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Width distribution of curvature-driven interfaces: A study of universality
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One-dimensional interfaces with curvature-driven growth kinetics are investigated. We calculate
the steady-state distribution P(tv ) of the square of the width of the interface uP and show that,
as in the case for random-walk interfaces, the result can be written in a scaling form (m )P(m ) =
4(w /(tv )), where (m ) is the average of tv . The scaling function C'(z) is found to be distinct
&om that of random-walk interfaces, but, as our Monte Carlo simulations indicate, this function is
universal for curvature-driven growth. It is argued that comparison of scaling functions can be a
useful method for distinguishing between universality classes of growth processes.

PACS number(s): 05.50.+q, 05.70.Ln, 64.60.Cn

I. INTRODUCTION P(m ) = (u ) 'C (m /(tv ))

The simplest quantitative characteristic of an inter-
face is its width m, defined as the root-mean-square
Quctuation of the interface around its average position.
For rough interfaces, the average width (m) diverges as
the size L of the system goes to infinity and one usu-
ally observes scaling with time t and L in the form
(tv) L~f(t/L'). This scaling form and the associated
critical exponents provide a useful &amework for analyz-
ing and classifying interfaces formed in various equilib-
rium and nonequilibrium processes [1,2]. A problem with
(tv), however, is that crossover effects are often quite pro-
nounced and this makes it difficult to extract the critical
exponents ( and z. This problem is somewhat reduced
by characterizing interfaces in terms of the static and
dynamic structure functions which are the Fourier trans-
forms of the spatial Huctuations. The virtue of these
functions is that the important long-wavelength modes
can be separated and studied in detail. The precise de-
termination of the critical exponents, and thus the classi-
fication of growth processes, however, remains a difficult
task and it is desirable to develop alternative methods
for their analysis.

Recently, it has been suggested [3] that an interest-
ing and potentially useful characteristic of a surface is
the steady-state distribution of its width (or its width
squared) P(tv2). For one-dimensional random-walk in-
terfaces, P(tv2) has been calculated and the results show
that P(tv2) contains a single length scale which is the
quantity (w ) I2. As a consequence, the probability dis-
tribution can be written in a scaling form
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It turns out that 4(x) is a universal function in the sense
that a n»mber of surface evolution models, which are
expected to be in the "random-walk" universality class,
produce the same function 4.

The scaling form (1) is not surprising; it follows from
dimensional analysis provided there is only a single scale
(to2) for to2. The universality of 4, however, is not quite
obvious. In order to understand it, we have to view rough
surfaces as finite-size systems at a critical point and, fur-
thermore, we should note that m2 can be considered to
be a macroscopic quantity since it diverges as the size of
the system goes to infinity. Then the nmversality of 4
may follow &om the fact that the distribution of macro-
scopic quantities at an (equilibrium) critical point (e.g. ,
the distribution of the magnetization in an Ising model at
the critical temperature [4]) is described in terms of scal-
ing functions which are»niversal. Provided the above
analogy with equilibrium critical points is correct, one
can, in principle, proceed to create a directory of 4's and
classify surfaces by their scaling functions. It should be
remarked that this approach is not without experimental
implications. In a recent experiment, Tong et al. [5] mea-
sured the height distribution of a growing surface in an
atomic force microscope study of molecular-beam epitax-
ial growth. Thus experimental techniques are available
for measuring P(tv2) and thus deducing 4.

Of course, nonequilibrium systems have provided us
with many surprises and the equilibri»m arg»ments used
above may have only a limited validity. Thus the uni-
versality of 4 should be checked by working out concrete
examples. This is what we shall do below by calculating
O for a (d = 1)-dimensional deposition-surface-diffusion
model in which the diffusion current depends only on the
curvature of the surface [6,7]. The result is then com-
pared to 4's obtained from Monte Carlo (MC) simula-
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tions of discrete models with curvature-driven kinetics
[8—10] that are expected to belong to the same univer-
sality class. We find good agreement between theoretical
and "experimental" results and thus provide evidence for
the universality of C.

Finally, we have also considered the Wolf-Villain model
[11]for which (, if measured in the most naive fashion, is
equal to that of the curvature-driven models (( = 3/2).
Indeed, for some time, it was believed that these models
were in the same universality class. Closer examination
[12] revealed, however, that the Wolf-Villain model has a
rather peculiar scaling behavior and it does not appear to
belong to the universality class of models with curvature-
driven kinetics. Our simulations support this view: The
4 obtained for the Wolf-Villain model is distinct &om
that of the curvature-driven models.

u) ((h)) = h2 —h

Next, we express the probability density P(ui ) as a path
integral f 17[h] over all periodic paths [14,15)

P(w') = f 17[h] 6 (ee —
[
h' —h ]) 'P((h)) (7)

and, in order to eliminate the b function, we introduce
the generating function for the moments of P(u)2)

where we introduced the average f of a function f (h) in
a given configuration (hj as the integral

II. MODEL AND THE CALCULATION
OF THE %WIDTH DISTRIBUTION

G(h) = f dzP(z)e

Substituting (4) into (7) and evaluating the integral (8).
we find that G(A) is a Gaussian functional integral

A simple and much studied model of surface growth
occurring through deposition coupled to surface diffusion
is a linear Langevin equation [6,7] which, in the d = 1
case, is

G(h) = h(f D[h] ezp (Eh)2 —A h2 —h
2r

69h(z, t) 694h(z, t)= —v +)7 z, t (2)

The model defined by (2) and (3) can be solved exactly
and the the critical exponents ( = 3/2 and z = 4 are
known. Furthermore, the steady-state distribution of
configurations (h(z)) can also be calculated [13] since
the model satisfies detailed balance (this can be explic-
itly seen after rescaling lengths by v/I'). As a result, one
finds a quadratic effective Hamiltonian in the probability
distribution

v ]'0'h')
'P((h)) = JV exp ——

~ , ~

dz
2r (, (Bz')

Here h(x, t) is the height of the surface at time t above
a substrate of linear dimension L. The coordinate x is
measured along the substrate 0 & x & L and periodic
boundary conditions h(z + L, t) = h(z, t) are assumed.
The first term on the right-hand side with v ) 0 provides
a simplified description of surface diffusion while the sec-
ond term ((7) is a nonconserved noise resulting froxn the
fluctuations of the deposition rate. As usual, g is as-
sumed to be Gaussian white noise with correlations of
the form

This functional integral can be calculated by expressing 6
in terms of a Fourier series h(z) = P„c„exp(2vrinz/L)
and then evaluating the product of Gaussian integrals
over the coefficients c„. As a result, G(A) is obtained in
closed form

cosh[(crA) ~ ]
—cos[(crt) i'

]

where o = rLs/(2v) and where we have used the identity
kn g„x(1+k2/n2) = sinh(kyar) in deriving the second
equality.

The average of m can now be calculated as the first
moment of P(u) ) and one finds

(~') =-dG o.

o 360 720

The well known exponent ( = 3/2 can be read off from
the above equation and, furthermore, it follows Rom
(u62) o. that G(A) is a function only of the product
(u)2)A. Consequently, (u)2) is the only scale for zu2 and
P(u) ) has the scaling form discussed in the Introduction

where Af is a normalization factor and h = h(x). The
effective Hamiltonian depends only on the curvature of
the surface, hence the name "curvature-driven" kinetics.

Once 'P((h)) is known, we can calculate P(tv ) by re-
peating the steps in the derivation of P(u)2) for random
walk interfaces [3]. First, the square of the width of the
surface ui in a configuration (hf is defined as

The last step is to evaluate the scaling function 46(x) by

collecting the residues of G(A) e " at the sixnple poles
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A = —(nor)4/(90(F2)), where n = 1,2, . . .. The resulting
sum can be written in a form that is easily calculated
nuxneric ally

2n' .(—1)" 'n' f n.4

4(z) = ) . exp
~

——nz
~

. (13)
45 sinh (urn) g 90

Figure 1 shows C(z) together with the corresponding
scaling function for random-walk interfaces. One can see
that the two scaling functions are different and easily
distinguishable.

In the case of random-walk interfaces, simple expres-
sions of large- and small-z asyxnptotics describe the entire
function 4(z) very well. The large-z asymptotics of 4(z)
is simple in the present case too [it is just given by the
first term of the sum (13)] and it approximates 4 well
starting already at z 0.25:

(2s3755 ) /

+(z) =
I

7I' z j
3 r45i"'

exp
2 (4z)

z & 0.03.

Having completed the calculation of 4, we turn now to
various discrete, curvature-driven surface-evolution mod-
els and test the idea of universality of 4 by comparing
their scaling functions to the result obtained above.

III. MONTE CARLO SIMULATIONS

We shall present here MC results for 4 for the following
three models of deposition coupled to surface diffusion:
(i) the "n = 2 model" of Siegert and Plischke [8], (ii)
the "larger-curvature model" introduced independently
by Kim and Das Sarma [9] and by Krug [10], and (iii)
the "larger-coordination model" of Wolf and Villain [11].
The first two models are expected to belong to the uni-

2~' ( ~4
4(z) . exp

~

——z ~, z & 0.25. (14)
45 sinh(vr) q 90

The small-z asymptotics, which is obtained by calcu-
lating the integral (12) using the method of stationary
phase, however, has only a small range of validity:

versality class of the curvature-driven growth since the
diffusion (hopping) of particles depends only on the lo-

cal curvature of the surface. The third one, however,
has been shown to display scaling behavior more coxn-

plex than that following from the continu»~ description
of curvature-driven growth. Thus we expect that the 4's
for models (i) and (ii) are given by Eq. (13), while model

(iii) should display a distinct scaling function.
The above models are all solid-on-solid type xnodels

with a given rate of deposition of particles of height
one. The differences are in the way the diffusion on
the surface is modeled. In the n = 2 model [8], the
hopping of particles satisfies detailed balance and, fur-
thermore, the energy functional is a quadratic function
of height differences E((h)) = P, [h(i) —h(i + 1)]2,
where i denotes the sites along the substrate. A hop-
ping rate that satisfies detailed balance for the process
h(i) -+ h(i) —1 and A.(i + 1) + h(i + 1) + 1 is given,
e g , by . W. = v [exp(Pb, E) + 1] ~, where b,E is the
change of energy due to change in the position of the
particle, P is the inverse temperature, and 7 is the pa-
raxneter which determines the rate of diffusion with re-
spect to the rate of deposition. For a quadratic energy
function, AE due to a hop from i to i + 1 is proportional
to h(i+ 2) —3h(i+ 1)+ 3h(i) —h(i —1), which is nothing
but the discretized version of the spatial derivative of the
curvature. Thus the rate of hopping and, consequently,
the diffusion of particles are driven by the local curva-
ture of the surface. Of course, if diffusion were the only
dynamics, then the noise would be conserved and the sys-
tem would evolve to an equilibrium state with 'P((h))
exp [

—PE((h))], so that the width distribution would be
that of the random-walk interfaces [3]. This model, how-

ever, also involves the deposition of particles which pro-
vides a nonconaerved noise. The curvature-driven deter-
ministic dynaxnics combined with nonconserved noise is
then expected to give rise to an effective Hamiltonian
H, P, [h(i + 1) —2h(i) + h(i —l)]2 even though the
underlying Hamiltonian is just H g,.[h(i) —h(i+ 1)] .
As can be seen from Fig. 2, the simulation of this model
indeed produces a width distribution that is practically
identical to the theoretical curve given by Eq. (13).

In the larger-curvature model [9,10], the deposition
and the diffusion are coupled in the sense that a site
i is randomly chosen for deposition, but then the cur-
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FIG. 1. Comparison of scaling functions for the width
distribution of periodic random walks and for the curva-
ture-driven model as given by Eq. (13).

FIG. 2. Scaling functions for the curvature-driven model
and for the "n = 2 model" of Siegert and Plischke with sub-
strate sizes L = 32 and 64. Note that no Stting parameters
are used in collapsing the curves.
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that the scaling function of the width distribution is dis-
tinct from the corresponding 4 of the curvature-driven

surfaces. Thus the assumption of universality of the scal-
ing function C is consistent with the view that the Wolf-
Villain model is in a universality class that is difFerent
from that of the curvature-driven surfaces.
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FIG. 3. Comparison of scaling functions of the curva-
ture-driven model and of the "larger-curvature" model of Kim
and Das Sarma and of Krug for a system of sizes L = 32 and
64. In order to demonstrate better the collapse of the theo-
retical and MC curves at small 4 (at small probabilities), we
present the data on a semilog plot.
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FIG. 4. Comparison of scaling functions for the curva-
ture-driven model and for the Wolf-Villain model with a sys-
tem sizes L = 32 and 64.

vatures at sites i —1, i, and i + 1 are examined and
the deposited particle moves to the site with the largest
curvature. Since, by construction, difFusion depends on
curvature only, one expects and indeed finds [9] that, by
measuring the critical exponents, this model belongs to
the universality class of curvature-driven interfaces. Our
simulations further confirm this fact; Fig. 3 shows that
the scaling function for the larger-curvature model fol-
lows the theoretical curve (13) over the measured range
of probabilities.

The Wolf-Villain model [11] is also a model where the
"difFusion" immediately follows the deposition of the par-
ticle. If the randomly chosen deposition site is i, then the
particle may move in the next step to either i —1 or i + 1
provided the move increases the coordination number of
the particle. The coordination nuxnber (the number of
nearest-neighbor sites which are occupied) cannot be ex-
pressed through the curvature of the surface alone. Con-
sequently, the continuum description of this model may
contain nonlinear terms which are relevant perturbations
to the 84h/Bx4 term in Eq. (2). Recent studies [11,12]
point in this direction and indeed we find (see Fig. 4)

IV. FINAL REMARKS

The results presented in Sec. III in conjunction with
the evidence coming froxn random-walk interfaces [3] pro-
vide strong support for our suggestion that C (x) can be
used to distinguish universality classes of growing inter-
faces. As with every method, however, when trying to
implement it, one encounters problems of principle as
well as practical diKculties.

From the point of view of principle, we see the fol-
lowing limitation. It is known from the theory of critical
phenomena that there can be many dynamic universality
classes associated with a single static class [18]. The rea-
son for this is the decoupling of dynamics and statics due
to the detailed balance condition satisfied by any dynam-
ics in the equilibrium state. Thus equilibrium distribu-
tions provide information only about the static universal-
ity classes. In nonequilibrium systems, however, dynam-
ics and steady-state properties are coupled nontrivially
and, consequently, P(xo2) carries information about the
dynamics. The coupling of statics and dynamics in sur-
face evolution models emerges in the form of scaling laws
connecting the static g and the dynamic z exponents (it
appears that most surface evolution models presently un-
der study satisfy such scaling laws; see [2,11,19]). This
is crucial if we want to distinguish universality classes
in growth processes by using the steady-state distribu-
tion function. It may happen, however, that the system
is efFectively an equilibrium system and then the infor-
mation about the dynamics is lost in C. An example
is the Kardar-Parisi-Zhang (KPZ) model [16], which, in
d = 1 dimension, satisfies detailed balance. As a con-
sequence, its P(xu2) is equal to that of the Edwards-
Wilkinson model [17], although these two models are in
difFerent universality classes. This feature of the KPZ
equation does not exist in d = 2 or higher dimensions,
but, unfortunately, this is not known a priori about other
processes. Perhaps a conservative viewpoint here would
be that 4 can be used at least to distinguish static univer-
sality classes of surface growth. The question of what the
circumstances are when the dynamics is also encoded in
4' and how to decode that information remains to be in-
vestigated. The problem discussed above can, of course,
be bypassed by studying the time-dependent width dis-
tribution. The price one pays is that the calculational
diKculties increase significantly.

From a practical point of view, the problem with 4
is that its calculation by analytical means seems to be
highly nontrivial for any process for which nonlinear
terms are relevant in the Langevin description. This dif-
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6culty can be overcome by using MC sixnulations both in
producing the directory of 4's and in comparing scaling
functions. In principle, one should also be able to develop
renorxnalization-group methods for calculating 4.

The above problems notwithstanding, we believe that
the calculation of the width distribution provides us with
a new and interesting tool in the investigations of inter-
faces. Application of the above ideas to two-dixnensional
interfaces and to the analysis of experimental results will
be described in a separate presentation [20].
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