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Effects of structure on transport coefBcients in a random medium
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The transport coefficients for a system of classical particles moving in a random medium are shown
to depend on the detailed structure of the medium even at strictly fixed scatterer concentration. An
example is developed in which the diffusion coefficient can be expressed in terms of the distribution
of distances between scatterers; this expression reduces considerably the maximum and average
relative error when compared with previous results. Some statistical properties of the distribution
of coefficients at fixed concentration are investigated.

PACS number(s): 05.20.Dd, 44.30.+v, 66.30.Dn

Transport coeKcients in random media have been the
subject of considerable study in recent years [1,2]; much
of this work has addressed anomalous diffusion in &actal
geometries and percolation clusters, both of which are
relevant to a number of physical situations, or models
with a random distribution of transition rates or bond
conductivities [3]. In this paper the focus is on the ef-
fect of the detailed structure of a random medium in. the
case of normal diffusion —when the mean-squared dis-
placement grows linearly with time. A familiar problem
is considered: that of di8'usion of classical particles in a
random medium of 6xed scatterers, known as the Lorentz

[4] or wind-tree model. This model has been used exten-
sively to study the transport of mass, heat, or electric
charge in inhomogeneous media and binary gas mixtures
with a large molecular weight ratio. A particular case
is developed in which the di8'usion coeKcient of specific
con6gurations can be related directly to the distribution
of path lengths between scatterers. Evidence is presented
for structure-induced variations, and some properties of
the distribution of diffusion coeKcients at constant con-
centration are studied.

The speci6c model under study is a stochastic Lorentz
model in the square lattice. Scatterers are placed ran-
domly at nodes of the lattice with concentration c. Mu-

tually independent particles move with unit speed from
lattice node to node at integer time steps, and conserve
the direction of their motion until they encounter a scat-
terer; at that point they turn at right angles, either left
or right with equal probability. Having the particles not
interact with each other means that the only relevant
transport mode is di8'usion of any of the quantities men-
tioned above [5]. While the concentration dependence of
the diffusion coefficient in this model is known (see, for
example, [6]), its detailed dependence on medium struc-
ture has not been studied before.

The discrete Green-Kubo relation for the difFusion co-
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efficient in two-dimensional (2D) lattices [7],

(1—).(( (o) "(t)))
(2 )

expresses the diffusion coefBcient in terms of velocity
correlations. The last term, known as the propagation
term, is due to the discreteness of time. The double
angular brackets denote an average over initial condi-
tions, con6gurations, and possible histories of the sys-
tem. Under the Boltzmann approximation of uncorre-
lated collisions, one has for the model considered here

((v(0) . v(t))) = (1 —c)', as in this case all memory of
initial velocity is lost after the first collision. . Then, Eq.
(1) reduces to Ds = 1/2c —4, a result mell-tested nu-

merically [6,8], which will be henceforth called the simple
Boltzmann approximation.

To begin the study of structural effects, the diffusion
coefBcient for a specific con6guration of M sites can be
defined as follows:

where the second summation is over particles, located
initially one at each node with velocity +x. (A fur-

ther summation over initial directions can be performed,
but that does not change any of the subsequent results. )
This is exactly equivalent to placing one particle at a
random position and averaging over histories. In this
case the single angular brackets denote an average over
possible histories, and in the Boltzmann approximation

(v„(0) v„(t)) = f~, the length of the initial fhght of par-
ticle p until it encounters the scatterer to its immediate
right. Equation (2) can be also expressed in terms of
the distance d, between scatterer s and its next neighbor
to the right. Knowing that initially there are d, parti-
cles between the two scatterers allows substitution of the
well-known Euler identity, yielding finally

( 1
Dgg = ) (1+d. )d.(4M; ') 4'
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where now the summation is over N = cM scatterers.
Equation (3) expresses the Boltzmann-level difFusion

coefficient of this model in terms of structural proper-
ties of each configuration. Figure 1 shows a typical com-
parison of Eq. (3) with simulations done by the exact
enumeration method [9] for the same set of 1000 systems
of size 50 x 50 with c = 0.5 exactly. The choice of heli-
cal boundary conditions prevents occasional nondiffusing
trajectories. The numerical method computes Eq. (2)
directly over all trajectories consistent with the configu-
ration; in this case the time summation is truncated after
600 time steps. The errors introduced by this truncation
are very small. The correlation in Fig. 1 is not perfect,
but the new result reduces the average relative error and
maximum error between Eq. (3) and the numerical mea-
surement when compared with the structure-indepedent
approximation, D~ = 3/4 in this case. Table I shows
such statistics for a range of concentrations; typical error
reductions are between a third and a half.

The two limiting cases of highest and lowest D~ for
c = 1/2 can be solved exactly starting with Eq. (3),
and have been verified numerically. D is lowest when
the scatterers are arranged in a checkerboard pattern;
then the average initial fiight is f„= 3/2, and Dn =
1/2 (0.5007 numerically). The maximum D corresponds
to a configuration in which all scatterers are confined,
for example, to either the top or the bottom half of the
system. Then, Eq. (3) yields D~ = (M/16) + (1/8)
156.4 for the 50 x 50 system, which compares well with
the numerical measurement D = 157.1. In the last case
the system was simulated for 8000 time steps, to take
into account some very long initial Bights. This example
illustrates clearly the predictive power of Eq. (3), when
the simple Boltzmann approximation is off by a factor of
over 200.

Attempts to obtain further analytical results &om Eq.
(3), especially about the dependence of the standard
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TABLE I. Percent errors for 1000 configurations at sev-

eral concentrations (column 1). Columns 2 and 3: average

error relative to accurate simulations for the simple Boltz-
mann approximation Ds = 1/2c —— and Eq. (3), respec-

tively. Columns 4 and 5: maximum error relative to accurate
simulations for simple Boltzmann approximation and Eq. (3),
respectively.

0.2
0.35
0.5
0.65
0.8
0.95

3.1
2.1
1.5
1.1
0.6
0.17

e, Eq. (3)
2.1
1.45
1.0
0.76
0.45
0.12

e (max)
14.9
11.5
6.4
5.3
3.7
1.0

e (max), Eq. (3)
9.4
6.0
4.5
2.8
1.6
0.5

deviation of D on c or system size M, have failed so
far, largely because Eq. (3) has the implicit constraint

P d, = M, and therefore some basic results of sampling
and probability theories could not be used.

In addition, some properties of distributions of D at
strictly constant c were explored n»merically. D was
measured directly with the exact en»meration method.
Coefficients for 1000 independent configurations of size
50 x 50 were generated for a n»mber of concentrations,
as shown in Table II. Histograms of the diffusion coefB-
cients revealed a bell-shaped curve, and the hypothesis of
a Gaussian distribution was tested by the Kolmogorov-
Smirnov method [10]. Cumulative distributions were
generated with the best estimates of p, , o for the Gaus-
sian, and compared with the actual cumulative distri-
bution of the diffusion coefficients. The two parameters
(mean, standard deviation) are shown in columns 2 and
3; the number in parenthesis in column 2 is the simple
Boltzmann-level difFusion coefficient [see paragraph be-
low Eq. (1)]. Column 4 shows the largest distance (the
Kolmogorov-Smirnov distance dKs) between both cumu-
lative distributions, and column 5 shows the probability
P that dKs is greater than what was observed. The Gaus-
sian hypothesis is most likely when 1/4 & P & 3/4.

DB
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TABLE II. Statistics for 1000 systems of size 50 x 50.
Column 1: scatterer concentration. Column 2: average difFu-

sion coefficient; simple Boltzmann-level result in parentheses.
Column 3: standard deviation of the difFusion coefficients.
Column 4: largest distance between actual cumulative distri-
bution function of difFusion coefficients and Gaussian hypoth-
esis. Column 5: probability that the Gaussian hypothesis is
valid (see text for interpretation).

0.7
0.7 0.75

Dsim

0.8

FIG. 1. DifFusion coefficient for 1000 configurations of size
50 x 50, concentration fixed at exactly c = 0.5. Horizontal
axis: exact enumeration simulations D„-; vertical axis: Eq.
(3). Solid line: D& = D;, . The concentration-only predic-
tion is D~ ——0.75.

c
0.05
0.2
0.35
0.5
0.65
0.8
0.95

y, (Dn)
9.725 (9.750)
2.254 (2.250)
1.179 (1.178)
0.751 (0.750)
0.520 (0.519)
0.375 (0.375)
0.276 (0.276)

0.9942
0.1074
0.0370
0.0165
0.0079
0.0031
0.00062

~KS
0.066
0.054
0.054
0.043
0.036
0.049
0.043

P
0.026
0.108
0.108
0.313
0.536
0.181
0.313
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The concentration dependence of o and a/D'on c at
constant M was investigated with the data of Table II. It
was found that the two quantities vary with c faster than
an algebraic power law and slower than exponentially.
Hypotheses of fits of the forms o', o'/D c e ', e'
were not successful. The dependence of a on system
size appears to be more straightforward. This was ex-
plored for c = 0.5, and system sizes between 25 and 200.
The standard deviation seems to increase linearly with
1/L, L = ~M, with aL 0.8 roughly constant.

In this paper the effects of structure on the diffusive
transport coefficients of classical particles in a random
medium of 6xed scatterers have been studied. Equa-
tion (3), which is exact in the Boltzmann approxima-
tion, gives the diffusion coefficient for particular con6g-
urations in terms of distances between scatterers, and is
a significant improvement over the predictions based on
the concentration of scatterers alone (see Fig. 1 and Ta-
ble I). The average relative errors, compared with very
accurate simulations, are below 2.1% for a wide range of
concentrations.

The properties of diffusion coefficient distributions at
constant scatterer concentration were explored; the stan-
dard deviation scales with system size, but no simple rela-
tions were found for concentration dependence. Compar-
ing the difference between the quantities in column 2 and
the quantity in column 3 (the standard deviation) in Ta-

ble II indicates that ascertaining the effects of correlated
trajectories (ring contributions) may not be possible in
this model. Statistical tests show that it is possible, but
not likely, that the distributions are Gaussian. These
findings seem to indicate that further analytical results
might be obtainable for this model.

The results in this paper can be seen as a step to-
wards the detailed understanding of transport phenom-
ena in inhomogeneous media. The effects of "nonthermo-
dynamic" (structural) quantities on fiuctuations of trans-
port coefficients have been postulated by Ernst et al. as
a possible cause of the lack of a good understanding of
long-time tails in the Lorentz gas [11]. It is hoped that
this paper will encourage further work on the explana-
tion of diffusive phenomena in random media; the effects
on other transport coefficients (e.g. , viscosity) are likely
to be less noticeable because of self-averaging.
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