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Orientation of a solid particle embedded in a monodomain nematic liguid crystal
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A problem of the equilibrium orientation of an elongated solid particle put inside a uniformly
aligned nematic liquid crystal is studied. The particle is assumed to be su%ciently large so that
the orientational distortions it causes may be treated in the framework of the continuum theory.
Three kinds of anchoring of nematic material on the particle surface are considered: two of the
planar, and one of the homeotropic type. %'e prove that, depending on the anchoring strength,
the stable orientation of the particle major axis may be either perpendicular (weak anchoring)
or parallel (strong anchoring) to the unperturbed director of the liquid-crystalline domain. The
dimensionless parameter controlling the situation is the ratio cu of the transverse size of the particle
to the extrapolation length of the nematic material. The transition from the perpendicular to the
parallel orientation of the particle takes place at ~ l.

PACS number(s): 61.30.Gd, 75.50.Mm, 82.70.Kj, 61.30.3f

INTRODUCTION

The subject of our consideration is the orientation of
a solid elongated particle that is put inside a uniformly
aligned nematic liquid crystal. The solution of this prob-
lem is essential to understand properties and behavior of
any liquid-crystalline suspension. As examples of the lat-
ter we would like to refer to (i) ferroliquid crystals —the
suspensions of single-domain ferroparticles in ordinary
liquid crystals [1—4] and (ii) liquid-crystalline polymer
melts or solutions either intentionally 61led up with some
reinforcing particles or "self-6lled" with a certain amount
of the still persisting true crystallites of the same mate-
rial [5]. Yet more fascinating systems are solid magnetic
[6] or nonmagnetic [7] particles of colloidal size inherently
present in biological liquid-crystalline tissues like cellular
membranes.

As to the ferroliquid crystals, they are relatively new
composite materials which, unlike ordinary liquid crys-
tals (LC), are very sensitive to the applied magnetic field.
The chances of creation and the would-be unique proper-
ties of such suspensions were first explored by Brochard
and de Gennes [1]. Later on, on the basis of concepts
and estimations given in [1], primarily lyotropic nematic
and cholesteric [2,8], then thermotropic nematic [3] and
lyotropic smectic [4] systems had been prepared and were
being studied.

In general, these experiments had confirmed the ex-
istence of considerable orientational and concentrational
efFects in ferroliquid crystals, but had raised a lot of ques-
tions as well.

On the list of problems one has to clarify, number one
stands the problem of the type and strength of the ori-
entational coupling between a particle and its aligned
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molecular environment. In other words, the question is,
if a particle were put amidst a liquid crystal domain and
set free, what will be its equilibrium orientation or (for
an assembly) the equilibrium orientational distribution
of particles? Until now the answer has been known only
for two limiting cases, namely, of strong [1] and weak [9]
anchoring. Herein we present the extended solution of
the problem valid for an arbitrary anchoring strength.

The plan of the paper is as follows. In Sec. I we list
the types of the orientational boundary conditions on the
particle surface which would be taken for trial, and write
down a general expression for the &ee energy of a system
particle p/u8 liquid crystal. The latter is done in a two-
constant approximation as referred to the Frank mod-
uli. In Secs. II and III, which are mostly calculational
ones and thus may be skipped at the 6rst reading, we
derive the director distributions and energy increments
caused by a cylindrical particle with its axis u either
parallel or perpendicular to the unperturbed director no
of a monodomain nematic LC. In Sec. IV we discuss the
structure of nonsingular disclinations raised by a particle
whose axis is perpendicular to no, and propose a sim-
ple formula for the core radius of such a distortion entity
valid for arbitrary 6nite anchoring strength. In Sec. V by
comparing the energies T~~ and T~, where the subscripts
indicate the relative directions of v and no, we show that
depending upon the values of pertinent material param-
eters of LC and the particle radius, the equilibrium state
of the particle may be either u ]] no or u J no, and we

give the necessary estimates.

I. THE FREE-ENERGY EXPRESSION.
LONGITUDINAL ANCHORING

Let us formulate the problem we are dealing with in

more detail. %e consider an elongated solid particle
(say, a rodlike one) with the length I. and the trans-
verse size D « L. Both I and I) are much greater
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than the dimensions of the molecules of the liquid crys-
tal, and so relative to it the particle is a macroscopic
object. (For example, in the thermotropic ferronematic
[3,10] the particles with L 3.5 x 10 scm and L/D 7
were used. ) The said particle is put inside a bulk of a
uniformly aligned nematic liquid crystal whose orienta-
tion is fixed far &om the particle site by the boundary
conditions on the container walls, for example. The "ten-
sion" of the molecular alignment is proportional to the
orientational-elastic (Frank) moduli Kq s [11].In prin-
ciple, all three Frank moduli are diferent. However, to
simplify our results, we shall use a "semi-isotropic" ap-
proximation setting Kq ——K3, thus reducing the num-
ber of independent elastic coeKcients to two. Equality
Kq ——K3 holds reasonably well for usual nematic liquid
crystals, such as MBBA.

The surface of the particle is able to orient or "an-
chor" the adjacent liquid crystal molecules in one way or
another. The degree of that anchoring is characterized
by the surface energy density W, that is, the anisotropic
part of the surface tension for a given pair of the solid
substance and liquid crystal. To describe it, we shall
use a simple model expression, first proposed by Rapini,
written (see [11])as

W(p, b) =
2 (Ws sin p+ csin 8) . (1)

To define the angles p and b, at any point of the parti-
cle surface one introduces a local coordinate system with
the polar axis along the normal to the particle. In this
system the easy-orientation direction is determined by
two angles, namely, the meridional o; lying in the plane
normal to the particle, and the azimuthal one, P, lying
in the tangential plane. Any deviation of actual director
orientation (a', P') from the direction (o., P) demanded
by the surface energy is denoted by

Kq (divn)
V

+K2(n curln) + Kg(n x curln) dV

+ csin p+ csin b dS
S

(2)

where n(r) is the nematic director and p and h are the
angle deviations of the latter &om the easy-orientation
directions on the surface. Below, making use of the con-
dition D/L « 1 (elongated particle), we shall neglect
the director distortions induced by the end walls of the
particle.

Now let us consider sequentially the above-listed cases
of anchoring. It is apparent that in the longitudinal sit-
uation our model does not provide any real choice: the
particle will always set its main axis u along the unper-
turbed director no unless the temperature is so high that
the aligning influence of the LC matrix becomes compa-
rable with knT (for quantitative estimation see below).

cle surface is parallel to the main axis u of the parti-
cle; circular —the easy direction is perpendicular to the
main axis u, and is tangential to the particle surface;
homeotropic —the easy direction is normal to the particle
surface.

To obtain the desired expression for the free energy of
the system, one should sum up both the volume and sur-
face contributions of the orientational-elastic origin pro-
duced by the particle's presence, and integrate them over
the LC specimen volume and the particle surface, respec-
tively. In the "semi-isotropic" two-constant approxima-
tion for the Prank moduli and with the Rapini formula
(1) for the surface term, one gets

Assuming, as usual, that the energy increment is diag-
onal in angular displacements, one arrives at expression
(1), where Ws and W~ are the characteristic energies of
the out-of-plane (meridional) and in-plane (azimuthal)
director perturbations, respectively. The reference plane
here is the local tangent one. As is well known, both
W)s may be, and often are, easily modified by special
treatment of the solid surfaces [12].

In what follows we evaluate the &ee energy of the
system comprising the particle and the liquid crystal
surrounding it, and by minimization find the equilib-
rium, i.e., the lowest-energy orientational state of the
particle for several types of anchoring conditions. The
present problem is closely connected with the classical
one, where, assuming some particular anchoring on solid
unmovable walls enclosing liquid crystal, one determines
the orientational distribution of the latter. Only now the
&amework is reversed inside out, and we have to find the
orientation of the particle (movable solid walls) whereas
the alignment of the nematic at infinity stays put.

Pursuing the scheme adopted in Ref. [1], we split
the possible anchoring conditions into three "mutu-
ally orthogonal" configurations, viz. , longitudinal —the
easy (i.e., energetically favored) direction on the parti-

II. CIRCULAR ANCHORING

The director distribution around the particle is
sketched in Fig. 1(a). In the notations given there the
orientational field may be written as

n = (cos4, sin@, 0), @ = 4(r, &p),

which transforms the free energy (2) into

K~ V'4 dV + Wq in +os @s dS

(4)

For the circular anchoring, as it follows &om the sym-
metry considerations, two orientations can compete to
be the lowest-energy ones: v J no and v

~~
ns. (We

remind the reader that vector u is the unit vector of the
particle main axis, and no is the unperturbed director
of the nematic domain. ) So, it is sufficient to evaluate
the corresponding values X~ and X~~ of formula (2), and
compare them. To be particular, from now on we assume
that the particle has the form of a circular cylinder, and
denote its transverse size as D = 2R, with R being the
cylinder radius.

A. Perpendicular case (v t no)
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where 4p& is the angle of the easy orientation on the
particle surface and @&

——4(R, p). Note that for the
director distribution (3) vectors n and curln are always
orthogonal, and thus the term in Eq. (2) which is pro-
portional to K2 (twist) is an identical zero.

For 4p& under the circular anchoring conditions one
should set

r 1y —2' for 0 ( y ( x

3y —2m for m ( p (2'
Minimization of the functional (4) with respect to 4 and
@s yields

04
2K' ——Wg sin 2(@s —Cps), (6)

19'' R

i.e., the two-dimensional Laplace equation accompanied
by the specific boundary condition. We choose the gen-
eral form of solution as

/)x

O

@(r, rp) = ) (R/r)" (u„sinn'+ v„cosny) .
n=p

Substituting it into the boundary condition given by
Eqs. (6), the set of equations for the Fourier coefficients
u„and v„ is obtained:

FIG. 1. Schematic representation of the director distribu-
tion around a cylindrical particle with circular anchoring for
v I np (s) snd v ii mp (b).

OO oo

) n(u„sinn'+ v„cos ny) —z~g sin 2@p& —2 ) (u„sinn' + v„cosnp) = 0. (8)

Here we have introduced the dimensionless ratio

~g ——Wg R/Kg,

which relates the surface and volume energy contribu-
tions. Apparently, ~& is the only material parameter af-
fecting the character of the sought for solutions.

The symmetry conditions easily understandable kom
Fig. 1(a) read

4(r, —rp) = 4(r, (p), 4(r, —7t —p) = 4(r, V). (10)—

Application of Eqs. (10) to the expansion (7) gives

4(r, y) = ) (R/r) u2~sin(2m(p),
fn=1

thus reducing the number of the nonzero coeKcients to
that of u with the even index. Then Eq. (8) transforms
into

2 ) m u2~ sin(2m@)
no=1

imuth angle, we arrive at the infinite set of equations

( OO

4)g ~ ~ o

k u2~ —— sin 24ps 2 ) u2~ sin(2m')
4x p m=1

x sin(2k') dp = 0, (13)

for the amplitudes u21, (erg) .
Let us choose the solution of Eq. (13) in the form

u2s ———p" ((ug)/k,

thus introducing a non-negative function p(&ug). Though
the exact expression for p(cog) is yet unknown, we can
point out its limiting values

for cue ——0
for cog = oo .

The first line of this relation is obvious, since zero anchor-
ing induces no distortions. The second line is explained
by the equalities

oo

—2ug sin
~

2@ps —2 ) u2~ sin(2m') = 0. (12)
%ps = 4s(erg = oo) = —) k 'sin(2k(p),

k=1
(16)

Multiplying it by sin2kp and integrating over the az- where the last one is proven in Ref. [1].
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For the adopted choice of u2s the expansion (ll) read-
ily sums up, yielding

( p sin 2p
!4s ———arctan!

(1—pcos2y&
(17)

4(r, y) = 0, and complied to the rule that the surface
integral ought to change sign when the outward normal is
replaced by the inward one. For convenience, in Eq. (22)
we use the linear density of the free energy per unit length
of the particle long axis.

From Eq. (21) it follows that

( sin 2p
@os ———arctan!

(1 —cos 2'�)
where we have made use of relation (16) as well. Substi-
tution of the surface angles (18) into Eq. (13) gives

~e t' sin 2&p
!

—p + — sin 2 arctan!
4~ (1 —cos 2y)

2 p slI1 2p
R 1 —2pcos2(p+ p2 '

and thus the volume contribution to T~ is

(~) 1 s+I SII12&p sin(2k(p)I =KI —p+
k o 1 —2pcos2y+ p2

(23)

p sin 2&p—arctan! ! sin(2k(p) dy = 0,
gl —pcos2&p j

which after somewhat tedious but simple transformations
takes the form

1
( 2)

sin 2y sin(2k')
4~ p 1 —2pcos 2(p + p

The integral in the right-hand side is a known one, and
equals Irp" 1. Therefore Eq. (19) finally reduces to

p'+(4/~, )p —1= 0,

Since the last integral coincides with that of Eq. (19), the
result comes out immediately,

Xi" /L = IrKI ) —p "=—SKI ln(1 —p ).
k=1

(24)

=
2 nWeR(l —p) .

For the second term of Eq. (22), using the usual trigono-
metric identities and formulas (18), we get

2' cos

p 1 2pcos2+ + p

whose only positive root is

n = (~/~s) g~ + —.'~I —~ (20)
X~ ——nKIL —ln(1 —p ) + 2ure(1 —p) (26)

From Eqs. (24) and (25) for the net free energy induced in
a uniform nematic by a particle with the circular bound-
ary condition in orientation M J tip it follows that

p(~e) = ~e/4 (~e «1)

Let us check up on this expression for the already
known limiting cases. At weak anchoring we get

To decide whether this configuration is indeed favored
in the LC, we should compare it to the similar quan-
tity T(~ evaluated for the parallel case.

in accordance with the result found in [9], and at strong
anchoring Eq. (20) yields B. Parallel case (v !!no)

p(~e) = 1 —2/~e+ 2/~e (~e»1)
which leads to p(oo) = 1 given in Ref. [1].The complete
solution (11) with allowance for Eq. (14) takes the form

(R/r)2p sin2rp
4(r, y) = —arctan

( / )

where p(ue) is rendered by Eq. (20).
The last step in obtaining the energy T~ is to evaluate

expression (1) for 4(r, p) f'rom Eq. (21). Integrating the
first term in Eq. (4) by parts, and thus reducing all the
integrations to those over the particle surface, we get

2'
Ei/L = —

2 R [KI 4s+~@ s
0

—We sin (@os @s)]d(p.

Here we have taken into account that at infinity

n = (0, cosy, sing). (27)

The angle y(r)—see insertion in Fig. 1(b)—describes the
director orientation in the p-z plane of the local &ame-
work. The easy orientation direction on the particle sur-
face is y p&

——0. The conditions imposed on y at infinity
are

dx =0
dr y(OO) = 12m. . (28)

Its value y s ——y (R) is yet to be found.
Due to the independence of y on the azimuth angle,

the general expression (2) after substitution of the direc-
tor representation (27) readily integrates over rp and z,
yielding

The corresponding director distribution is shown in
Fig. 1(b). There we use the cylindrical set of coordinates
with the polar axis along v and np, whence
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X~~
——vr(1 + s) 'K, L

1nR
—y' sin 2

considered ratio is always less than unity, reaching it only
at ~@ m ~. That means that the sought minimal value

of P~~ is the one provided by expression (36).

+cos y+ e'cos y ~ d(+ u&(1+ e) sin
III. HOMEOTROPIC ANCHORINC

E = (Kl K2)/K2 (K3 K2)/K2

(in our approach Kq ——Ks) and, similar to Eq. (9),

(u~ ——WpR/Kg .

(30)

(31)

where ( = ln r and y' = dy/df. Here we have introduced
the parameter

Here we evaluate the energies of the alternative orien-
tations of a particle when the anchoring condition favors
the normal molecular alignment on its surface. Due to
that, from the very beginning we are able to set 8 @

——0
in formula (2). Pursuing the lines of the preceding sec-
tion, 6rst we address the perpendicular case.

A. Perpendicular case (u J no)

Variation of the functional (29) with respect to y and yz
gives the set of equations

y" + (-,'+ icos'y) sin2y = 0,

The director distribution around the particle is
schematically shown in Fig. 2(a). Choosing the angle
variable 4(r, p) so that it complies with the parametriza-
tion (3), we have to replace expressions (5) by

1 + (1 + z)~4, sin 2y& ——0,

(32)
for —-x «p & -7r1 1

2 2

for -vr & p & -&.3
2 2

which together with conditions (28) forms a closed
boundary problem. A simplified form of the latter had
already been addressed in Ref. [9]. Similar calculations
applied to Eq. (32) yield a closed albeit implicit solution

1)A,+1 k/k (38)

The only manifestation of this change is that from now on
the integrals should be taken over the interval [

—2vr, 2vr].
Save for that, formulas (3)—(13) remain intact. For the
Fourier coefBcients u2I, we now set

gl + s cos2 y + sin y gl + s cos2 ys —sin ys
gl + s cos2 y —sin y gl + s cos2 ys + sin ys

where ps is evaluated Rom the equation

costs 1+ecos2 ys — 1+ 1+c u& sings

(33)

(34)

that yields

psin2y
!4z ——arctan!

(1+pcos 2p)

( sin 2p
+os = arctan

( 1 + cos 2p )

One of its roots is trivial: ys ——zvr, and with the use
~ ~ . () 1

of Eq. (33) reduces the energy functional (29) to

= 7rK1L(u~.(1) (35)

The second root cannot be found explicitly. The corre-
sponding procedure of evaluating the &ee energy is pre-
sented in the Appendix. Its result —see formula (A11)---
reads

(2) 1 ( ldy~E'
!vr Kq I arctan

('+~~) (36)

To choose between the values found for T~~, let us con-
sider their ratio. It may be written as

04

Ilo y

/X~~'
——(1+(up) 'arctan(x)/x,

X = (dyes/(1 + (dy) .

Since, according to our definitions (30) and (31), the pa-
rameters e and u& are positive, it is easy to see that the

FIG. 2. Schematic representation of the director distribu-
tion around a cylindrical particle with homeotropic anchoring
for u J no (a) and u!!no (b).
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cf. Eq. (17). Substitution of Eqs. (38) and (39) into
(13) gives the equation

IV. DIRECTOR TEXTURES
AROUND A CYLINDRICAL PARTICLE

GPSS
t' sin 2p

!(—p) + — sin 2 arctan!
4m (1+cos 2')

—octan! ! sin(2k') dp = O, (4O)
( psin2y
(1+pcos2p j

(R/r)' p sin 2@4(r, p) = arctan (41)

cf. Eq. (21). With the aid of formula (22) and

which after similar transformations as for Eq. (18), de-
livers exactly the same result as Eq. (20) for the func-
tion p (erg). Using it, one finds

Let us consider in more detail the orientational tex-
tures around a cylindrical particle whose axis is perpen-
dicular to the nonperturbed director of the nematic do-
main. The general views of the corresponding patterns
are shown in Figs. 1(a) and 2(a). We remark that the
isolines of orientation in those figures were plotted nu-
merically by integration of the equation dy/d2: = tank
at erg = 0.5 with 4 taken from formulas (21) and (41),
respectively.

The elastic energies of these configurations are given
by one and the same expression,

E~ = ~KxL —ln(1 —p ) + 2 erg (1 —p)
(44)

2 p slxl 2'
R 1+2pcos2y+p2 '

s =(2/~e) g~+ l~e* —~ u)g
——Wg R/Ki,

we get for the perpendicular orientation energy of the
particle with homeotropic anchoring

E~ = vrKiL —ln(1 —p ) + z ~g (1 —p)

The result turns out to be the same as for the circular
surface alignment —see the preceding section. This ex-
act coincidence would not look so surprising if one recalls
that all the terms in the distortion energy expression are
sensitive only to relative deviations of the director. Be-
cause of that, in energy calculations the actual absolute
orientation of the easy axis on the surface is to a certain
extent irrelevant as far as the anchoring strength Wg re-
mains constant.

B. Parallel case (u!!no)

t'R i
Eg —mKxL ln! —!,

by
' (45)

where b = Ki/Wg is the extrapolation length.
Let us compare our result with that given in Ref. [1],

where the anchoring strength We is arbitrary.
The presence of the logarithmic term in the expression

for T~ and the topography of the director Geld around
the azixnuths rp = 0, 7t in Fig. 1(a) and y = vr/2, 3z /2 in
Fig. 2(a) point out that in fact we are dealing with non-
singular plane disclinations. The latter are produced by
finite objects (closed surfaces) put inside a uniform ori-
entation field. Their role is to provide continuous adjust-
ment of the director directions in the vicinity of an alien
object and at infinity. From expansion of Eq. (44) at
cu ~ oo one finds that in this limit the distortion energy
reduces to a customary disclination logarithm

The corresponding sketch is shown in Fig. 2(b). In the
cylindrical coordinate system one has

/'R)
K,L1

Ea) (46)

n = (cosy, 0, sing),

where again y(r) is the deviation of n(r) from the easy
alignment direction yo&

——0. For this two-dimensional
nonuniformity, as for Eq. (3), the free-energy expression
does not contain terms proportional to Ã2. Thus in the
approxixnation adopted (Ki ——Ks g K2), it reads

~KxL (X"—X' »n 2X cos' X) d(
lnR

+cu~sxn y&

X[~ = 7I KxL(dg/(1 + (dg) . (43)

Functional (42) coincides with that already analyzed in
Ref. [9]. Its minimum value, obtained there, is

obtained in the rigid (infinitely strong, Wg = oo) an-
choring approximation. There a is a cutoK distance with
the meaning of the radius of the disclination core which
is usually set equal to the molecular size of the liquid
crystal.

The similarity of formulas (45) and (46) is apparent. It
is more important to emphasize their essential diH'erence.
While Eq. (45) is the result of a consistent application of
the continuum theory, Eq. (46) is introduced to the latter
&om outside, and is based. on general physical reasons. It
reminds us that the continuum theory may not be applied
at distances less than a. Therefore Eq. (46) must replace
(45) when the extrapolation length becomes smaller than
the molecular size.

Inside the validity range of Eqs. (44), (45), i.e., at
b ) a, which is rather wide, our results yield a simple
way to make explicit evaluation of the director patterns
and energies of nonsingular disclinations. Convention-
ally, those disclinations are described (see Ref. [13], for



364 SERGEI V. BURYLOV AND YURI L. RAIKHER

example) by a phenomenological energy linear density
function

X,xr/L = 7rKln(A/r, ),
where R is the reference curvature radius of the closed
surface, and r, is the radius of the disclination "core"
depending upon TV and K. Setting

+J = jeff)

where X~ is taken from Eqs. (44), and omitting the sur-
face terms, we get the explicit expression for the core size
of a nonsingular disclination

r, = (8R/u&)
~

1+us2/4 —1
~)

with limiting behavior

R for Q (( Kx/Ws (weak anchoring)
4Kx/Ws for R » Kx/Ws (strong anchoring).

Thus we see that the eg'ective radius is the monotonically
decreasing function of us ——WsB/Kx going down from
the real geometrical size R of the curved boundary to
the value 4b which is of the order of magnitude of the
extrapolation length, and is no longer sensitive to the
size of the object that causes the orientational defect.

Therefore the above-presented formulas deliver a de-
tailed description of the director Geld around the particle
for all the range of anchoring strengths compatible with
the macroscopic theory of elasticity of LC. In particular,
if 8' could be increased separately due to, for example,
temperature (the existence of such an effect has been re-
ported in [14] for several thermotropic nematics includ-

ing the most faxnous one—MBBA), formulas (21) and.

(41) are capable of demonstrating how the smooth con-
tinuous director distortions tighten gradually, tending to
transform themselves into well-pronounced orientational
defects.

To illustrate this tendency, in Fig. 3 we show the
schematic patterns of the molecular orientation in the
layer adjacent to the particle surface. There also are pre-
sented the angular distributions calculated according to
formulas (37) and (41), of director on the particle surface
for the homeotropic case with a 3 no. Three consider-
ably diferent values of the parameter ~ are taken to
display the evolution of the orientation field upon the
change of the anchoring strength.

V. EQUILIBRIUM ORIENTATIONS
OF A CYLINDRICAL PARTICLE

Having in disposition the expressions for the energy
increments T~ and T~~, it is easy to compare them and
determine the equilibrium orientation of a particle rela-
tive to no.

For circular anchoring, according to Sec. II, one has

X~/7rKx L = —ln(l —p ) + ~~s (1 —p),

1 /~yv&l,
Ej(/7rKxL = arctan ('+ ~)

(48)

FIG. 3. Patterns of molecular orientation on the parti-
cle surface (semicircles), and the surface angular deviations
~4 —@os~ at diferent cross sections of the cylinder by planes
x/R =const. The relative orientation of u and no is that
of Fig. 2(a). The dimensionless anchoring parameter cuz is
100 (a), 10 (b), and 1 (c). Dashed vertical lines show the
effective diameter 2r of the nonsingular disclination deter-
mined by formula (47).

where p = p(us) —see Eq. (20). These formulas contain
three independent material parameters, viz. , w, ~~„and
s. Due to that the direct coxnparison of Eqs. (48), though
easy for any particular system, is too cumbersome to be
done in general. To get a qualitative impression, we set

~, which, according to Ref. [12], is often
approximately so, and take either s = 0 (single-constant
approximation with regard to the Frank moduli) or s = 1
which is valid by the order of magnitude for nematics like
MBBA.

The results of comparison are shown in Fig. 4. The in-
tersections of the curves yield that equation X~ = P~~ (s =
0) has the root ~x ——1.396, and X~ ——P~~(s = 1) has the
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FIG. 4. Orientational energies as functions of the dimen-
sionless parameter ~ = WR/K according to formulas (48)
and (49). Curve 1—X~, curve 2 —E~~(s = 0), curve 3—Xl(s = 1).

root u2 ——1.128. Note that the parameter s (the differ-
ence between Kq and K2), even if changed considerably,
only weakly affects the actual value of the root.

In each case the root u; divides the whole range of
~ in two domains. For cu & ~; one has T~ & T~~, and
thus the equilibrium orientation of the particle is that
with u 3 np, whereas for ~ ) u, the condition T~ ) T))
prescribes u

[~ np At ur =.u, the orientation of the par-
ticle is completely degenerated against the unperturbed
director. In fact, due to the orientational Brownian mo-
tion, the angular degeneracy of the particle axis should
take place not only at cu = cu; but within a certain inter-
val 2D~ around this point. The value of D~ is defined
by condition

A~ = 2k~T/KL.

For a thermotropic nematic with a reference value K
5 x 10 dyn at room temperature it yields Du 1.5 x
10 r/L. Setting L 3.5 x 10 scm, as it was in [3,10],
we get Ace 5 x 10, which proves that normally the
interval of the indeterminacy of the particle orientation
is not large.

For homeotropic anchoring the set of expressions to be
compared is derived in Sec. III. It reads

P~/nKqL = —ln(1 —p ) + zurs (1 —p),

W~(/7rKgI = (us/(1+ (us),
(49)

and contains only one combination of the material
parameters —~&. Therefore in this case the comparison
may be done in general. Figure 4 displays it as well.
One has only to ass»~e that its abscissa is ~&, and not
pay attention to curve 3. The characteristic value of u
separating the regions of parallel and perpendicular equi-

cfog )) k~T/q
s

To make the estimate quantitative, let us assume that
"much greater" means the difference by one order of mag-
nitude. Then with the aid of formulas (48) we get

librium orientations is then cog: M1: 1 396.
Consideration of the energies of the orthogonal states

(M J tap) and (u [~ np), which are certain extrema of the
functional (2), immediately raises the question about the
general form of X(tl), where t9 denotes the angle between
u and np. Unfortunately, its analytical derivation seems
hardly possible due to the loss of symmetry of the di-
rector distribution at arbitrary 8. So, one has to restrict
oneself by qualitative considerations. First, it is apparent
that the proper argument should be cos 2 8 = (v np) 2,

since in our problem all the physically meaningful quan-
tities ought to be bilinear in both unit vectors. Secondly,
though we do not consider the three-dimensional pertur-
bations bn, it looks natural to assume that the smaller
of the values of T~ and T~~ at given cu corresponds to the
true minimum of P(cos2 8). The question of whether the
greater one is the maximum still has no explicit answer.
However, we surmise that it is really so. This had been
proven in [1] for u ~ oo, and in Ref. [9] for u && 1. In the
latter paper we had shown that the angular dependence
of T is as simple as

P(cos 19) = Pg + (P~~
—Pg) cos l9.

Because of a very limited set of material parameters en-
tering the model, it seems highly improbable that at

1 there might appear some contribution delivering
extra maxima of X(cos28). On this basis we conclude
that at any given u (except maybe close vicinities of the
points 0 and u;) there exists one and only one stable
orientational state of the particle. It means, in turn,
that in an assembly of such particles (with circular or
homeotropic anchoring) with the growth of ur an orienta-
tional transition of the "easy-plane" —"easy-axis" kind
should take place.

As it has been stated in the introductory remarks, the
particular objects of our interest are liquid-crystalline
suspensions. That means that real particles which we in-
tend to apply our results to are rather small, 10 —10ym
in linear size. Now let us check up for what range of parti-
cle dimensions the peculiarities of the orientational states
found out at u 1 are relevant.

According to the literature (see [12,15], for example)
the range of possible values of W is several decades wide,
spreading from 10 4 to 1 erg/cm2 depending on the na-
ture, quality, and treatment of the solid surfaces. The
values of the Frank moduli are not so uncertain and
stand K 5 x 10 "erg/cm for thermotropic and an or-
der of magnitude less for lyotropic nematics. These data
place the extrapolation length b = K/W in the range
5 x 10 —5 x 10 cm, which is probably too wide since
having been determined via the extremities. Omitting a
decade at each end, we see that the values cu 1 corre-
spond to R 5 x 10 "—5 x 10 4 cm, i.e., 50 —5 x 10
which is exactly the reference range of the particle size
used in colloids and suspensions.

The above-presented theory in its initial version [9],
i.e. , for u « 1, had already proved to be helpful [16—18]
in both qualitative and quantitative explanation of the
orientational-optical eRects induced by external magnetic
field in thermotropic ferronematics. The particular case
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we have dealt with in Refs. [16—18] was the homeotropic
anchoring.

CONCLUSION

[2 + (1+s) ~~] r2 + (1+ s) ~~ R'

[2+ (1+ s) (u~] r2 —(1+c) ~~R2
'

From definition (A3), we have

Embedding of an anisometric (elongated) solid parti-
cle in a nematic liquid crystal causes the efFective orien-
tational coupling between the particle axis and the di-
rector field of the nematic. This coupling comes from
the anisotropy of anchoring of the nematic molecules on
the particle surface. For particles of a characteristic size
starting from that pertinent to colloids and suspensions,
the effective coupling energy may be derived in the frame-
work of the macroscopic (continuum) theory, and, under
some physically justified assumptions, expressed as a set
of rather simple relations.

The formulas obtained show that depending upon the
type and strength of anchoring, the equilibrium position
of a particle may be either parallel or perpendicular to
the director of a liquid crystal domain. The principal pa-
rameter governing the situation is the ratio of the particle
radius to the extrapolation length of the nematic.

According to all the evidence existing the considered
coupling is the main mechanism determining the basic
(in the absence of external fields) orientational state of
liquid-crystekbne suspensions.

The efFects discussed, since they are predicted in the
f'ramework of a macroscopic theory, should not be so diffi-
cult to observe (as it had been first remarked in Ref. [1])
in large-scale experiments, e.g. , if we study with a polar-
izing microscope a behavior of a zero-buoyancy rod with
appropriately treated surface Boating in a nematic slab
of a sufficient thickness.

sing = COS+ = (A6)

Now it is easy to evaluate the surface contribution to
the free energy (29):

(8) ~ 2 (2) 1+a= 'fcE1L&p sin gg —~K1L~y E+g

According to Eqs. (Al) and (A3),

q = 1+ (1 +E)u)y,
3

and hence

(1 + E) Cdg

s+ [1+ (1+s) (u~)2
(A7)

y' = cos(g) gl + s cos2 y,

one Ands

&~"~ = 2~~iI (1 + s) d$ gl + csos
1n R

x ~1+E cos g —slil g cos

To deal with the volume contribution of Eq. (29), let
us rewrite it in terms of the parameter q. Taking into
account that from Eq. (33)

APPENDIX: EVALUATION OF THE ENERGY
FUNCTIONAL FOR THE NONTRIVIAL ROOT

OF EQ. (84)

According to Eq. (34), its sought for root ys is to be(2) ~

found from the relation

and with the aid of Eqs. (A6)

« q(q + 1)(q —1)'
(s + q2)2

From Eq. (A4) it follows that

(A8)

1 + (1 + s)(u~ —— 1 + s co ys / s'n ys(2) . (2)

Substitution into Eq. (33) yields

(Al) dr/r = dq/(1 —q ),
so that Eq. (AS) transforms into

gl+ e'cos2y+ sing (1+s)~4, r
(A2)

gl + s cos2 y —sing 2 + (1 + ~)~~

1+(i+a) w~
( 1)

Jg
(~ + q2)2

(A9)

Introducing a notation
The last integral can be taken in terms of elementary
functions, that yields

q = gl+ scos2 y/sing,

one may rewrite Eq. (A2) as

q+ 1 (1+s)(u~ r
q —1 2+ (1+a)co~ B (A4)

X&"~ = xi~, L, arctan!
I 1+m&j

(1 + s) (d4,
-2

z+ 1+ (1+@)~&
(A10)

whence Adding Eqs. (A7) and (A10), one eventually obtains
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(A11)

i.e., formula (36).
Let us have a look at some limiting cases for energy

expressions (All). For s (& 1, using the power series for
the arctan function, one gets

(—1)s ur4, ~s )
(2k+ 1)~s (1+(u~)

2
(a)4, f

vrKa L 1 —38
1 + (alp ( 1 + BID )

which is valid for arbitrary ~&. In the single-constant
approximation (Kz ——K2 = Ks) formula (A12) recovers
the corresponding result of Ref. [9]: Xjj

——vrKLu&/(I +
(d4, ) .

At co& —+ oo, i.e., in rigid anchoring approximation,
from Eq. (A12) it follows that

Ejj = +K&L(1 —e'/3 —I/ur4, ) +

which is valid for arbitrary u&. In the single-constant
approximation (Kq ——K2 ——Ks) formula (A12) recovers
the corresponding result of Ref. [9]: E~j ——xKLtu&/(I +
(d4, ) .
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