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Diffusion approximation for a dissipative random medium and the applications
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In almost all of the literature, the diffusion coeScient derived from a conventional transport equation
changes with the absorption coeKcient when there is a dissipation in the medium. The situation is also
the same for the time-independent diffusion equation. In recent numerical simulations made for a
biological-mechanical purpose, it happened that the absorption coeScient was increased up to one tenth
of the total scattering cross section per unit volume; thereby it was strongly suggested that the diffusion
coeScient should preferably be independent of the absorption coef6cient. The purpose of this paper is to
show theoretically that this is definitely the case. Moreover, several basic equations for applications to
optical tomography and photon migration are given.

PACS number(s): 05.60.+w

I. INTRODUCTION

The space-time transport equation can be reduced to a
diffusion equation in the region where the space-time
change of the angular distribution function is sufFiciently
small within the range of the wave coherence distance.
Here, when there is a dissipation in the medium, the con-
ventional diffusion coef6cient, as written in almost all of
the literature, changes with the absorption cross section
per unit volume [l]. The situation is the same for the
time-independent diffusion equation [2]. On the other
hand, assuming the absorption cross section y, & is small
enough compared to the total scattering cross section per
unit volume y, the diffusion coeScient was shown to be
independent of y, b [3]. This difference is not very impor-
tant as long as y, & &&y, but there recently occurred a
case in which y,& -y X 10, showing that the difference
can cause a remarkable change, and that numerical simu-
lations by the Monte Carlo method strongly suggest y,&-

independent diffusion coeScient to be preferable to the
conventionally accepted one [4]. Illustrated in Fig. l are
examples of the numerical comparison made using the
two different diffusion coefKicients for some typical data in
case of a photon migration in turbid media; therein the
broken lines show the results when using the convention-
al coe%cient, while the solid lines show those when using
the corrected one. The ratio of the two sets of values is
shown in Fig. 2 (see the captions for details}.

The purpose of this paper is first to show theoretically
by a rigorous procedure that this is definitely the case,
and then to introduce several basic equations therefrom
when making applications, particularly to areas of optical
tomography and photon migration which have been at-
tempted recently for medical purposes [5].

II. CASE
OF A HOMOGENEOUSLY

RANDOM MEDIUM

We employ the following notations: The space coordi-
nate vector is denoted by p=(p&, pz, p3), the time by t, and
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FIG. 1. 1n(S0/S) in a homogeneously random medium is

shown as a function of the time (ps) for a light wave. Here So is

the solution of the diffusion equation when y, b =0, y = 1 mm=',

D =1/3y, a, =0, and when subjected to the initial condition
(13),while S is the corresponding solution when y, b =0. 1 mm

with the same value of y. Broken curves are used when S is the
solution S, using the conventional diffusion coeScient
D =1!3(y+y, b ), while the solid curves (lines) are used when S
is the solution S2 using the corrected diffusion coef6cient in-

dependent of y,b. Three sets of curves are shown for the propa-
gation distances d = 10, 30, and 50 mm, respectively. Note that
all solid lines coincide with each other independently of the

propagation distances.
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by substituting expression (5}into Eq. (1}and subsequent-
ly using condition (3).

In fact, Eq. (5) can be written in the form

I(o,p)= fdp'do'S(o, pro', p')J, (o',p')

(where dp'=cdp'dt') in terms of a Green's function
defined by

S (Q,p)t —t'io', p'),
$(Q,P~Q', P'}= '0

which is the solution of Eq. (4) with the source term

c '5(o —0')5(p —p')5(t t')—,

FIG. 2. The ratio S& /S& is shown for the same values of the
parameters and propagation distances as in Fig. 1.

S(o,pit —t'=Oio', p')=5(o —Q')5(p —p') .

Hence

(3)

[8,+Q.V+y, ]s(o,p~t —t'~o', p'}

dQ"cr Q Q" S Q",p t —t' Q',p', 4

which enables the solution of Eq. (1) to be expressed by

I(QP)=c f dt'f dp'do'S(o, pit —t'io', p')

p=(p, ct) represents the space-time coordinates together.
The spatial differential operator will be denoted by
V=(B/Bp„B/Bpz, 8/Bp3) and the time differential opera-
tor by 8, =c '8/Bt. The space unit vector
Q=(o„oz,o2) with Q =1 is also used, and I(o,p)
designates the angular distribution function of the wave,
expressing the intensity of wave propagating in the direc-
tion Q at p.

The distribution function I(o,p) is obtained as a solu-
tion of the space-time transport equation of the form

[8,+Q V+y, ]I(o,p)
=fdo'o(ohio')I(o', p)+J, (Q,P) . (1)

Here a (Q
~

Q') designates the scattering cross section per
unit angle and per unit volume, giving rise to scattering
of the wave propagating in the direction Q' into Q, and
will be assumed to have the form o (Q Q') with
Q Q'= g &

Q Q' in the following. The extinction
coefBcient y, is conveniently divided into two parts ac-
cording to

y, =y+y, b, y= fdoo(o Q'),

where y is the total scattering cross section and y,b is the
absorption cross section. The term J,(o,p} provides the
source of the wave.

Here we introduce a solution of Eq. (1),
S(o,p~t —t'~o', p'), when J,(o,p)=0 and subject to the
initial condition

a, =y ' fdoo.o'o(o Q'),

and subjected to the initial condition

So(pit —t'=Oip') =5(p —p'), (13)

which results from condition (3) with (10). The diffusion
equation for S(p ~

t t '
~

p') is conseq—uently given, from
(8), by [3]

[8,+y,b
—3 '(1 —a, ) 'y 'V']S(p~t —t'~p'}=0, (14)

showing that the diffusion coefficient is the same as when
no absorption is assumed (y,b =0) and, therefore, that it
differs from the conventional one which has been given
by 3 '[(1—a&)y+y, &]

' in the present notations [1].
On the other hand, time-independent solutions, as ob-

tained at the limit t~ ~ for time-dependent sources of
the form

in consequence of condition (3).
The solution S of Eq. (4) can be expressed in terms of

the solution of when y,b =0, say So, by

$(o,pit —t'io', p')

=exp[ c(t —t')y, b]SO—(o,p~t —t'~o', p') . (8)

Here, in view of (2), So is the solution of

[a, +o v+y]s, (o,p~t —t ~o,p }

=fdo"tr(o[o")So(o",pit —'tIo', p') (9)

subjected to the satne initial condition as (3).
In the diffusion region where the space-time change of

So (not S) is negligibly small for a change of p=(p, ct)
within the range of the order y ', the total intensity of
So, defined by

s, (pit —t'Ip')= fdos, (o,pit —'Ito', p'), (1o)

is the solution of the conventional diffusion equation (Ap-
pendix A)

[5,—3 '(1 —a, ) 'y 'V']So(p~t —t'~p')=0

in a nondissipative medium, with the parameter a&

defined by

XJ,(o',p'),
where p'=(p', ct') The proof beco. mes straightforward

J(Qp), t&0
J'o»}= o, t(0, (15)
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can be obtained as solutions of a time-independent equa-
tion, directly, as follows: From expression (5), we observe
that substitution of (8) and (15) yields

to a diffusion equation of S(pip') as

[y., —3 '(1 —~, ) 'y 'V']S(pip')=5(p —p'), (23)

I(Q,p) =I(Q—,p, t = co )

=fdp'do's(o, plo', p')J, (0',p'), (17)

S(0 plo', p')=c f "dt exp[ cty b—]SO(o,pltlo' p') .
0

(18)

Here, using the governing equation (9) for So with the
same initial condition as (3) for S, the definition (18) leads
to an equation ofS(0,p l

0',p') as

[0 V+y, i, +y]S(o,plo', p')

= fdo"cr(olo")s(0",plo', p')

+5(0—0')5(p —p'), (19)

with the aid of partial integration. Equation (19) is just
the equation of the Green function for time-independent
solutions of Eq. (1) (B,I =0), as it should be from expres-
sion (17).

The total intensity of the wave, I(p), is obtained by the
0 integration of (17) as

I(p)= fdQI(o, p)

= fdp'S(pip')J, (p ) . (20)

Here

S(pip'}= fdQS(o, plQ', p'),

J,(p)= fdQ J,(Q,p), (22)

and, in the diffusion region, use of Eqs. (11)and (18) leads

I(O,p, t) =fdp'd 0'c f dt'exp[ —c (t t'—}y,b ]
0

XSO(0 pit t IQ,p )J,(Q', p'), (16)

and hence that, as t~+ oo,

with the aid of partial integration and the initial condi-
tion (13). Note that the diffusion coefficient in (23) is
again independent of the absorption coefficient y,b. It
should be noted, however, that, as y,b increases, integral
(18) tends to be determined mostly by the t integration
over the range t -c 'y, b', while the solution S0 of the
difFusion equation (11) can be utilized with a sufficient ac-
curacy only for the range t )&c 'y ' in the integrand.
Hence this leads to the condition y, b &&y for the time-
independent difFusion equation (23} to be available, in
contrast to the time-dependent difFusion equation (14}
which is valid even when y,b-y, although for such a
large value of y,b, use of the original transport equation
(1) cannot be justified.

HI. CASK OF AN INHOMOGENKOUSI. Y
RANDOM MEDIUM

So far the medium has been assumed to be homogene-
ous, so that the cross section tr(olo') is independent of
the space coordinates p. Hereafter, we consider the case
in which the cross section is inhomogeneous in space
with the form o( Qlplo' }= tr( Q. 0',p). Thus, in Eq. (2},
y„y, and y,b are now functions of p, and

y(p)= fdoo(0 0',p) . (24}

To find an expression of S (Q,p(t t'lQ', p'—) similar to
(8) with the factor So which is the solution of the trans-
port equation (9) when y, b =0, we write it in the form
(Appendix B is devoted to deriving basic equations in
short form which can be easier to follow)

s (0,p l
t t '

l
0',p') =f—d 0"dp"so( 0,p l

t t '
l
0",p")—

XI (0",p"lt —t'lo', p') .

Here I (0",p" lt —t'lo', p') is an unknown factor to be
determined by substituting expression (25) into the origi-
nal transport equation (4) for S. Hence, on using Eq. (9),
we find an equation for I as

fdo"dp"[s (Q,pit t'lo",p")8,+y, (p)s —(Q,pit —t' lop")] r(0", pit —t'lo', p')=0, (26)

with the initial condition

I (Q,pit t'=OlQ', p') =5(0—0—')5(p —p') . (27)

In the diffusion approximation, So (0,pl t t 'l 0',p') is-
reduced to So (pit t'lp'), defined —by Eq. (10), which is
the solution of the difFusion equation (11), or in the
present case in which y and 0. are spatial functions ofp,

[8, VD(p)V ]S (pit ——t'lp'}=0, (28)

subjected to the initial condition (13) (Appendix A). Here

D(p)=3 '(1 —ai) 'y '(p)

is the diffusion coefficient and is independent of the ab-
sorption coefficient y,b. The diffusion versions of Eqs.
(25} and (26} are also obtained by the 0 integration;
hence, in terms of the notation

r(pltlp )=fdor(o, pltlo, p ),
r(pit =Olp')=5(p —p'),

Eqs. (25) and (26) lead to

s(pit t'lp')= fdp"s—o(pit —t'l p) (rplt —t'lp'),
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fdp"[so{pit —t'Ip")~, +y.b{p}so{pit—t'Ip" }] The matrices S(t) and So(t) are connected by the relation
(32},which is now expressed by

XI (p" it —t'ip') =0, (33) s(t)=s, (t)r(t) . (40)
and the function I'(pitip') can in principle be found by
solving Eq. (33} with the known solutions So(pitip') of
Eq. (28). Hereafter, we will often understand Eqs. (32)
and (33) to be given in terms of the matrix elements of a
product of two p coordinate tnatrices So(t t') a—nd
I (t t'),—say, defined by the elements So{pit t'ip'—) and
I (p i t t 'ip—'), respectively.

The elements S(pit t—'ip') can be obtained directly,
however, as the solution of another diffusion equation,
i.e.,

[8,+y, (p) VD(—p)V ]S(pit —t'ip')=0, (34)

[8,+y., ]r{pit —t'ip') =0,
hence the solution, subject to Eq. (31), is

I (pit —t'ip') =exp[ —c (t t')y,—b]5(p p') . —

(35)

Thus the expression of S (pit —t'ip'} obtained from (8) is
reproduced by Eq. (32).

IV. SCATTERING BY AN ISOLATED ABSORBER

In the optical tomography and photon migration
which have recently been attempted for medical pur-
poses, scattering by an isolated absorber as embedded in a
random medium is a basic problem to be investigated,
and this section is devoted to preparing basic equations
for the scattering of this sort to the diffusion approxima-
tion.

To facilitate the following equation formulation, we
write the diffusion equation (34), on setting t'=0, in the p
coordinate-matrix form

d, s(t)=HS(t}, H =Ho H) . —

Here $(t) is a p matrix with the matrix elements
S(pltip ),

O=V DV, ~i =r.b (38)

which are also regarded as p matrices, with the opera-
tors V having the matrix elements V15(p —p')=
—VJ5(p —p'); here y,& is assumed to be nonzero only
over a small region in the space constituting an isolated
absorber, while, in the case when r,b has a constant part,
that part is to be included in So(t) by using Eq. (8). The
diffusion equation (28) for So is likewise written by

which difFers from the conventional difFusion equation in
that the diffusion coefficient D(p} is perfectly indepen-
dent of r,b. The proof is straightforward by using ex-
pression (32) with the aid of Eqs. (28) and (33); and the
condition (13) is ensured for S by virtue of the initial con-
dition (31) imposed on I'.

In the special case in which r,b is a constant over all
space, Eq. (33) is reduced to

Another relation is

S,(t —t')S, (t') =S,(t), (41)

which can be shown directly by using the forrnal solution
of Eq. (39) subjected to the initial condition (13), i.e.,

So(t)=exp(ctHO), So(t =0)=1 .

Thus, from Eq. (41},

S,(t —t') =S,(t)S, '(t') .

(42)

(43)

The matrix I'(t}, as defined by the elements r{pitip'),
is governed by Eq. (33), which can be rewritten in the ma-
trix form

[a, +%,(t)]r(t)=0, r(t =o)=1,
&](t)=SO (t)y bso(t)

(44)

(45)

where r,b is a diagona1 p matrix with the elements

y,b(p)5(p —p'). Here, when y,b is a constant indepen-
dent of p, the solution of Eq. (44) is given by

I (t) =exp( cty, b ), —%,=y,b, (46)

Xy,'~SO(t~)— (49)

The solution can be obtained in a compact form by
making the Fourier transformation with respect to the
time. With the transform S(co) defined by

S(co)=f dt e '"'S(t), (50)
0

which is an analytic function of co in the lower-half plane,
and which Fourier inversion

S(t)=(2n )
' f da) e'"'S(co},

ensures S(t (0)=0, Eq. (48) is transformed to

S(to) =So(to) So(co)y,'bS(co) . —

The solution can be expressed by

(51}

(52)

being a reproduction of Eq. (36).
Integration of (44) with respect to t yields

r(t) =1—c f dt'%, (t')r(t'),
0

and the substitution into Eq. (40) leads to an integral
equation for S(t), with y,b =cy,b, as

S(t)=SO(t) —f dt'So(t t')y,'b—s(t'), (48)

with the aid of relation (43). The iterative solution of Eq.
(48) is written in a power series of y,'b as

t
S(t)=So(t)—f dt, so(t t, )y,'bso—(t, )

0

t(
+f dt] f dtgso(t t )y iso(tl t2 }

0 0

a,S,(t)=H,S,{t), (39) S(co)=So{co) So(co)T,b(co)SO(co),—
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in terms of a scattering matrix T,b(to) of y,b, defined by

Tgb ( co }So( r0 ) =y g b S( co } (54)

or, upon substitution of Eq. (53) into the right-hand side,
by

T,b(to)=y b[1 So—(m)T,b(co)) .

Hence, in the p matrix form, we obtain

T,b(to) = [1+y,'bSo(~)] y,'b

(55)

(56)

which includes the multiple scattering effect of all orders
between the absorber and the surrounding random medi-
um. The series solution (49) is reproduced by the Fourier
inversion of (53) with the expansion

T b() y b y bSO(~)yob+ (57)

Xexp[ (i co/c—D)'
I p p'

I ],—
where m/2~ arg(ice) ~ n/2. —

(58)

V. ATTENUATION IN A SLOWLY CHANGING
MEDIUM OF y, b

%hen y, b is constant over all the space, the total at-
tenuation is given by I ( t) of (46) to yield the same expres-
sion of S(t) as that from Eq. (8). When y, b is nonzero
only over a small region, on the other hand, it works as
an absorber and behaves like a scatterer. In this case,
S (t) is given, as the solution of integral equation (48), by
(49) in a power series of y,b, or by (53) in terms of the
Fourier transform S(co}with respect to the time, upon in-

troduction of the scattering matrix T,b(cu) of y,b, defined

by (56) in the same fashion as in case of a scatterer.
Considered in this section is another extreme case in

which y,b changes suSciently slowly in the space, while

the diffusion coeScient D is assumed to be constant. %'e

start with the basic equation (44) for I'(t). Here, from
(45),

&&(t)=So '(t)y, b(p)SO(t)

=y,b [So '(t)pSO(t) ],
by virtue of the relation

So '(t)p"So(t)=[SO '(t)pSO(t)]", n =1,2, 3, . . . , (60)

as applied to a power series expansion of y,b(p} with
respect to p. Hence we can write

&,( t) =y,b [P( t) ],
with a p matrix p(t), defined by

p(t)=S, '(t)pSo(t),
which, upon using expression (42) with (38), gives

p(t)=exp( ctDV )pexp(—ctDV )

(61)

=p ctD [V,p]+ —,'(ctD)—[V,[V,p]]—.. . ,
(63)

here, when D is a constant, the matrix elements of So(co),
So(p~to~p'), are given by

So(picoip') =(4mcD[p p'i)—

in terms of the notation [A,B]=AB B—A. Here the
third- and higher-order terms of the series become zero,
hence,

p(t) =p 2—ctDV,

[p( t),p(t' }]%0,

Thus, with the expression (61), the solution of Eq. (44)
can be expanded in a series in the same fashion as Eq. {49)
for S (t), or written more generally in the form

I (t)=P exp[ —c J dt'y, b[p(t')]] . (66)

Here the symbol P designates the time-ordered product
defined for any matrices A (t) and B (t) by

A (t)B(t'), t & t'
P[A (t)B(t')]=

h

To find the resulting S(t} according to Eq. (40) or,
more explicitly,

S(pltlp')= Jdp"So(pltlp")I (p" Itlp'), (68)

we observe that

So(p~t~p")=(4nctD) ~ exp[ (4ctD) —'(p p") ],—
(69)

being the solution subject to Eq. (13) in the homogeneous-
ly random medium, and also that its spatial change is
made mostly by the exponential factor. Therefore, as will
be seen below, we can approximate I (t) of (66) with the
operator p(t) of (64), by the matrix elements

I (p" ~t~p') =exp ] —c J dt'y, b{p"+ct'u) 5(p"—p')
0

similar in form to (36). Here the vector u is defined by

u=(p —p")/ct,
which results from the exponential factor in (69) by
operating V [involved in p( t '

)] from the right-hand side,
hence by replacing V~ —8/Bp" =(8/c}p")[(p—p") /
4ctD] This app.roximation is possible when y,b(p)
changes suSciently slowly compared to the spatial
change of So(t).

Thus, substituting (70) into (68), the result is obtained
in the form

S(pl tip') =S,(pl tip') A(pltl p') .

Here

A (pitip')= A (p'itlp)

=exp ~
—c I dt 'y, b [p'+ {t '/t)(p p') ] (73)—

means the attenuation coeScient relative to So, and sub-

ject to the invariance against the interchange of p and p',
as may be shown by changing the variable of integration
t' to t"=t t' In the time integ—ral .in (73), y, b in the in-
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tegrand changes along the line from the point p' to p, i.e.,
from the source to the point of observation along the
direction of the averaged power flux.

Equation (72) indicates, since the factor A is perfectly
free from the diffusion coefficient D, that the scattering
and absorption are made independently of each other, as
long as the attenuation coefficient y, b changes sufficiently
slowly in the space. Even when D slowly changes in the
space as y, b does, result (70) remains unchanged by
redefining u more generally by

u= 2D—Vsolso(pitip") . (74)

Hence u is manifestly in the direction of the power flux
[Eq. (A12)], and the resulting change in Eq. (73) is
straightforward. Here, more exactly, expansion (64) for
p(t) is replaced by

p(r) =p cr (DV—+VD)+O((crD) ), (75)

B((t(=D (—V(f}); (77}

u of (71) is reproduced from the solution in the special
case.

VI. SUMMARY AND DISCUSSION

When the attenuation coefficient y, b is constant over
all the space, solution of the transport equation subjected
to the initial condition (3) is given by (8), in which y,b is
involved only in the exponential factor, the other factor
So being the solution when the medium is purely nondis-
sipative. To the diffusion approximation, this So is re-
placed by the corresponding solution of the diffusion
equation (11) subjected to the initial condition (13). The
diffusion coefficient is given by (29) independently of
whether the medium is dissipative or not, in contrast to
what is commonly accepted in most of the literature. In
case of the time-dependent difFusion equation (14), this is
mathematically true no matter whether the dissipation is
large, while, in the case of the time-independent diffusion
equation {23},it is subject to the restriction y,& «y.
When the medium is inhomogeneously random, on the
other hand, the corresponding solution is given by (32), in
which So is a solution of the diffusion equation (28) and
the factor I, when defined as the matrix elements of a p
matrix I (t), is the solution of Eq. (44) with &,(t) by (45).
The resulting S is a solution of another diffusion equation
(34), which difFers fram the conventianal equation in that
the diffusion coe%cient is perfectly independent of y,b.

When y,&%0 only over a small region in the space, it
works as an isolated absorber and behaves like a scatter-
er, causing a basic problem to be investigated in the opti-
cal tomography and photon migration which have re-
cently been attempted for medical purposes. The integral

where the higher-order terms are nonzero only when
VDAO. Thus, to an approximation similar to the geome-
trical optics, we obtain

u =2DVQ(pl tip"),
where (f) is a solution of the Hamilton-Jacobi equation
from the diffusion equation, i.e.,

APPENDIX A: DIl'i'USION EQUATION
IN A NONDISSIPATIVE MEDIUM

To derive a diffusion equation of S =So from the trans-
port equation (9), we first prepare low-order eigenfunc-
tions of the ariginal (r(Q l

0'), which are [3]:

fdQo(Q Q')=y,

fdQQ o(Q Q')=a, yQ,', j=1,2, 3,

fd QQ Qko (Q Q') =y[bQ'Q'k+ —,'(1 b){5jk—QJQ—k )].

(Al)

(A2)

(A3)

Here Eqs. (Al) and (A2) indicate that the uniform distri-
bution 1 and 0 are the eigenfunctions with the eigenval-
ues y and a, y, respectively, where a& is the constant
defined by (12). The same interpretation is also possible
for Eq. (A3), i.e., a linear combination of Qj Qk and 5Jk is
also an eigenfunction of it. Relations (Al}—(A3) also
hold true for the present o (QlplQ'). We also introduce a
set of notations

s(pltip')= fdQs(Q, pltlQ', p'),

s, p{l lpr')= fdQ Q,s(Q,plrlQ', p'},
(A4)

(A5)

S;,k (plrlp')= fdQQ;.Q. .,Qk . . - S(Q,plrlQ', p'}-

(A6)

Hence integration of Eq. (9) with respect to Q leads to

a,s(1 lr r'lp')+V, S,(pit —r'll')=0. , —(A7)

equation (48) provides a basic equation to be solved in
this case, and the solution is given by (49} in a power
series of y,b, or by (53) for the Fourier transform S(co)
with respect to the time, in terms of the scattering matrix
T,&((0) of y,b, defined by (56) in p matrix form; it in-
cludes the multiple scattering effect of all orders between
the absorber and the surrounding medium. Also con-
sidered in Sec. V is another extreme case in which y,b

changes sufficiently slowly in the space, on first assuming
a constant diffusion coefficient. The basic equation to be
solved in this case is Eq. (44) with (45) for the attenuation
factor I'(t}, and the solution is given by (70) under the
condition that y,b(p) changes sufficiently slowly com-
pared to the spatial change of the original So in the non-
dissipative medium. The resulting S(t) is given in form
(72}with the attenuation factor A (t) of (73). Here, since
the factor A {t) is entirely free from the diffusion
coefficient D, this result indicates that the scattering and
absorption are made independently of each other, as long
as y,b changes sufficiently slowly in the space. Even
when D slowly changes in the space as y, b does, the re-
sult (70) remains unchanged by redefining u more gen-
erally by Eq. (74}, which expresses u in terms of the
power fiux; the resulting change in the final result (73) is
straightforward. Thus u is given by (76) with (f}, which is
a solution of the Hamilton-Jacobi equation (77) from the
diffusion equation, in the same fashion as in the geometri-
cal optics.



3640 KOICHI FURUTSU AND YUKIO YAMADA

where use has been made of relation (A2). The next order
equation is

[8,+—', (1 b)y—)Ski+ V Ski =. 2 '(1 —b)y5ktS . (A9)

These equations are not equations of closed form, and are
formally the same as those given in Ref. [3] for a homo-
geneously random medium, except that all the y,b terms
are presently zero.

In the diffusion region where the space-time change of
S is negligibly small for a change of p = (p, ct) within the
range of the order y ', we observe in Eq. (A9) that

~y 'B,
~
&&1 and ~y 'VJ~ &&1, and therefore that terms

with t), and V are negligible in leading to the approxi-
mate relation

in consequence of relation (Al) with the summation con-
vention for the same subscript. In the same way, multi-
plication of Eq. (9) by Qk and followed by Q integration
yields

[8,+(1—a, )y(p)]S„(pit t—'~p')+V;Sk(pit —t'Ip')=0,

(A8)

pending on the boundary reflection-transmission matrix,
including cases of a rough boundary.

APPENDIX B: DERIVATION OF BASIC EQUATIONS
IN MATRIX FORM

t),S(t t')=—HS(t t'), —H =Ho H, —.

Here

H = —0 V —@+0., H, =y,b,
where ~ is defined by the matrix elements

tr(Q, p~Q', p') =cr(Q~p~Q')5(p —p'),

(81)

{B2)

(83)

y and y, t, are diagonal matrices with the elements
y(p)5(Q —Q')5(p —p'), etc The. corresponding equation
for So(t —t') is

We first introduce a coordinate matrix S ( t —t '
),

defined by the matrix elements S ( Q,p ~
t —t '

~

Q', p' ) la-
beled by the coordinates Q and p; the matrix So(t t')—is
also defined in the same fashion. Hence the transport
equation (4) can be written in the matrix form

SkI ——3 '5ktS . (A10) Btso(t t ) =Hoso(t t ) (84)

Hence the substitution into (AS) and succeeding rear-
rangement leads to

S„=—(1—a, ) 'y '[3 'V„S+B,S ]

= —3 '(1 —a, ) 'y 'VkS,

(A 1 1)

upon neglect of the term of y B,Sk which is negligible
compared to Sk on the left-hand side; and, therefore, also
that ~S„~ && ~S~ in view of ~y 'Vi,

~

&& 1. Thus Eq. (A7) is
reduced, upon substitution of (A12) and in terms of the
diffusion coefftcient D (p) defined by

and subject to the initial condition (3), i.e.,

S(t —t'=0)= S«(t
—t'=0)=1 .

Hence the solution of Eq. (84) can be written by

So(t t') =exp[c
—(t t')Ho] . —

Here, with a new matrix I (t —t'), we write S(t —t') in
the form

D(p)=3 '(1 —
a& ) 'y '(p),

to the diffusion equation

[t), VD(p)V )S—(p~t —t'~p') =0,

(A13)

(A14)

=exp[c (t —t')H, ]I (t t');—
expression (87) represents Eq. (25). Substitution of (88)
into (85) leads to the initial condition for I as

subjected to the initial condition (13).
The Aux vector of the wave, Sk, k = 1,2, 3, is defined by

Eq. (A5), and is given to the diffusion approximation by
Eq. (A12). When the medium is deterministic and homo-
geneous in the range p3 & 0, solution S is subject to the
boundary condition of the form [3]

I'(t t '=0)= 1, —

which represents Eq. (27).
To find the governing equation of I, we observe that,

from Eqs. (87) and (88),

B,S(t t') =H,S(t t—')+S,(t —t')c),—l (t t'), (810)—

a—D S =ZS, p3=0 .
Bp3

(A15)
which, upon the substitution into Eq. (Bl), leads to

[S,(t —t')8, +y.,S (t —t')]1 (t t') =0, —

Here, when the boundary is free from the reflection,
Z =

—,
' (more exactly, Z =0.7104, Milne's value) and, gen-

erally, Z takes a value within the range from 0 to —,', de-

which represents Eq. (26).
The diffusion version of these equations is given by

Eqs. (37)—(42).
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