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Both structural and dynamical properties of Li at 470 and 843 K are studied by molecular
dynamics simulation and the results are compared with the available experimental data. Two
effective interatomic potentials are used, i.e., a potential derived from the Ashcroft pseudopotential
[Phys. Lett. 23, 48 (1966)] and a recently proposed potential deduced from the neutral pseudoatom
method [J. Phys. Condens. Matter 5, 4283 (1993)]. Although the shape of the two potential
functions is very different, the majority of the properties calculated from them are very similar. The
differences among the results using the two interaction models are carefully discussed.

PACS number(s): 61.20.Ja, 61.20.Lc, 61.20.Ne

I. INTRODUCTION

Molecular dynamics (MD) simulation is one of the
most useful tools for the study of liquids at a micro-
scopic level. MD results generally are more exact than
those deduced &om aproximate theories. Moreover, MD
provides detailed information which is very dificult to
obtain (in some cases it is impossible) from experiments.
However, the realism of the MD findings requires the use
of suitable interatomic potential models. In the case of
liquid metals effective potentials including the averaged
effects of the valence electrons should be considered and
the pseudopotential theory is ordinarily used [1].

Although Li is the metal with the simplest electronic
structure, the study of liquid Li at a fundamental level
shows noticeable problems. For example, there are re-
markable discrepancies between different measurements
of the structure factor of liquid Li [2], which may be as-
sociated with the difficulties for the correction of experi-
mental data. Moreover, the determination of an accurate
efFective interatomic potential for liquid Li is not easy and
several pseudopotentials have been proposed [3]. Recent
MD results have shown [4] that many equilibrium and
time-dependent properties of liquid Li may be reason-
ably reproduced by using an interatomic potential with
no adjustable parameters calculated by applying the neu-
tral pseudoatom method (NPA) [3]. Nevertheless, the-
oretical calculations employing the variational modified
hypernetted chain (VMHNC) aproximation have shown
that the structure and thermodynamic properties of Li
are also well reproduced by using an interatomic poten-
tial obtained from the Ashcroft pseudopotential [5] (in
this case there is one adjustable parameter, the core ra-
dius). What is more surprising is that the shapes of the
NPA and Ashcroft potentials are very difFerent. Thus it

may be expected that other properties such as the trans-
port coefBcients and the dynamic structure could be a
more stringest test for the interaction potentials [3].

One of the aims of this work is to extend the pre-
ceding MD study of liquid Li at 470 K with the NPA
potential by considering other properties such as the
bond-angle distribution function, the structure factor at
low k, the transversal current correlation functions, the
density-energy and energy-energy correlation functions,
and the k-dependent thermodynamic properties. This
study, which has been carried out at two different ther-
modynamic states (T =470 K and 843 K), will allow us to
perform a more complete comparison of the MD results
and experimental data. Another objective of this work
is to compare the results obtained with the NPA and the
Ashcroft potentials in order to check if there are notice-
able differences in the dynamic properties and which are
closer to the experimental information.

II. EFFECTIVE INTERATOMIC PAIR
POTENTIALS

The construction of interatomic pair potentials for sim-

ple liquid metals is based on the use of pseudopotentials
to describe the interaction between ions and valence elec-
trons and the application of second-order perturbation
theory of a uniform electron gas—linear response theory
(LRT) in order to calculate the energy of the system.
The resulting expression gives the effective pair poten-
tial as a sum of the direct Coulomb interaction between
the ions and an electron mediated part, whose Fourier
transform is related to the pseudopotential v(k) and the
response function of the electron gas y(k),
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where
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The efFects of exchange and correlation between the
electrons are accounted for by the introduction of a local
field factor G(k) in the response function, which is then
written as
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where gaol (k) is the response function of a non-
interacting electron gas (Lindhard polarizability). A
wide variety of expressions for the local field factor are
available [6], but the relevant ones in this work are
the local density aproximation (LDA) and the Ichimaru-
Utsumi expression [7]. It should be noted that the latter
satisfies all the self-consistency requirements.

In this work we consider two pseudopotentials. The
first and simplest one is the well known empty core
model. Its adjustable parameter, the core radius, was
determined by fitting the height of the main peak of the
static structure factor, as computed by the VMHNC, to
the experimental one obtained by neutron diffraction [2],
yielding a value of 1.44 a.u. The second pseudopoten-
tial has no adjustable parameters and is constructed us-

ing the NPA ideas, starting &om the knowledge of the
atomic number and the density of the system. The de-
tails can be found in [3,8], but the procedure is briefiy
as follows. First, the electron density displaced by an
ion embedded in the electron gas is obtained using the
NPA. Second, the density is smoothed so as to eliminate
the core-orthogonality oscillations in the density which
cannot appear with a pseudopotential. Third, a local
pseudopotential is obtained that, when used within the
standard LRT, reproduces the same electronic pseudo-
density.

The efFective pair potentials were obtained using the
theory outlined above. In the case of the NPA pseu-
dopotential we used the LDA local field factor so as
to be consistent with the aproximations made in the
computation of the pseudopotential. In the case of the
empty core pseudopotential the Ichimaru-Utsumi expres-
sion was considered. The potentials obtained for the
thermodynamic state close to the triple point are shown
in Fig. 1. Note that the potentials are dependent on the
density and therefore the potentials used at the other
thermodynamic state are slightly different, though for
the sake of clarity they have not been included in Fig. 1.
In the case of the Ashcroft potential the difFerences are
due to the density dependence of the electronic response
function, whereas for the NPA potential we must add to
this the density dependence of the pseudopotential. In
any case, the efFect of lowering the density is mainly a
small deepening of the pair potential in the region of its
minimum.

III. COMPUTATIONAL DETAILS

We have simulated Li using the two potentials de-
scribed in the preceding section at two difFerent ther-
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FIG. 1. Effective pair potentials [V(r)/kii] at T=470 K
and p=0.044512 A . Solid line, NPA potential; dashed line,
Ashcroft potential.

IV. STRUCTURAL PROPERTIES

As we showed in a previous work [4], the structure
factor S(k) at 470 K calculated by MD with the NPA
potential is in very good agreement with the experimental
data. As expected, when the temperature increases the
atoms are spread around their average positions and the
peaks of the radial distribution functions g(r) become
lower (Fig. 2). The g(r) functions obtained with the NPA
and Ashcroft potentials at both temperatures are in very

modynamic states, one close to the triple point (p =
0.044 512 A. , T = 470 K) and the other one at a higher
temperature and slightly difFerent density (p = 0.041 62

s, T = 843 K). The first state has been chosen because
it has been studied by both neutron [9,10] and inelastic
x-ray [11]scattering. Neutron scattering experiments at
the second thermodynamic state are now in progress [12].
Most of the calculations have been performed with 668
particles enclosed in a cubic box with periodic boundary
conditions. Beeman's algorithm with a time step of 3
fs has been used for the integration of the equations of
motion. The properties have been calculated &om the
configurations generated during a run of 105 equilibrium
time steps after an equilibration period of 10 time steps.
The k-dependent properties have been obtained in the &-

range between 0.25 A. i and 5 A, i considering 20 and
10 different k values, respectively, in case of simulations
at 470 K and 843 K. Moreover, in the special case of
the NPA potential at 470 K, we have also performed an
extra simulation using 1750 particles considering 10 dif-
ferent k values in the region between 0.185 A. i and 2.5

i. Finally, as mentioned below, we have also calcu-
lated the velocity autocorrelation function and the mean
square displacement averaging over 10 configurations of
a system made up of 3580 particles, in order to study
the dependence of the diffusion coeKcient with the size
of the cubic box.
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mean square displacements (Fig. 5).
The diffusion coefficient D may be obtained from C(t)

through a Green-Kubo relation

(]) (A )

D= J C(t)ch, (7)
20

T being the temperature, k~ the Boltzmann constant,
and m the mass of the particles. D can also be calculated
by means of the Einstein relation

D= lim
r'(t)

(8)
taboo

In a previous paper [4] we simulated rLi at 470 K us-

ing a cubic box with 668 particles interacting with the
NPA potential. The value for D was (6.3 6 0.1) x 10
cm s, which is consistent with the experimental re-
sult (6.4 6 0.5) x 10 s cm~ s 1 obtained by Murday and
Cotts [18] from NMR measurements. In this work we
have repeated the calculations with more care, consid-
ering a higher number of configurations and k values.
The results of this more thorough analysis indicate that
the most reliable value for the self-diffusion coefficient is
(6.6 6 0.2) x 10 s cm2 s ~, which is, within the error
bars, consistent with the previous result and the exper-
imental value. Moreover, we have verified that this D
value is also consistent with both the decay of the self-
intermediate scattering functions F, (k, t) at small k s [in
this region F, (k, t) may be assumed as exponential with
an exponent proportional to D] and the expected value
of the half width at half maximum of 8, (k, u) in the limit
of k ~ 0 (uq~2(k) ~ Dk ) [4). We have also studied the
dependence of the diffusion coefficient with the number
of particles for the NPA potential at 470 K by performing
simulations with 668, 1750, and 3580 particles. The value
of the diffusion coefficient has changed from 6.6 x 10
cm2 s ~ (N=668) to (6.9+0.2) x 10 s cm2 s ~ (N =1750
and 3580), which is still consistent with the experimental
value. The diffusion coefficients obtained with 668 par-
ticles at 470 K and 843 K are summarized in Table I.
Within the error bars the D coefficients obtained &om
both potentials are very close and agree well with the
experimental data [18,19].
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FIG. 5. Mean square displacements at 470 K and 843 K.

Solid line, NPA potential; dashed line, Ashcroft potential.

(J„~(t)J„~(0))dt,

JEST

p
(9)

V being the volume of the system and a, P = z, y, z
with n g P. The expression of the stress tensor elements
in terms of the mass, velocities, forces, and relative dis-
tances between particles is

N N

J„~(t) = m) u,-(t)~~(t) + ) r;, (t)F,~(t) . (10)

The shear viscosity may also be calculated by an
Einstein-like equation

g, = lim
V . L,'(t) (»)k~T t~~ 2t

L2(t) being a "mean square displacement" [21], which is
related to the off-diagonal elements of the stress tensor

culated by equilibrium MD using a Green-Kubo relation
from the correlations of the ofF-diagonal elements of the
stress tensor [20,21]

B. Shear viscosity

t - 2

L,'(t) = J„~(s)ds
p

(12)

The shear viscosity g, is a measure of the irreversible
resistance of a fluid to a change of shape. g, can be cal-

In Fig. 6 we have plotted the normalized time au-
tocorrelation functions of the nondiagonal stress tensor

TABLE I. MD and experimental values of the diffusion (D) and shear viscosity (ri, ) coefficients
at 470 K and 843 K.

D (10 cm /s)
rf, (10 Pa s)

Reference [18].
References [23,24].

'Reference [19].
Reference [24].

NPA

6.6
5.5

470 K
Ashcroft

6.3
5.5

Experiment

6.4
57

NPA

24.7
2.4

843 K
Ashcr oft

25.0
2.4

Experiment

25.8'
30
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0.8

0.6

directly related to the dynamic structure factor S(k, ~)
and its self-part S,(k, w), respectively. These functions
are obtained as time Fourier transforms of the interme-
diate scattering functions F(k, t) and F, (k, t), which are
defined in terms of the positions of particles as [25,26]

0.2
T =470 K

F(k t) = (Pk(t)P —k(0)):

F (k t) (
ik—[r(t) —r(0)])

(13)

—0.0—
T=843 K

p 2 [~ ~, I I I ~ ! ~~J
0.0 0. 1 0.2 0.3 0.4 0.5

t(Ps)
FIG. 6. Normalized time correlation functions of the

nondiagonal stress tensor elements at 470 K and 843 K. Solid
line, NPA potential; dashed line, Ashcroft potential.

elements s(t) obtained with the NPA and Ashcroft's po-
tentials at both temperatures. As for Lennard-Jones Bu-
ids the loss of correlation in s(t) is faster when tempera-
ture increases [21,22]. The s(t) results obtained from the
two potentials do not show significant differences. The
shear viscosity coefficients (!7,) have been computed us-

ing Eqs. (9) and (11),and the!7, values obtained by both
methods have been the same. The MD Endings are com-
pared with experimental data [23,24] in Table I. The re-
sults from the NPA and Ashcroft potentials do not show
signi6cant differences and they are in reasonable agree-
ment with the experimental data.

VI. DYNAMIC STRUCTURE FACTORS

Measurements of the coherent and incoherent cross
sections in inelastic neutron scattering experiments are

where ~(t) is the time-dependent Fourier component of
the density of the system, given by the relation

—ik L~ (t)

k being a wave vector compatible with the periodic
boundary conditions [26].

In Fig. 7 the normalized F(k, t) functions obtained
with the NPA and Ashcroft potentials are plotted for
several I(' values at 470 K. The only marked differences
are for small wave vectors, just when the oscillatory be-
havior of F(k, t) is important. In the case of the F, (k, t)
functions we have not found noticeable differences be-
tween the results for the two potentials. The shape of
the F, (k, t) functions is similar at both temperatures,
but with a slower decay at 470 K. In the hydrodynamic
limit (k -+ 0) F, (k, t) has an exponential behavior [17,25]

F, (k, t) = e (16)

where D is the diffusion coeKcient. In Fig. 8 we have
plotted the —k zlnF, (k, t) function for k=0.25 A ~, ob-
tained &om the NPA potential, and the straight line us-

ing the diffusion coeKcient 6.6 x 10 cm2 s ~, obtained
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470 K and 843 K. Solid line,
NPA potential; dashed line,
Ashcroft potential.
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FIG. 8. Solid line, logarithm of the self-intermediate scat-
tering function times —k for k = 0.25 A obtained from
the NPA potential at 470 K; open circles, straight line using
the diffusion coefficient calculated from the velocity autocor-
relation function with the NPA potential.

FIG. 9. Static structure factor in the small-k region at 470
K. Solid line, NPA potential; dashed line, Ashcroft poten-
tial; solid circles, Waseda data, open triangles, Olbrich et al.
data; open circles, Ruppersberg et al. data. The three sets of
experimental data have been taken from Ref. [2].

from the velocity autocorrelation function with the NPA
potential. It should be noted that, except for a short
initial decay (t ( 0.2 ps), F, (k, t) is exponential.

The static structure factor and the intermediate scat-
tering function are directly related by S(k) = F(k, 0)
[17]. This allows us to calculate S(k) at small-k values
more exactly than if we directly determine S(k) as the
Fourier transform of the g(r) —1 function, since g(r) has
been computed only up to 15 A. and the cutoff noise is im-

portant. In the literature we can 6nd three sets of x-ray
and neutron scattering measurements for S(k) at T about
470 K (Waseda, Ruppersberg et al. , and Olbrich et al.).
These experimental data have been compiled in Ref. [2]
and they have been represented in Fig. 9 together with
the MD results for F(k, 0). It may be noticed that the
results obtained from the NPA potential are closer to the
experimental data than the Ashcroft values. The isother-
mal compressibility (gz ) can be obtained by means of the
relation

k T '
S(0)

(17)
pk~T '

where S(0) is the static structure factor at k = 0, which
has been evaluated from the MD results by assuming a
quadratic behavior of the structure factor for small k.
In Table II we have summarized the experimental and
simulation yz values. It may be observed that the NPA
results lead to values much closer to experiment [27] than

l 1
S,(k, (u) = —Re —iur + M, (k, (u)

(18)

It is important to point out that this method is feasi-
ble because M, (k, t) decreases much faster than F, (k, t),

the Ashcroft ones at both temperatures.
As mentioned above, the dynamic structure factors

have been computed by Fourier transforming the inter-
mediate scattering functions. In the case of F, (k, t) the
time decay is very slow and the functions have only been
calculated up to 3 ps. This problem is specially impor-
tant for small-k values (in our case for k ( 2 A. i). In
order to circumvent this difBculty we have applied two
diferent methods. The 6rst one is based on the calcula-
tion of the Fourier transform of F, (k, t) extrapolated for
times larger than 3 ps by assuming the exponential de-
cay that is theoretically predicted in the hydrodynamic
limit [17,25]. The second method is formally exact and
can be divided in three parts. For every k value, 6rst,
the memory function M, (k, t) of F, (k, t) is computed by
solving the Volterra-type equation that defines it [17,28];
afterward the Laplace transform of the memory function
M, (k, z) is obtained. Finally, S,(k, u) is calculated us-

ing the Volterra equation in its Laplace form and taking
into account the relation between the Fourier and Laplace
transforms [17]

TABLE II. MD and experimental values of the isothermal compressibility at 470 K and 843 K.

gT (10 MPa ')

Reference [27].

NPA

0.99

470 K
Ashcroft

0.59

Experiment

1.02

NPA

1.40

843 K
Ashcroft

0.78

Experiment

1.30
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being zero for times 0.5 ps [M, (k, t) is approximately
k times the velocity autocorrelation function for small k
values [17]). Even though the first method is not exact,
the results obtained using the two procedures coincide.

In Fig. 10 we have plotted S,(k, 0)k and the half width
at half maximum of S,(k, w) [v&i~2(k)] divided by k . The
mode coupling theory of de Schepper and Ernst (SE)
[29,30] predicts a linear behavior of both functions

50 o~ o
oo

o

48 - ~e
~ g ~

o
o o

o0

T=470 K

S.(k, o)k' (&0 'ps A )
0.70 i

0.65

0.60

0.55

~,g, k
' (A' ps ')

(?ip 0 00

= D(1 —bk), (19)
42—

0 f l I l I t I l 1 t 1 0 50 i I I ~ I I J ~J

k S,(k, 0) = (1+ak), (20) 17.0
2.6

K

where D is the diffusion coeKcient and a and 6 are pa-
rameters which can be obtained theoretically from basic
quantities and &om the difFusion and shear viscosity coef-
ficients. Figure 10 shows a linear decrease of ui~2(k)k
at both temperatures and a linear increase of S,(k, G)k
with k at 843 K, but the linear increase predicted by the
SE theory does not appear for the lower temperature.
The a and b values obtained both theoretically and by
a least-squares fitting of the MD simulation results with
the NPA and Ashcroft potentials are compared in Ta-
ble III. It should be noted that the MD values of 6 at
470 K are in agreement with the experimental neutron
scattering findings [9]. The SE predictions are consis-
tent with the MD results at 843 K. However, Kahl et
at. [31] analyzed their MD results for liquid lithium at
470 K using the mode coupling formalism of Wahnstrom
and Sjogren (WS) [32] which predicts a quadratic de-

creasing behavior of &uiy2(k)k with k at small-k values.
Our MD results can also be reasonably fitted to the WS
model and the good agreement for the 6 parameter of
the SE theory can be just accidental. Besides, as we
have mentioned before, the behavior of S,(k, 0)k2 at 470
K is in disagreement with the SE results, but the WS
model predicts an initial decrease of S, (k, 0)k with k,
which is in a qualitative agreement with our MD find-

ings at 470 K. The SE theory [29,30] is based on the
coupling between di8'usive (single particle motion) and
viscous modes. On the other hand, the WS model has
been constructed considering the coupling between the
single particle motion and the collective density fiuctu-
ations that is especially strong at temperatures close to
the melting point. Therefore, the failure of the SE theory
at 470 K can be attributed to a lack of coupling between
the single particle motion and the viscous mode for a liq-
uid near the melting point, just when the cage effects are

1 6.0

1 5.0

2.4

1 3.0

2.2 0
~ 0
0

significant and the coupling between the difFusive mode
and the collective density fiuctuations is important. The
agreement between the SE theory and our MD data at
843 K can be explained considering the decreasing of the
cage effects when the temperature increases (the nega-
tive minimum of the velocity autocorrelation function of
Fig. 4 is less pronounced at 843 K), which gives rise to
a more important contribution of the coupling between
diffusive and viscous modes.

S(k, ur) has been computed using a window function
that removes the cutoff noise in the Fourier transform
of F(k, t) In order to. preserve the moments of S(k, w),
the window function has been chosen constant for small
times and slowly decaying up to zero at the last consid-
ered point of F(k, t). This procedure renders well be-
haved structure factors, although it introduces the well

known efFects of broadening and somewhat lowering the
peaks. The S(k, w) results obtained with the two po-
tentials at 470 K are plotted in Fig. 11. For small-k

I I I t I I I I I j I I I I I I l I I I I L

'~ C ~ 'LI

1.00.0 2.0 3.0 0.0 1.0 2.0 3.0

k(A ') k(A ')
FIG. 10. S,(k, 0) times k snd half width st half maxi-

mum ruiy2(k) tiines k st 470 K snd 843 K. Solid circles,
NPA potential; open circles, Ashcroft potential; solid line,
least-squares fitting for the NPA potential results; dashed line,
least-squares fitting for the Ashcroft potential results.

TABLE III. Theoretical, MD, and experimental neutron scattering values for the a and b coe%-
cients of the mode coupling theory of de Schepper snd Ernst [29,30] at 470 K snd 843 K.

a (A)
b (A.)

NPA

0.07 0.07 0.07

470 K
Ashcroft Experiment Theory

0.10
0.04

NPA

0.13
0.09

843 K
Ashcroft

0.13
0.08

Theory

0.21
0.11

Reference [9].
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TABLE IV. MD and experimental values of the adiabatic sound velocity (c,) at 470 K and 843
K. MD results of the shear mode velocities (cq) and critical wave number (kq) at 470 K.

c, (mis)
c~ ms
k, (A-')

NPA
5250
3350
0.16

470 K
Ashcr oft

6400
3250
0.15

Experiment
4550

NPA
4300

843 K
Ashcroft

5700
Experiment

4285

Reference [27].

the total dynamic structure factor. It should be empha-
sized that the agreement with the experimental data is
excellent.

As stated in the Introduction, it was expected that
the comparison of the dynamic structure factors obtained
from simulations and experiments would be a suitable
route to know which interaction potential produces more
realistic simulations of liquid Li. Figure 12 shows that
this is not the case if the experimental neutron scat-
tering data are considered. However, the results pre-
sented in this section show that F(k, t) and S(k, u) at
small k are diHerent. Nevertheless, the neutron scat-
tering experiments at low-k's are dificult and, what is
more important, the Si i i(k, ~) function is dominated
by the incoherent contribution. Then, the experimental
S(k, oi) in the low-k region must be obtained from x-ray
measurements for which no incoherent scattering takes
place. Liquid Li at 40 K above the melting point has
been recently studied by inelastic x-ray scattering [11,33]
and some of the results are compared with our MD Bnd-
ings in Fig. 13. In order to perform this comparison we
have adapted the MD results to the experimental results
according the following steps [33]: First, the MD data
have been mirrored to the negative frequency region; then
they have been multiplied by the detailed balance factor
e~i 2ssT [17]; afterward they have been convoluted with
the energy resolution function of the experimental device.
Moreover, the data have been multiplied by a normaliz-
ing factor that takes into account the change of units
(from ps to experimental count rates) and finally the in-
strumental background has been added. The agreement
between the experimental and MD data is in general sat-
isfactory, especially for the highest-k value. The only
important disagreement appears for u around 0 and A: =
0.44 jt. . In any case, it should be noted that the dif-
ferences between simulation and experiment are smaller
for the NPA potential.

The sound dispersion relation oi, (k) is determined by
visual inspection of the Brillouin peak positions or Bril-
louin frequencies ~s (k) of S(k, u) for every k value. How-
ever, for sufhcient large k's the Brillouin peaks are not
directly visible and more sophisticated methods are re-
quired for its detection. The S(k, u) for a simple liq-
uid can be written according to the kinetic theory as a
sum of an in6nite set of Lorentzians [34]. However, for
small k's, S(k, u) can be described in terms of only three
Lorentzians

80
l(k, oI)(et s/1 Dmin)

60

k=0.44 A

40

20

40

k=0.72
II

20

40

0 I l I I I I I l I l l I I 1

-so -4o o 4o so

o~(ps ')

where A~ and z~ are either real or complex conjugate
pairs. These parameters may be determined by means
of a least-squares fit to the S(k, ~) result [35]. The
Lorentzians triplet has one central Rayleigh line located
at ~ = 0 that is due to the extended heat mode and two

1

( )
S(k) ) Ai(k)

vr i(u+ z, (k)
(22)

FIC. 13. Dynamic structure factors for diferent k values at
470 K in x-ray experimental units. Solid line, NPA potential;
dashed line, Ashcroft potential; solid circles with error bars,
x-ray data [11,33].
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VII. CURRENT CORRELATION FUNCTIONS

The Fourier transform of the current associated with
the density of a system with N particles is given by

N

jg(t) = ) v)(t)e '"" ' (23)

The longitudinal C~(k, t) and the transverse Ct (k, t) cur-
rent correlation functions are defined in terms of the parts
of jg(t) which are parallel j&(t) and perpendicular j& (t),
respectively, to the direction of the wave vector k

Brillouin lines located at u, (k) = 1m[@i(k)] that are due
to the two extended sound a1odes.

In Fig. 14 we have plotted the x-ray, the neutron scat-
tering, and the NPA results of the sound dispersion rela-
tion at 470 K using the three Lorentzians procedure. We
have also included in Fig. 14 the adiabatic sound velocity
c, straight line or hydrodynamic sound dispersion curve
~, (k) = c,k, using the experimental sound velocity value

(c, = 4550 m/s [27]). Finally, we have plotted the the-
oretical results corresponding to the three Lorentzians
viscoelastic model of Lovesey [17,36] computed for the
NPA potential. Figure 14 shows that for small-k values
there is good agreement, within the error bars, between
the MD findings, the x-ray results, and the viscoelas-
tic model predictions. Moreover, at very small k's both
theoretical and experimental results approach the sound
velocity limit. In the region of the largest k's (k ) 1.25

i), MD results are closer to the experimental neutron
scattering data than the viscoelastic model predictions.

The Fourier transforms of these functions Ci(k, ~) and
Ci(k, u) describe, respectively, the spectrum of the longi-
tudinal (or density) and transverse (or shear) fluctuations
in liquids. In order to obtain well behaved spectra, we
have Fourier transformed the current correlation func-
tions using window functions similar to those considered
in the calculation of S(k, ur). In fact, the longitudinal
power spectrum has been computed by two routes: first,
by Fourier transforming the Ci(k, t) and second, by us-
ing the equation C~(k, u) = u S(k, u) [25]. The results
obtained by both methods do not show significant difFer-
ences.

In Fig. 15 we have plotted the longitudinal dispersion
curves for both potentials at 470 K and 843 K. These
curves have been obtained using the frequencies uri (k)
corresponding to the peaks of C~(k, ur) for difFerent k val-
ues. We also show in Fig. 15 the Brillouin &equencies
~~(k) corresponding to the simulation with the NPA po-
tential obtained for small-k values by visual inspection of
the Brillouin peaks and for larger k's (1.25 A ( k ( 2.5

) using the three Lorentzians procedure described
above. It is seen that for the smaller k's the u& (k) and
uz(k) frequencies coincide and the shape of the disper-
sion curves is close to the experimental sound velocity.
As k increases, uP(k) is slightly greater than the adia-
batic sound velocity straight line. These may be asso-
ciated with the shear relaxation effects'which have also
been observed for other liquid metals, both experimen-
tally [37] and by computer simulation [26]. Finally, it
should be pointed out that the longitudinal dispersion

~i (] ) (ps ')

60

C&(k, t) = ~ 0 (t)j (o)),

k2
(k, t) = ~(g„(t)g „(o))

(24)

(25)
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FIG. 14. Sound dispersion relation at 470 K. Solid line,
Lovesey viscoelastic model [36]; dashed line, hydrodynamic
sound dispersion curve; open circles with error bars, x-ray
data [11]; triangles with error bars, neutron scattering data
[10]; solid circles, MD results using the NPA potential.

FIG. 15. Longitudinal dispersion curves at 470 K and 843
K. Solid line, NPA potential; dashed line, Ashcroft potential;
long dashed line, adiabatic sound velocity; open circles, Bril-
louin frequencies obtained by visual inspection of the Brillouin
peaks for the NPA potential; solid circles, Brillouin frequen-
cies obtained by fitting S(k, u) for the NPA potential to three
Lorentzians.
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relations corresponding to the two potentials are very
close and the only noticeable di8'erences are for k ( 1.5
g —i

In Fig. 16 we show the Fourier transforms of the trans-
verse current correlation functions Ci(k, ur) at both tem-
peratures calculated with the NPA potential for some
wave vectors. At 470 K we can notice the existence of
peaks at 6nite frequencies for all the k values considered
in the 6gure. However, at 843 K the peaks only exist for
k values longer than about 1 A i, which refiects the dif-
ficulties for the propagation of shear waves in liquids at
high temperatures. The results for the Ashcroft poten-
tial are not shown in the 6gure because they are almost
indistinguishable &om the NPA ones.

The dispersion curves of the transverse (or shear)
modes, obtained &om both potentials at 470 K and
843 K, are plotted in Fig. 17. These curves represent
the frequency corresponding to the Ci(k, ~) peak ~i (k)
for every wave vector. If a linear behavior is assumed
uP(k) = cr(k —ki) [38], the dispersion curves in the re-
gion of small wave vectors allow us to determine the ve-
locity of the shear modes cq and the wave vector k& from
which shear waves are supported. The cq and k~ values
obtained by a least-squares Btting at 470 K are shown in
Table IV, where it can be noticed that cq is smaller than
c, . The quotient value for the NPA potential is c&/c,
= 0.64. These findings are consistent with the results
obtained for other monoatomic liquids (Na, K, and Ar)
near the triple point and also with the measured veloci-
ties of longitudinal and transverse sound in a variety of
monoatomic solids [38].

The viscoelastic model for the transverse current cor-
relation functions predicts that shear waves will appear

Ci(j,~) (&O
'

ps ')
70 90

ai, (k) (ps ')
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20

0
0.0 1.0 2.0 3.0
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FIG. 17. Transverse dispersion curves at 470 K and 843 K.
Solid line, NPA potential; dashed line, Ashcroft potential.

for values of k greater than k„where k, is a critical wave
vector given by [17]

pmk, =r, (k) (26)

pm being the mass density of the system and G (k) the
k-dependent shear modulus. G (k) is directly related
to the second moment of the transverse current correla-
tion function, which can be evaluated from the g(r) and
the second derivative of the potential. ri(k) is the expo-
nential coefBcient or characteristic time decay. of the first
memory function of every Ct, (k, t) The k,. value can be
estimated by taking the k=0 limit of Eq. (26):

10 470 K
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1 1
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Qs
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FIG. 16. Transverse current correlation functions at 470 K
and 843 K calculated from the NPA potential for different k

values.

g, being the shear viscosity coefEcient.
The k, estimated values are 0.23 A i at 470 K and

0.49 A i at 843 K. This last k, value disagrees with the
MD result (the first k value from which we have seen
shear modes at 843 K is 1 A. ). However, at 470 K
the viscoelastic estimate agrees with the MD findings (we
have seen shear mades for k = 0.185 A. i), which are also
coincident with the kq wave vector predictions of Jacucci
and McDonald [38]. Prom the analysis af MD results
for monoatomic liquid metals (Na and K) near the triple
point, Jacucci and McDonald predicted that shear modes
appear &om 4 onward, where a is the nearest neighbor

distance (for lithium a = 2.5 L and then k~ = 0.18 A. i).
In the same work Jacucci and McDonald also derived a
formula for k~ the wave vector Rom which longitudinal
modes dissapear (ki =, in our case ki ——1.8 A. i).
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This prediction is also close to the MD results (we have
not seen a clear Brillouin peak from k = 2 L i at 470
K).

250

125

F.,(k, t) (K)

VIII. ENERGY'-DENSITY AND
ENERGY-ENERGY CORRELATION
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The basic quantities involved in the hydrodynamic
model of a fIuid are the microscopic density fIuctuations
p, the microscopic longitudinal velocity fIuctuations u,
and the temperature fluctuations T [17,39]. An equiv-
alent description can be obtained if we substitute the
temperature fluctuations by the energy fIuctuations e.
The study of the correlation functions between these ba-
sic quantities is important because the transport coefB-
cients and generalized thermodynamic quantities can be
obtained kom them. The complete set of hydrodynamic
correlation functions can be computed in terms of only
three independent ones, which are the density-density
correlation functions defined in Eqs. (13) and (15), the
energy-density F,~(k, t) correlation functions, and the
energy-energy F„(k,t) correlation functions. The last
two are defined as [40]

~ I s X s ( s I
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F. (» t) = g(Ex (t)p-x (0))
1

F„(k,t) = —(Eg(t)E x, (0)) s

1
(29)

N

E (t) ) E ik r~(t)— .
(30)

~(t) and Ex,(t) being, respectively, the time-dependent
Fourier density and energy of the systexn. ~(t) is given
in Eq. (15) and Ex, (t) is defined by

FIG. 18. Energy-density correlation functions at 843 K.
Solid line, NPA potential; dashed line, Ashcroft potential.

3.0 ;
F,.(I&,t) (10 K')

2.0

small k's, i.e., they show "Brillouin-like" peaks which
cannot be observed in the functions computed using the
NPA potential.

From the correlation functions F(k, t), F,~(kst), and
F„(k,t) at t = 0 we can derive a set of generalized k-

where E~ is the total energy of the particle j, i.e., 1.0
=0.7 A-'

N

E~ = —mv. + — ) V~x(r) . (31)
1=i+j

In Figs. 18 and 19 we have plotted, respectively,
F,~(k, t) and F„(k,t) coxnputed froxn both potentials
at 843 K. The resulting energy-density correlation func-
tions for the two potentials have different sign because
the total energy is negative when the NPA potential is
used and positive when the simulation is performed with
the Ashcroft potential [3]. Fxxrthermore, the oscillatory
behavior of the correlation functions at small-k values

(k ( 1 A ) obtained from the Ashcroft potential is in
contrast with the monotonic behavior of the correlation
functions computed from the NPA potential. The NPA
results for F,z(k, t) and F„(k,t) resemble those obtained
with a Lennard- Jones potential [40] whereas the Ashcroft
and NPA f1ndings are in qualitative disagreement. Fi-
nally, it should be pointed out that, as a consequence of
these difFerent behaviors, the shapes of the Fourier trans-
forms of F„(k,t) calculated from the Ashcroft potential
are similar to the dynamic structure factors S(k, ur) at
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FIG. 19. Energy-energy correlation functions at 843 K.
Solid line, NPA potential; dashed line, Ashcroft potential.
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dependent thermodynamic quantities, which tend to the
bulk thermodynamic values in the limit of k —+ 0. The
expressions for these quantities are [40]

m . 0
h(k) = — lim F,p(k, t)

QBT A;2 t-+0 gg2

for the generalized enthalpy per particle,

2.0-

1.0 "

2.0

cr(k) = [h(k)F(k, 0) —F,p(k, 0)]
BT

for the generalized thermal expansion coefFicient, tr g~0 ~ I ~ I I I I I I I ~ I 1 ~ I I I I I

C„(k) = F„(k,0) —F, (k, 0)/F (k, 0)
B

for the generalized specific heat at constant volume per
particle,

3.5

C„(k) = C„(k) + kgyT n (k)/F(k, 0) (35)
e i s I s s s I s s ~ I s a i l s25

4.5

for the generalized specific heat at constant pressure per
particle, and

p(k) = C„(k)/C„(k)

for the generalized ratio of specific heats.
The calculation of h(k), a(k), C„(k), and p(k) is very

sensitive to the numerical computation of the second
derivative of the density-energy correlation function at
zero time. In order to circumvent the problem we have

also computed the generalized enthalpy following a more
direct procedure which is based on the calculation of the
energy-longitudinal momentum flux correlation function
at zero time F,y(k, 0) [40]

3.5
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1.6

1.2

n ~ r s s i I a ~ a I a s i I ~

0.0 1.0 2.0 5.0 4.0 5.0

k(A ')

F,~(k, t) being

h(k) = F,y(k, 0),
kBT

FIG. 20. Generalized k-dependent thermodynamic proper-
ties at 843 K. Solid line, NPA potential; dashed line, Ashcroft
potential; solid circles, bulk thermodynamic experimental val-

ues [27]. cr(k) and the heat specific capacities are expressed
in 10 K ' and kj kg K, respectively.

F,p(k, t) = —(Eg(t)P g(0)),
1

(38)

where E~(t) is defined by Eqs. (30) and (31) and Pk(t)
is given by

(t) ) y
ik rz(t}—(39)

N

1=i+j
(4o)

P~ being the longitudinal momentum flux of the particle
~ ~

) 1.e.)

obtained from the two potentials, the k-dependent ther-

modynamic properties are similar and the values in the
limit of k ~ 0 are consistent with the experimental data
(cr = 1.97 x 10 K ~, C„ = 3.655 kJ kg ~ K ~, C~
= 4.177 kJ kg K, and p = 1.143) [27]. Moreover,

in agreement with the results for Lennard- Jones systems

[40], we can observe peaks in the a(k), C~(k), and p(k)
curves for the k value corresponding to the S(k) max-

imum. %'e have also calculated the energy-energy and

the energy-density correlation function and all the ther-

modynamic properties at 470 K for both potentials. In
all cases we have obtained the same qualitative results as

for 843 K.

IX. CONCLUSIONS

The generalized k-dependent thermodynamic proper-
ties at 843 K calculated from the Ashcroft and NPA po-
tentials are shown Fig. 20. Despite the great differences
between the correlation functions F,~(k, t) and F„(k,t)

In this paper a wide variety set of properties of liquid
Li at two very different temperatures using two different

potentials have been calculated by MD. These MD results
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together with those in [4] are in reasonable agreement
with the available experimental data. This corroborates
that classical MD simulations using suitable effective po-
tentials can provide realistic pictures of the microscopic
behavior of this liquid.

Despite the marked differences between the two poten-
tials used in the MD simulations, both the structural and
dynamical properties calculated from the two potentials
are in general very similar. Small differences have been
found for yT and c„whereas the differences for S(k, ur)

at small-k values are more significant. Important discrep-
ancies have been observed for the F,~(k, t) and F„(k,t)
calculated with the two potentials, but these properties
cannot be experimentally determined. Although some
properties calculated with the NPA potential are slightly
closer to the experimental data, our results indicate that

both potentials are able to reproduce the behavior of liq-
uid lithium.
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