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Internal fiuctuations, period doubling, and chemical chaos
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The eKects of internal molecular Buctuations on period-doubling bifurcations and chaotic band
merging are studied in a well-stirred reactive chemical system where spatial degrees of freedom play
no role. The calculations are carried out using a stochastic model based oa reactive lattice-gas
cellular automata. Molecular Quctuations arising from reactive collisions are incorporated in the
model and the mass-action rate equations are recovered in the mean 6eld limit. Large system sizes
can be studied and permit the investigation of the internal noise scaling structure in the periodic
and chaotic regimes. For the Willamowski-Rossler system the noise scaling exponent is consistent
with that found for one-dimensional quadratic maps subject to external noise. The model provides
a means to study small, nonequilibrium, reacting systems where Buctuations may not be neglected.

PACS number(s): 05.45.+b, 05.40.+j

I. INTRODUCTION

The effects of external noise on period-doubling bifur-
cations and band merging within the chaotic regime were
studied [1,2] shortly after the renormalization treatment
of the scaling structure of this bifurcation scenario was
reported [3]. The most detailed investigations considered
the discrete-time noisy dynamical system

where f(x) is some nonlinear function, usually with a
single quadratic extremum, and ( is a noise term, often
taken to be Gaussian white noise with amplitude o.. It is
clear that external noise can disrupt the period-doubling
cascade. Noise will obliterate some of the periodic struc-
ture in the period-doubling sequence and shift the bifur-
cation points. Similarly, within the chaotic region, noise
can lead to merging of the chaotic bands and destroy
some of the fine structure of the chaotic attractor. Both
of these features were observed to satisfy a scaling struc-
ture [1,2,4]. For example, if o'„is the noise amplitude
for which an orbit of at most period 2" can be observed,
then lim„~ o„/o„q+——P, where P = 6.6 [1,2,4] for
maps with a quadratic extremum. A similar scaling ap-
plies for the band merging process in the chaotic regime.
External noise effects have also been explored near inter-
mittency transitions to chaos [5], for transitions to chaos
via quasiperiodicity [6], and for a variety of other types
of external noise sources [7].

The effects of internal molecular Quctuations on non-
linear dynamical systems have also been studied [8—12].
For systems subject to external noise the form of the
noise term can be specified independently of the system
dynamics, although it may be chosen to depend on the
dynamical variable. In contrast, internal noise arises di-
rectly &om the microscopic dynamics and its study in-
volves more delicate issues since the magnitude of the
noise is in part determined by the microscopic or meso-

scopic description of the system. Consider, for example,
a chemically reacting system displaced far &om equilib-
rium by external Bows of reagents. The Buctuations ex-
perienced by the system arise &om the random reactive
collision events and motions of the molecules making up
the reacting mixture. Thus the noise fluctuations are
determined by the chemical mechanism, diffusion, and
system size. Approximate Fokker-Planck or Langevin de-
scriptions [8,9], master equation models [10],and reactive
lattice-gas automaton models [11,12] have been employed
to investigate various aspects of this problem.

In this paper we examine the effects of internal molec-
ular Buctuations on period-doubling bifurcations and
chaos in a chemically reacting system. We restrict our
attention to well-stirred reacting mixtures where the only
source of Buctuations is the chemical species number
changes that arise kom the random reactive events. Our
calculations are carried out for the Willamowski-Rossler
(WR) reaction [13],whose mechanism reads

A&+X = 2X, X+& = 2&,
A: A:

k3 k4
A5+Y = A2, X+Z = A3,

A: k 4
(2)

A4+ Z = 2Z.
k

This mechanism, which is based on a realistic mass-action
reaction scheme, focuses on the dynamics of the interme-
diate chemical species, X, Y, and Z. The concentrations
of the remaining species A, , i = 1, . . . , 5, are assumed
to be held fixed by external Bows of reagents. The con-
centrations of these constrained chemical species, along
with the values of the rate constants k~, , i = 1, . . . , 5,
constitute the bifurcation parameters for the problem.

The phenomenological rate law corresponding to this
mechanism is
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dp

dt
—+z(p) +lpga &—lpga +2pzpy + & 2—py

—&4p~p~ + K—4 &

dPy

dt
= R,(p) = ~2pzpy —~ 2p-y

—~spy+ ~-s,

d/lps -2= +z(p) = +4pzpz + +—4+ &Spz &—Spdt

Here the constant concentrations of species A; have
been incorporated into the set of rate coefficients e~;,
i = 1, . . . , 5, and p = (p, p„,p, ) with p (7 = z, y, z
or 7 = 1, 2, 3; we use this notation interchangeably) the
average concentration of species r. Chaos is possible in
such a three-dimensional, dissipative, nonlinear dynami-
cal system and, indeed, a strange attractor is observed to
arise as result of a period-doubling cascade for suitable
choices of the e; parameters (cf. the bifurcation diagram
in Fig. 1 of Ref. [12] and Refs. [13] and [14]). Thus, this
model can be used to investigate internal fluctuation ef-
fects on the period-doubling cascade and chaos once a
microscopic or mesoscopic description of the reaction dy-
namics is given [11,12].

In Sec. II we present a mesoscopic model of the reaction
dynamics that incorporates molecular Huctuations and
leads, in the mean field limit, to the deterministic rate
law (3). In this section we also describe the scheme used
to simulate the reactive dynamics and present qualitative
results on the structure of the noisy attractors and the
invariant density in both the periodic and chaotic regimes
as a function of the system size. In Sec. III we discuss
the computation of the noisy Lyapunov exponents used
to characterize the dynamical state of the system and give
a quantitative discussion of internal noise effects on the
period-doubling cascade in this reactive system. Finally,
the conclusions of our study are given in Sec. IV.

II. STOCHASTIC %VILLAMOVf SKI-RGSSLER
D'YNAMICS

The stochastic model we employ to study fluctuation
eHects on the period-doubling cascade is derived &om
the well-stirred limit of the reactive lattice-gas cellu-
lar automaton description of the dynamics [11,12]. In
the automaton, reactive species are assigned positions
and discrete velocities on a lattice and their evolution
is governed by the composition of propagation, veloc-
ity randomization, and chemical transformation opera-
tors [15—17]. Each chemical species r resides on its own
species lattice l: and is subject to an exclusion principle
such that no more than one particle of a given species
with a given velocity may reside at a node of the lattice.
This implies that the particle occupancies a for species
v at a node lie in the range 0 & a & m, where m is the
coordination number of the lattice. In our calculations
we use hexagonal lattices with m = 6.

The treatment of reactive particle number fluctuations
in the automaton is similar in spirit to that in birth-death
master equation methods [18]. The reaction probability
matrix that specifies how reactions occur in the model

A. Markov chain

In the well-stirred limit the dynamics can be described
by a Markov chain for particle number changes [12]:

P(n, t + 1) —P(n, t)

= ) [P(n', t) W(n'~n) —P(n, t)W(n]n')], (4)
n'

or

P(n, t+ 1) = ) P(n', t)W(n'~n) .
n'

Here P(n, t) = P(nq, n2, n2, t) is the joint probability of
finding nq particles of species Xq ——X on lattice l:q,
n2 particles of species X2 ——Y on lattice l:2, and n3
particles of species X3 ——Z on lattice l:3 at time t. The
probability of transition from an initial particle number
configuration n to a final particle number configuration
n' is W(n]n') and can be expressed as [12]

W(n~n') =
Ag+ )Ag

A g+ YLg —A TLgI

P (n +, n ip(t))

where P (n +,n ~p) is the probability of n + particle
number transformations o. —+ o. + 1 and n particle
number transformations o. ~ o. —1 on lattice l: which
has JV nodes (and thus n' —n = n + —n ), with the
condition that the densities on the three species lattices
are p = n/JV. Note that the WR mechanism involves
particle number changes by +1 particle in each reaction
step; hence the restriction to such changes in the ele-
ments making up the transition probability matrix. The
probability P (n +, n ]p) is

is based on the underlying chemical mechanism and is
therefore expected to provide a realistic description of
the species number fluctuations. The validity of of such
a model has been tested in detail for the Schlogl reaction
where space-time concentration correlations have been
shown to be in accord with standard stochastic models
in the hydrodynamic regime [19].

In the well-stirred limit, the distribution of particles at
the nodes of the lattice is always binomial. Spatial pat-
tern formation is not possible since mixing destroys any
spatial structure and fluctuations arise &om the random
reactive events in the system. Consequently, our focus
is on how the bulk reactive particle number fluctuations
influence the dynamics of the global concentrations of
the chemical species. Some aspects of the well-stirred
dynamics in the Willamowski-Rossler system were con-
sidered earlier [11,12]; here we shall give a quantitative
description of noise efFects on the period-doubling bifur-
cations and chaos.
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P (n+, n Ip) =
n +!n !(JV—n + —n )!

x (P+)" + (P )"

x(1 —P+ —P )
"+ (7)

of the reaction probability matrix and are given in the
Appendix.

Prom these expressions we can derive the discrete-time
form of the mass-action rate law (3). Since the average
densitiy of species w is de6ned as

where P+ = P+(p) and P = P (p) are transition
probabilities averaged over the binomial distribution on
lattice 8 . The explicit forms follow from the de6nition

I

p (t) = —) n P(n, t),

it follows from (4) that

p (t+ 1) —p (t) = —) n & ) W(xx'In)P(rx', t) — ) W(nln') P(xx, t)
n'gn n'gn

= —) ) (n + —n )P (n +n Ip)P(n t)
n n+, n

= ) hR ( x/xJV)P( xxt) = hR (p(t)), (9)

hR-(p(t)) = ( -+) —( --)
= SP+ NP.- . - (io)

where an overbar indicates an average over P(n, t)
as in (8). Averages over the probability distribution
P (n +, n lp(t)) depend on p(t) and will be denoted
by (. . .). Thus, R, (p(t)) may also be written as

B. Stochastic simulations

n(t + 1) = xx(t) + n+(n(t)) —n (xx(t)), (15)

The particle number changes that occur as a result of
the random reactive events are given by the stochastic
equation

Note that the argument of R is a random vector. The
mass-action rate law is recovered when R (p(t)) is re-
placed by R (p(t)) [cf. (3)]. In this limit we have

p (t+ 1) —p (t) = hR (p(t)) .

The parameter h sets the time scale used in the construc-
tion of the reaction probability matrix and as h tends to
zero the continuous-time mass-action rate law (3) is re-
covered.

We choose P+ && 1 so that reaction is a rare event.
This limit can be achieved by a suitable choice of the
time scale h. In this case the transition probability
P (n +, n lp) is sharply peaked around ((n +), (n )).
Then, for given n y, in the lixnit JV ~ oo, P ~ 0 with
AfP constant, the trinomial distribution (7) reduces to
a product of two Poisson distributions, i.e. ,

P-(n + n--lp) = &-(n-+ls )&-(n--Ip) (i2)

where

PVPP)"'P (n pip) =, exp( —A'PP).
Bg+.

& (n +Ip) = 1 (n g/N —PP)
(2n)'/2iVo+ 2(o+)

(14)

with g+ (PP/~)1/2 g(P+)1/2 where g ~—1/2

If Af is large enough so that (n ~) = /HAPP )) 1 for all
r and t then the trinomial distribution (7) reduces to a
product of two Gaussian distributions of the form

where the random variables n~ have Poisson distribu-
tions (13) under the conditions discussed above. This
equation provides the basis for a stochastic simulation
of the reactive dynamics that allows very large system
sizes to be studied, a requirement for the investigation
of internal noise effects on the period-doubling cascade.
The dynamics determined by (15) can be simulated by
selecting n~ at each time step from the Poisson distri-
butions (13), which are functions of the instantaneous
density p(t).

In the simulation results presented below we take K2

as the bifurcation parameter. All the other rate co-
eKcients are held constant: Kq

——31.2, ~ q
——0.2,

2
——O.l, tc3 ——10.8y K 3 0.12) K4 1 02) K 4 0.01)

K5 ——16.5, and e 5
——0.5. The results of simulations

of the stochastic equation (15) for the WR system in
the chaotic regime are shown in Fig. 1 for two different
system sizes, JV = (1024)2 and JV = (4096)2. For com-
parison, the deterministic chaotic attractor is shown in
the bottom panel and has a banded structure [20]. As ex-
pected, for the stochastic dynamics the structure of these
bands can be resolved with greater precision as the sys-
tem size increases. Note also that quite large system sizes
are required to resolve even the 6rst and second bands.
In the middle panel for JV = (4096) sites per lattice the
four-band structure is just visible. We shall investigate
these effects quantitatively in the next section.

The invariant distribution P(xx) = lixnq~ P(n, t) may
be obtained from a time average of the Kronecker h

T
P, (n) = lim T ) b„.„.(~) .

C=O
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Here n is a prescribed value of n (t), and the subscript e

is appended to specify the noise amplitude (e =+ ~~s).

A convenient way to represent the invariant distribution
is to consider its structure in a Poincare section of the
phase-space Bow. The Poincare section 7 chosen for this
purpose is shown in Fig. 1, top panel, and is defined by
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P': p~/zM = 0.316667,Vp„/yM & 0, Vp, /zM & 0),

(17)

where vM, v = z, y, and z are scale factors [12]. Any
phase-space trajectory p(t) = (p (t), p„(t),p, (t)) that
crosses the section Rom the high X concentration side
will produce a point x = (y, z) in this section. Figure 2
shows the Poincare maps for both the stochastic model
[JV = (500)2] and the deterministic system for e2 ——1.572
in the chaotic regime. For this very small system size in-
ternal noise completely destroys the phase coherence that
is responsible for the banded structure of the determinis-

0.5—

0.0
0.5 1.0 1.5 2.0

FIG. 2. Poincare maps of the stochatic WR model [small
dots, JV = (500) ] and the deterministic dynamics (heavy
dots) for es ——1.572.

tic chaotic attractor; however, the noisy iterates are still
confined to a linelike segment indicating that internal
noise has a dominant eEect along the unstable directions
of the phase-space Sow [11,12].

Since the points x(t) on 'P are distributed in a linelike
fashion (cf. Fig. 2) one may model the stochastic dynam-
ics as an endomorphism of the line. We construct the
endomorphism from the Poincare map by letting s de-
note the distance along the Poincare map with the origin
of s taken to lie at one end. Each «(t) then corresponds
to an s value s(t) and the one-dimensional map has the
form s(t + 1) = f~(s(t)), where f~(s(t)) is a random
nonlinear map whose form can in principle be obtained
from the full stochastic dynamics but is diKcult to con-
struct. Figure 3 shows the one-dimensional map for the
parameter eq ——1.537 corresponding to period 4 for a
system size with e = 4 x 10 4 (small points). The deter-
ministic period-4 fixed points are shown as open circles.
The noisy dynamics comprises two bands that encom-
pass the two pairs of fixed points. For comparison, the
solid line is a fit of the stochastic dynamics to a quadratic
function (st+ad ——1.387 126 + 1.746 474 st —1.061 821 st ).
Figure 4 shows a plot of the invariant distribution P, (s)
for z2 ——1.537 for two different noise amplitudes. For
e = 4 x 10 4

[JI/ = (2500)2] P, (s) possesses four sharp
maxima, corresponding to the four bands of the noisy at-

I
g

/
r

r

2.0
I I

FIG. 1. Three-dimensional plot of phase-space trajecto-
ries obtained using the stochastic simulation method for
JV = (1024) (top) and A/ = (4096) (middle). The de-
terministic attractor is shown in the bottom panel. The
bifurcation parameter was chosen so that the system is in
the chaotic regime, i.e., ~2 —— 1.571, and the trajecto-
ries were obtained by following the motion of phase point
p~(t) = n~(t)/JV in the three-dimentional concentration
phase space. The dashed box containing the attractor has its
origin at (0.07064, 0.00276, 0.11190) and corners along the
p, p„,and p axes at 1.801 29, 1.75982, and 4.28791, respec-
tively. The Poincare section, defined in (17), is shown in the
top panel and labeled by P.

1.5

1.0

0.5

0.5 1.0 1.5 2.0

FIG. 3. Next amplitude map constructed from the
Poincare map for a superstable period-4 orbit (les ——1.537)
with e = 4 x 10 . The open circles are for deterministic
dynamics and the solid line is the best quadratic St.
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FIG. 4. Invariant distribution P, (s) for e2 = 1.537 and dif-
ferent system sizes Af = (1250) (thick line) (the Lyapunov
exponent is A —2.03 x 10 ) and JV = (2500) (the Lya-
punov exponent is now positive, A 0.91 x 10 )(thin line).

tractor which are centered around the four period-4 fixed
points of the deterministic system. Note that the two
pairs of maxima are separated by a region of very small
probability density (zero in our finite-time simulations)
but the two maxima comprising a pair are separated by a
region of small but nonzero probability densities. Thus,
although &om Fig. 3 it may appear that period 4 cannot
be resolved for this system size, the stationary probability
density and, as we shall see below, the Lyapunov expo-
nent, indicate that a noisy period-4 orbit can be identi-
fied. For e = 8 x 10 4 [A = (1250) ] P, (s) shows only
two peaks and the period-4 structure is no longer seen.

When the system parameters are chosen in the chaotic
regime the system is very sensitive to perturbations and
even very weak noise may destroy some of the fine struc-
ture of P(s), the deterministic invariant distribution (cf.
Fig. 5). As the noise level increases all of the detailed
structure of P(s) is destroyed but the width of the distri-
bution changes little (cf. Fig. 5; see also Refs. [9—12]). As
can be seen in this figure, the deterministic invariant dis-
tribution has extensive fine structure, only some of which
is resolved for a small value of e = 10 s (JV = 10io).

FIG. 6. Deviation b, (P, ) as function of the noise ampli-
tude e for ~2 ——1.572. The arrow indicates the e value where
the gap in the two-band attractor just vanishes.

6'(P, ) = JdHP(8)'
- —1

ds[P, (s) —P(s)] . (18)

Figure 6 plots the deviation b, (P, ) versus e for a chaotic
attractor (K2 ——1.572). For the e range explored in this
figure the chaotic attractor contains the two bands for
small e or no bands for large e. The rapid increase in 6
occurs as the internal noise causes the probability mass
to fill the gap along s in the two-band chaotic attractor.
For sufBciently small system sizes the gap has filled and

increases much more slowly with decreases in system
size since only small overall expansions and smoothing of
the attractor occur.

III. SCALING IN THE PERIOD-DOUBLING
REGIME

We next quantitatively characterize the eKects of inter-
nal noise on the periodic orbits lying within the period-
doubling cascade. In Fig. 7 we show a noise bifurca-

We define the deviation of the invariant distribution of
the stochastic WR model, P, (s), from that of determin-
istic dynamics, P(s), as

12.0—

9.0—

1.3—

0.0— 0.8

0.0 0.5 1.0 1.5 2.0 2.5

FIG. 5. Invariant distribution P, (s) for ez = 1.572 and dif-
ferent noise amplitudes e = 10 (thick line) and e = 2 x 10
(dotted line). The deterministic result [P(s)j for the same
system parameters is shown as a thin line.

0 2.5 5.0xlc

FIG. 7. Noise bifurcation diagram for ~2 ——1.537 (super-
stable period-4 orbit). The ordinate y is the p„value on P.
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NR

A = lim (N T) ) ln[d( )(T)/d(~)(0)] .
NR -+oo j=1

(19)

Here d(t) = ~d(t)
~

= [p(t) —p'(t) ] is the magnitude of the
separation between two neighboring phase-space trajec-
tories calculated with the same random number string,
and the superscript j indicates one of the N~ different
realizations of the stochastic dynamics. Since the Lya-
punov exponent is a measure of the average exponential
growth rate of neighboring phase-space trajectories the
time T in (19) should be chosen such that d(t) ( d
V t & T. Here d is a value of d below which the lin-
earized dynamics for relative separation is valid.

The stochastic dynamics of the WR model is given by
(15) which may be written in the form

tion diagram at a fixed parameter rz ——1.537 (period-4
regime) with e varing &om 2x 10 s to 5 x 10 4. Internal
fluctuations alter the structure of the period-4 orbit and
the ability to resolve such an orbit in the period-doubling
cascade depends on the degree to which the noise is able
to dephase the periodic dynamics. Such dephasing can be
discussed in terms of phase basins and their boundaries
[21]. A period-n orbit will intersect a Poincare plane in
n fixed points which are visited in a definite order. A
phase basin consists of all initial points that tend to a
given fixed point in a stroboscopic representation of the
dynamics. The phase plane can be partitioned into n
phase basins separated by phase basin boundaries which
can be complicated or even &actal. Noise-induced cross-
ing of a phase basin boundary leads to a loss of phase
coherence and is ultimately responsible for the inability
to resolve a given period orbit.

In order to determine the e value at which a given pe-
riodic orbit can no longer be resolved we consider a set
of equivalent parameter values corresponding to the su-
perstable points of the period-2" orbits and make use of
the Lyapunov exponent to detect when the character of
the noisy dynamics changes [22]. In the presence of fiuc-
tuations the Lyapunov exponent can be determined by
considering the linearized dynamics along a noisy orbit
[7,23,24]. In this way the Lyapunov exponent measures
the separation of nearby orbits which experience Quctu-
ations derived &om the same underlying stochastic pro-
cess. This procedure has the advantage that noise effects
arising &om different realizations of the stochastic pro-
cess do not contribute to the Lyapunov exponent. More
specifically, for a noisy system the maximum Lyapunov
exponent can be computed &om the following expression
[7]:

We select p'(0) = p(0) + bp and let p'(t) be the value of
the density at time t starting &om p'(0) and using equa-
tion (20) with the same random number string used to
produce p(t) starting &om p(0). Using the definition of
d and (20) we find

d.(t+1) = d. (t) + h [R.(p'(t)) —R.(p(t))]+ L(.(t)
=) (~- +hJ-(p(t)))d-(t)+O(& ")

(22)

Here J (r, 7' = 1, 2, 3) are elements of the Jaco-
bian matrix and b,f = ( (p'(t)) —( (p(t)), which is

O(JV ~2). Thus the distance between trajectories may
be computed from the linearized dynamics along the
stochastic trajectory generated by (20).

Using the algorithm of Benettin et al. [25], the max-
imum Lyapunov exponent may be computed &om the
expression

A = lim t ln(d(t)/d(0)) .

Here the A can be regarded as the average slope of the
function A(t) = ln(d(t)/d(0)) [26]. Plots of A(t) versus t
are shown in Fig. 8 for the noisy dynamics in the chaotic
regime (e2 ——1.572) and in the period-4 regime (tc2 ——

1.537) for two values of e. Note how the noise amplitude
infiuences the slope of A(t) in the periodic regime.

The maximum Lyapunov exponent is plotted versus e
in Fig. 9(a). One can see that the Lyapunov exponent
is negative for sufficiently small e and increases to posi-
tive values as e increases [26]. The Lyapunov exponent
A passes through zero at e 6.8 x 10 [Fig. 9(a)]. The
Lyapunov exponent for a chaotic orbit at different noise
levels is shown in Fig. 9(b). We see that A increases
rapidly when e is small; it then reaches a plateau value
where noise affects it very little. The rapid increase of
A corresponds to a noise regime where merging between
adjacent chaotic bands takes place. The noise regime ex-
plored in this figure corresponds roughly to that in the
top two panels of Fig. 1; thus the period-4 chaotic band
structure has been destroyed by decreasing the system

100

A(t)

& (t+I) = & (t) + "R (p(t))+ ~ (t)
—= & (p(t)) +(-(t) (20)

I

1000
ht

I

2000

where ( (t) is a random force with zero mean defined by

~-(t) = ~ '(bn-+(p(t)) —hn--(p(t)))

with hn ~ = n ~ —(n ~). In order to compute d (t) us-
ing this equation we adopt the method described above.

FIG. 8. Plot of A(t) = In(d(t)/d(0)} with h = 1.5 x 10
for (a) r2 = 1.572 and e = 6 x 10, (b) ~2 ——1.537 and
e = 6.4 x 10, and (c) m2 = 1.537 and e = 2 x 10 . The
three corresponding Lyapunov exponents are average slopes
of the three curves and are given by A = 5.01 x 10, 0, and
—1.88 x 10, respectively.
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.030

.015—
(a)

Gaussian and the noisy map in the Poincare plane is
quadratic in s with probability density sharply peaked
normal to s, such a scaling relation for internal noise is
plausible.

—.015—
tl ~ ~ ~ ~
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IV. CONCLUSION
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(b)
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FIG. 9. Lyapunov exponent as a function of the noise level
e for (a) the superstable period-4 orbit at fixed parameter
Icg —1.537 and (b) a chaotic orbit at K2 = 1.572.

size. When band merging is complete, increasing noise
level has a less pronounced efFect on the distribution of
phase points so the Lyapunov exponent changes very lit-
tle. The process is analogous to that discussed earlier in
connection with Fig. 6 (see also Ref. [9]).

Internal noise also alters the bifurcation diagram. The
position of a period-doubling bifurcation in parameter
space can be determined &om the behavior of the Lya-
punov exponent(s) as a function of the bifurcation pa-
rameter. In the presence of internal noise we have found
that the period-1 bifurcation point is shifted to slightly
higher values of K2.

We may now bring these observations to bear on the
internal noise scaling in the period-doubling regime. As
noted above we observe the noisy dynamics at equivalent
parameter values (superstable points) within the period-
2" regimes. For each such parameter value the noise
amplitude is varied until the maximum Lyapunov expo-
nent passes through zero. The corresponding value of e

for a period-2 orbit will be denoted by e+. Calculations
were carried out for orbits with periods up to eight and
the results are e2 /e4 = 4.2 x 10 s/6. 3 x 10 4 = 6.7, and
e4+/~s+ = 6.3 x 10 4/1. 04 x 10 4 = 6.1.

Given the small uncertainties in the locations of the
superstable points and in the estimation of the noisy
Lyapunov exponents, these results are consistent with
the scaling exponent P —6.6 obtained earlier for ex-
ternal noise on one-dimensional maps. The calculations
are rather diKcult to carry out for higher members of
the period-doubling cascade since very large system sizes
must be studied in order to resolve the higher-period or-
bits. Even to resolve period-8 system sizes of the order
of JV 10 particles must be considered. In view of
the fact that the kernel in the Perron-Frobenius equation
corresponding to the three-dimensional dynamics (20) is

The efFects of chemical species number Buctuations on
the nonlinear WR reaction dynamics in both the period-
doubling and chaotic regimes were explored for large
systems using a stochastic model based on the reactive
lattice-gas automaton method. In the period-doubling
regime the simulations showed that internal noise scaling
follows the same scaling laws as external noise, namely, if
the noise amplitude is such that a period-2" orbit may be
resolved, in order to resolve an orbit with period 2"+ the
noise amplitude must be reduced by a factor of approxi-
mately 6.6. For the internal noise process considered here
the noise amplitude is controlled by varying the system
size. Our stochastic calculations were able to resolve or-
bits up to period 8 for systems with approximately 10
particles. This implies that in macroscopic well-stirred
systems containing roughly a mole of molecules at least
five or six more period doublings could be resolved if the
systems were perfectly homogeneous and external noise
played no role. Therefore, most likely the inability of
chemical experiments to resolve higher-order xnembers of
the period-doubling cascade (usually only orbits up to
period 8 have been resolved in experiments) is due to in-
homogeneities in the reactor and other sources of external
experimental noise.

The simulations show that even for fairly small systems
on the macroscopic scale (comprised of roughly 10M par-
ticles) one may resolve the higher members of a banded
chaotic attractor, confirming that internal noise, like ex-
ternal noise, destroys the fine structure of of the chaotic
attractor but its gross features are robust to such inter-
nal fluctuations. While the scaling structure of chaotic
band merging was not investigated in detail here, the
results suggest that scaling similar to that observed for
one-dimensional xnaps applies.

The calculations indicate that for xnacroscopic chemi-
cal systems internal noise efFects arising &om local inho-
mogeneities or imperfect mixing, or efFects due to exter-
nal noise sources, are more likely sources of perturbation
of the dynamics in the period-doubling regime than those
due to bulk species number fiuctuations arising &om reac-
tion. For smaller system sizes in the mesoscopic regime
internal fiuctuations, even in the well-stirred limit, can
have important efFects. What is perhaps most interesting
is that the gross structure of chaotic attractors survives
even for very small system sizes. Since new chemistry
can occur in small systems and experimental probes of
reaction dynamics and even pattern formation are now
possible on sxnall scales, stochastic models of the sort
considered here provide a means to study the efFects of
fiuctuations on small, far-&oxn-equilibrium, reacting sys-
tems.
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The reaction probability matrix for the WR mecha-
nism that specifies the change from a particle configu-
ration cr to a configuration P at a node for a g P is

P(alp) = pl (a) ~-.+l.t3. +» (a) ~-. 1,~-. ~-.,n„~-.,n. + p2 (a) ~ .+l.p, + p. (a) ~-. l,p.-~-.,p.~-., 3.

+ P3 (CS) '4 +1,P + P, (Cr) ba —1,P ~a,P as, )Ss (Al)

where the explicit expressions for p+(cs) are
I

are determined froxn averages of the pg(cr) over the bi-
nomial distribution on l'.

+(a)
Pl (~)
+(a)

p. (a)
p'(a)
p3 (a)

ql'(a) (1 —h-. ,-)
ql (a) —ql (~)~-.,-
q'(a) (1 —~-„-)
q, (cx) —q2+(cr)b'

„

q'(a)(1 —b-. ,-)
q3 (a) —

q3 (~)b ., (A2)

and are given by

P.' = ) &.'(~)&b(~ ~).

(A4)

(A5)

with

q,+/Il = Kins + mK 2as(as —1)/(m —1) + K 4,
q, /h = mK ln (n —1)/(m —1) + (K2a„+K4n, )n
q2 /fl = Kza~as + K+

q2 /h = mK 2n„(n„—1)/(m —1) + Ksn„,
q3/h Ksaz+ K—4 )

+

q3 /h = K4a a, + mK sa, (a, —1)/(m —1) . (AS)

The diagonal elements are P(tx]cr) = 1 —g& P(n]P).
The transition probabilities P and P used in the text

We find

= Kl Pl + K—2P2 + K—4 —Ql )
+ 2

Pl = K—lpl + K2plp2 + K4plp3 Ql )

P,+ = K2plp2+ K-3 —Q2,
P2 = K-2p2+Ksp2 —Q2)
P3+ ——K 4+ Ksp3 Q3
P3 = K4plp3+ K sp3 —Q3 )

where

- = ).q.'(~)&b(a p)h-. ,-.

(Afi)

(AV)
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