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Periodicity and chaos in a one-dimensional dynamical model of earthquakes
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We study the homogeneous one-dimensional dynamic Burridge-Knopoff stick-slip model for an
earthquake fault with periodic boundary conditions. The dissipation is tuned such that the system is
asymptotic to elasticity at all wavelengths. For an inhomogeneous distribution of prestress, after an
initial transient that displays a power-law distribution of fracture sizes for cases of weak dissipation,
the earthquake sequences settle into a periodic state of through-going ruptures; the power-law
distributions are attributable to persistence eSects. The transition tixne from the precursory chaotic
regime to the periodic state generally increases with an increasing ratio of transverse to longitudinal
spring constants, but nonmonotonically so in individual simulations. These results argue in favor
of the importance of a mechanism for generating localization to suppress through-going events, if
these models are to be used in earthquake simulations.

PACS number(s): 05.40.+j, 91.30.Px, 62.20.Mk, 05.45.+b

In view of the Gutenberg-Richter power-law distribu-
tion [1] for earthquakes, Bak and Tang [2] proposed that
the earth's crust is in a state of self-organized criticality,
a state that is only reached through the dynaxnics of the
&acture process. Models of the dynamics of a smooth
one-dimensional (1D) fault [3], and smooth 2D systems
as cellular automata [2,4] have successfully reproduced
the Gutenberg-Richter power law, a not unexpected re-
sult since scale-independent models might be expected
to produce scale-independent distributions. Hence it has
been argued that the spatiotexnporal complexity of slip
events is a generic feature of mechanical fault xnodels.

This view has been challenged by Rice [5], who stud-
ied a laterally homogeneous 2D fault model based on
continuum quasistatic elasticity with a rate- and state-
dependent &iction law that introduces a characteristic
slip distance As. The fault is imbedded in a 3D elastic
xnedi~~m and has periodic boundary conditions. Numer-
ical simulations show that if the coxnputational grid size
is small coxnpared to As, only periodic slip events on the
fault are observed. However, for a computational grid
size larger than 48, chaotic spatiotexnporal slip behav-
ior is observed. These results suggest that the display of
chaotic behavior on the Burridge-Knopoff model is due
to the use of a discrete system with 48 = 0.

We test this proposal by studying in detail the 1D
Burridge-Knopoff (BK) [6] model with spatially homo-
geneous &acture strengths and periodic boundary condi-
tions. The details of the model are described by Knopoff
et al. [7]. The model consists of L identical masses m, in-
terconnected by identical longitudinal springs with spring
constant k. To xnimic tectonic plate motions, the system
is driven uniformly at a slow, constant rate by one of two
rigid plates which is connected by identical leaf springs
of constant l attached to each block (Fig. 1).

Once the force on a block exceeds the static &iction,
sliding is initiated and the &ictional resistance on the
block drops instantly to the dynamic friction (Fig. 2);
hence, Ls = 0. Crack dynamics is simulated by the

coherent motion of several blocks. Blocks that are in
xnotion cause the stress on their stationary neighbors to
increase and may cause the neighbors to move, thereby
causing a crack to grow. A particle stops when its veloc-
ity vanishes; at this instant the static &iction is reestab-
lished. The dynamic friction is high enough that no par-
ticle can move in a direction opposite to that of the driv-
ing plate. The slip of a particle satisfies the difference
equation,

where r„ is the stress drop, F„ is the difference between
the prestress on the nth particle and the dynamic &ic-
tion, and au„ is a radiation damping term which can be
regarded here as a velocity dependent dynamic &iction
[6]. Knopoff et al. [7] show that if cr = (4lm)s, the
system is asymptotic to dispersion-&ee elasticity in the
continuum lixnit.

Once a crack nucleates, it can only be stopped by Quc-
tuations in the prestress, since the breaking strength is
uniform. Whether crack growth is arrested or not de-
pends on the stress at the crack tip. If a crack transfers
a large stress to the crack tip, the crack is likely to grow;
thus large cracks are more likely to develop if the trans-
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FIG. 1. Illustration of the 1D Burridge-Knopoff model.
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FIG. 2. Friction-velocity relation for a moving block.

fer of stress is large. The amount of stress transferred to
the crack tip is a function of l/k and the crack length. If
L = 0, all the stress drop on the crack is redistributed to
the crack tips. Therefore, if L = 0 the stress concentra-
tion at the tips is proportional to the crack length, a con-
clusion consistent with 1D continuum elasticity. In this
limit, there exists a critical crack length above which the
crack cannot be stopped and will grow to the limit of the
boundary to the system for any distribution of fluctua-
tions in the prestress. For nonzero values of L, some of the
stress drop will be dissipated through the leaf springs and
through radiative energy loss; for suSciently large cracks,
the stress concentration at the tips no longer scales with
crack length but instead it approaches a value that only
depends on the ratio l/k. In this case, in terms of a scal-
ing of Quctuations in the prestress by the length of the
crack, a large crack can be more easily stopped than a
small one; thus, one might expect to see a roundoff in the
distribution of sizes for large cracks.

The Bnal stress F„on the ruptured segment is rela-
tively smooth even though the prestress distribution may
be rough. After a throughgoing rupture that tears the
chain &om end to end, which we call a runaway event,
the stress on the entire crack will be more or less uniform.

Since the tectonic stress increases uniformly with time,
the model will develop solely periodic runaways there-
after. Runaways are more likely to occur if l/k is small,
since in this case large cracks are more likely to form.
We test numerically to assess Rice's hypothesis to see if
there is an observable transition &om periodic to chaotic
behavior as the value of //k increases from zero.

We have carried out simulations for systems with 64,
128, 256, 512, and 1024 masses and various values of //k.
The in6nite impedance contrasts of unbreakable and &ee
end conditions impose dramatic inhomogeneities on the
system. In accordance with our goal of maximizing ho-
mogeneity, we use periodic boundary conditions; in this
case the system mimics an in6nite homogeneous lattice
with a 6nite correlation length.

The dynamical equations (1) are solved as a piece-
wise linear system by means of an eigenvector expansion
method developed by Knopoff et aL [7]. This scheme
minimizes numerical errors in the integration of the equa-
tions of motion.

For systems with the same lattice lengths, the same
initial random prestress is used. While the initial con-
ditions cannot be made identical from a lattice of one
length to a lattice of another, we make the initial condi-
tions as uniform as possible by randomizing them for the
largest lattice and decimating these initial values by fac-
tors of two for each reduction in lattice size by a factor of
two. Two examples of earthquake sequences are shown
in Figs. 3 and 4 for I/k = 0.10 and 0.38, in the case
I = 256. The linear extent of an individual &acture is
shown as a vertical line at the time of the event. For the
smaller value of t/k (Fig. 3), after a chaotic episode, the
system settles into a periodic runaway state after 1651
events. For the larger value of I/k (Fig. 4), the chaotic
state of the system appears to persist, at least &om the
display of the Grst 4000 events. However, even this sim-
ulation eventually settles into a periodic state for this
value of t/k as well, but now after more than four million
events.

The relaxation time to the periodic state is dificult
to specify in detail but, as is to be expected, it increases

250 —,

200—

'0
IVI

0
100

50—

[J

1

I

I

!

(

I

I

i(
I

FIG. 3. Space-time patterns
of simulated earthquakes for
l/k = 0.10, I, = 256. The dy-
namical history settles into a
state of periodic runaways after
1651 events. Several runaways
are shown. The initial prestress
distribution is random.
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FIG. 4. Space-time patterns
of simulated earthquakes for
l jk = 0.38,I = 256. The Srst
4000 events are shown. The ini-
tial distribution of prestress is
the same as in Fig. 3.
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with increasing lattice length. Figure 5 is a display of the
number of event steps before the periodic state appears
for the same initial condition, as a function of the ratio
t/k. We find that the relaxation time to the periodic
state increases roughly exponentially with l/k, but with
large Buctuations. The Buctuations are due to the irreg-
ular evolution through the L-dimensional lattice space
toward the periodic attractor as the ratio l/k is changed.
The curves for diferent values of L are not superposable
because of correlations with length scale L, as well as
because of variations among the initial conditions. Al-
though the amplitudes of the Buctuations appear to in-
crease for larger values of l/k, there is no hint that the
system is self-organizing into a perpetual chaotic state, or
what is equivalent, that the system never reaches the pe-
riodic state; put another way, if the exponential property
in Fig. 5 extends indefinitely to large values of t/k, we
cannot conclude that there is a phase transition at some
characteristic value of l/k that will forbid the appearance
of a periodic state.

As remarked, for I/k = 0.38, periodic runaways set in
after more than 4x10 events for our random distribution

of prestress. The lengths of the first 2.56 x 10 events in
this sequence display a good power-law distribution over
much of the range of sizes (Fig. 6). The distributions of
event sizes display a rolloff at a fracture length that also
depends on l/k, being about X, = 150 for the case l/k =
0.38. The rolloff is independent of lattice size I.and hence
the system is not scale-independent, i.e., the Gutenberg-
Richter power-law distribution is not obtained to all scale
sizes up to the lattice size; the distribution of Fig. 6
is better fit by a gannna distribution X i'exp( —X/X, )
than by a power law. If the distribution has a rolloff
for all values of (t/k, I), then all lattices whatever their
length may be, must ultimately develop a runaway event
at a time determined by the tail of the distribution.

The distribution of crack lengths as a function of //k
for fixed L are shown in Fig. 7. For small values of
the dissipation parameter //k, the system exhibits well-
developed power-law behavior with rolloE over a wide
range of crack sizes. The exponent p is a function of the
ratio l/k. With increasing values of //k, the distribution
becomes steeper and the portion of the distribution that
describes the power law disappears. As l/k increases, the
time to the periodic runaway increases exponentially, as
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FIG. 5. Number of events before the periodic state is
reached. The initial distributions of prestress are the same
as in Fig. 3 or are decimations thereof.

FIG. 6. Crack length distribution for the first 2560000
events. l/k = 0.38, L = 256.
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FIG. 7. Crack length distribution for the 6rst 100000
events as a function of I/O. I = 256.

remarked. Inspection of the space-time pattern of &ac-
tures gives the reason for the disappearance of the power
law. For small values of l/k, the patterns have a per-
sistent character as a consequence of the nature of the
healing condition, u = 0. A fractured segment has a
relatively uniform stress after cessation of motion. A
long fracture will therefore fracture again with approxi-
mately the same length as before at about the same sites,
thereby having a tendency to form a repetitive cluster of
events, all with about the same length. These cracks
are stopped by Buctuations in stress at the ends and are
thus likely to grow or shorten by roughly one lattice site
at the ends of the fractures in successive events. For
larger values of I/k, there is less stress transferred to the
edge of a crack, and hence a smaller probability of devel-
oping a large &acture and, thus, a smaller likelihood of
forming persistent clusters. Thus, we suppose that the
absence of a power-law distribution for the larger values
of I/k describes self-organization with relatively few per-
sistent events, whereas the power-law distribution char-
acterizes the persistent states for smaller values of l/k.
Thus, the events in the sequences are not independent

and the power laws describe the properties of the clus-
ters of repetitive events, namely, the number of clusters
of a given set of lengths and the number of events in each
cluster. It is evident from Fig. 7 that the time to period-
icity of a lattice whose length is much greater than the
characteristic rolloff length for a particular value of t/k
will be very long and increases dramatically with increas-
ing lattice size.

Whereas in Fig. 4, we have shown the space-time evo-
lution of the first 4000 events in the case I/O = 0.38,
L = 256, in Fig. 8 we show the history for the last 2000
events before the ultimate runaway at event 4.5 x 10 (ap-
proximately). The succession of fractures has now devel-
oped into a series of repetitive long events that dominate
most of the lattice. %ith increasing time, the repetitive
long cracks occupy an increasing part of the remainder of
the space-time regime by progressive erosion of the space-
time region occupied by the remaining small events, until
a crack of length L = 256 develops. The system is peri-
odic after that. Thus, there is a dramatic shift in the last
stages of pattern evolution to a distribution that has a
significant peak near the lattice size; of course culmina-
tion in a runaway event is the last ingredient of the peak
in the distribution before the onset of the periodic phase.

Does the system evolve gradually from the state shown
in Fig. 4 to that in Fig. 8 or is there some intermedi-
ate pattern? A partition of the central 2.5 x 10 events
into ten equal time intervals show that the distribution
is virtually identical in each. Thus, we infer that the
system is self-organizing into a metastable but transient
state that begins shortly after initialization, and persists
for a long time without signi6cant change; the terminal
phase begins when, with low probability of occurrence,
a very long crack develops whose successors in a persis-
tent cluster ultimately consume the entire lattice. The
self-organization in the metastable transient appears to
be independent of the initial conditions for random ini-
tial conditions. The rollofF, as implied by the discussion
above, is set by the ratio l/k and not by the size of the
lattice for suKciently large L.

Our results show that this dynamical BK model with
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FIG. 8. Space-time patterns
of simulated earthquakes for

I/k = 0.38, I = 256. Initial con-

dition is the same as in Fig 3.
The last 2000 events before the
system develops periodic run-

aways are shown.
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simulated radiation damping will eventually settle into a
periodic state for any lattice of finite size with periodic
boundary conditions. The tixne may be very long before
the onset of the periodic state, and the events in the tran-
sient state prior to the transition to periodicity appear
to have power-law distributions, for small dissipative pa-
raxneter but not for large; the power law arises because
of persistent clustering.

The behavior after runaway depends on the way in
which the system is reset by the runaway. In these
models, the periodic runaway property without inter-
vening small scale seismicity is a direct consequence of
the smooth stress on the rupture site after the fracture
event. With other models of the internal dynamics of
&actures that leave irregular stresses in their aftermath,
the &acture sequence after a runaway can be more com-
plex. Thus the runaway event is the last in a series of
self-organizing events whose character depends on the
conditions either af'ter the ixnmediately preceding run-
away or at the start of the calculation. In some cases,
these initial conditions lead to a rich transient sequence
before the next runaway and in others, the extended tran-
sient can be absent; in the model described in this paper,
both forxns of behavior are displayed. Other transient se-
quences are possible.

It is questionable whether models that develop peri-
odic runaway events sixnulate earthquakes. In a runaway
event, one end of the fault slips in a manner that is iden-
tical to that at the other end for periodic boundary con-

ditions. In real earthquakes, large events are stopped
by excessive barrier stresses established by geoxnetrical
inBuences that give an upper limit to the sizes of earth-
quakes.

Runaway events are a property of these lattice systems
as well as of the continuum systems described by Rice
and the two types of fault models give results consistent
with each other whether b,s = 0 or not. We suppose
that systems with periodic end conditions will ultimately
display runaways if the computations are extended to
sufRciently long times. Thus spatiotemporal complex slip
distributions should not be regarded as a generic feature
of the nonlinear dynamics of a smooth fault, whether
we model this fault &om the &amework of continuum
mechanics or &om lattice dynamical systems, but rather
should be regarded as part of an evolutionary transient
process.

To account for the complex histories observed in real
earthquake sequences, our simulations strongly suggest
that one has to take into account the efFects of geometri-
cal disorder along a fault and hence that inhomogeneity
is a critical property of earthquake models, a conclusion
also reached by KnopofF et al. [7] and Rice [5].
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