets, wakes, or boundary
layers, are more complex and tend to be studied at higher
Reynolds numbers. Flow states and stability vary with
streamwise position [15],and structure may dissipate as it
is carried downstream. Instability is often of a shear na-
ture and typically leads to higher order instabilities in
higher dimensions as Reynolds numbers are increased.
Work as quantitative as that presented here is diScult or
impossible in such cases.

It would be of interest to test the generality of some of
the results found here. For example, several "real" open
Aows, such as object wakes, have regions of both absolute
and convective instability which may depend on both

external conditions and streamwise position [15]. The
appearance of a broadened frequency spectrum and a
random phase walk may prove to be a useful diagnostic
for locating the transition from absolute to convective in-
stability.

The source of the noise in the open Taylor-Gouette ex-
periment, and in particular the fundamental question of
whether it may be of thermal origin, is at present not
answered. However, the noise is extremely small, and
from a practical standpoint it is perhaps more important
to have shown in detail how secondary flows can emerge
from such small fluctuations. Certainly attempts to
reduce free-stream turbulence in (for example) convec-
tively unstable wakes and jets would be limited by some
noise source. Because the characteristic growth length of
a secondary Sow varies only logarithmically with the
noise strength, even a drastic reduction in noise would do
little to suppress noise-sustained structure in a large-
aspect-ratio system, even when the noise is far above the
thermal level to begin with.

In sum, this quantitative examination of noise
amplification, based on a detailed knowledge of stability
properties and amplification mechanism, and comparison
with theoretical models based on first principles, may
prove useful in extending our understanding of stochastic
efFects to more complicated flows and to nonequilibrium
systems in general.
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