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Dynamics of particle deposition on a disordered substrate.
I. Near-equilibrium behavior
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A growth model that describes the deposition of particles (or the growth of a rigid crystal) on a
disordered substrate is investigated. The dynamic renormalization group is applied to the stochastic
growth equation using the Martin, Siggia, and Rose formalism [Phys. Rev. A 8, 423 (1973)]. The
periodic potential and the quenched disorder, upon averaging, are combined into a single term
in the generating functional. Changing the temperature (or the inherent noise of the deposition
process) two different regimes with a transition between them at T,„are found: for T ) T,„ this
term is irrelevant and the surface has the scaling properties of a surface growing on a Sat substrate
in the rough phase. The height-height correlations behave as C(L, r) ln[Lf(7/L )]. While the
linear response mobility is Bnite in this phase it does vanish as (T —T, )' when T -+ T+. For
T ( T, there is a line of Sxed points for the coupling constant. The surface is super-rough: the
equilibrium correlation functions behave as (lnL) while their short time dependence is (lnr) with
a temperature-dependent dynamic exponent z = 2[1+ 1.78(l —T/T, „)].While the linear response
mobility vanishes on large length scales, its scale dependence leads to a nonlinear response. For
a small applied force I" the average velocity of the surface e behaves as v I' +~. To first order

( = 1.78(1 —T/T, „).At the transition, v F/(1+ C~ 1n(E)~) ' and the crossover to the behavior
to T ( T,„ is analyzed. These results also apply to two-dimensional vortex glasses with a parallel
magnetic Seld.

PACS number(s): 05.70.Ln

I. INTRODUCTION

Much progress has been achieved recently in the un-

derstanding of surface growth in processes of deposition,
sedimentation, epitaxial growth, solidification, etc. [1—3].
A few years earlier the static and the dynamic properties
of roughening of crystalline surfaces were elucidated [4,5].
Recent investigations have concentrated on the connec-
tions between surface roughening due to thermal fluctu-
ations on one hand and that due to the kinetic growth
itself, on the other hand. The underlying discrete struc-
ture of the particles (or the lattice) may lead to a kinetic
phase transition between smooth and rough phases or be-
tween two rough phases with distinct scaling properties
[1]. Since the underlying discrete structure is relevant
at low temperature (or a low noise regime in the deposi-
tion) one cannot escape the question of how disorder in
the substrate might modify the surface properties.

The effect of the substrate disorder on the dynamics
of the growing surface is the subject of our analysis [6].
We address this issue using the dynamic renormalization
group (RG) applied to the stochastic growth equations
using the Martin, Siggia, and Rose (MSR) formalism [7].

In the present paper we address the dynamics near
equilibrium. This regime is characterized by a very slow
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or the corresponding surface width:

which obeys an asymptotic behavior of the form

W(L, r) = L f(r/L') (3)

In this expression o. is the roughness exponent which

characterizes the extent of the roughness of the surface
and z is the dynamic exponent. f (x) is a scaling function
which approaches a constant for large x. For small x
(& « L'): f(x) x~ where P = a/z. At an early
stage of the growth the surface roughness increases as

rate of deposition such that the system is very close to
thermodynamic equilibrium. In this regime only slight
modifications from equilibrium are considered. In par-
ticular, the auctuation-dissipation theorem (FDT) [8,9]
and the Einstein relation (between the mobility, the dif-

fusion. constant, and the temperature) both hold.
Far from equilibrium, the growth equation does not

obey the FDT. The symmetry under h ~ —h (h is the
height of the surface) and time reversal t ~ t are bro-—
ken. The most relevant additional term, as shown by
Kardar, Parisi, and Zhang (KPZ) [10], is due to the lat-
eral growth of the oblique surface. The behavior far Rom
equilibrium will be the subject of a following paper.

In general, the scaling properties of the growing surface
are manifested in the height-height correlation function:

C(L, ~) = ([h(x + L, t + r) —h(x, t)]')
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W(r) 7~ while for 7 && L', W depends only on L and
behaves as L .

In the absence of any disorder in the substrate the near-
equilibrium behavior was analyzed extensively in the con-
text of surface roughening. The original work was due to
Chui and Weeks (CW) [4] and this system was further
analyzed by Nozieres and Gallet (NG) [5]. Their inost
ixnportant 6ndings were as follows.

In the high-temperature rough phase

II. THE EQUATION OF MOTION AND THE
ASSOCIATED GENERATING FUNCTIONAL

The prototypical paradigm for the simplest deposition
process is the Edwards and Wilkinson (EW) model [15]
for the sedixnentation of granular particles. The contin-
uum limit form of their equation of motion for the height
h(z, t) is

P
' —h(z, t) = vV2h(z, t) + ((z, t) + F. (5)

C(L, ~) ln[L f(~/L')], (4)

which corresponds to a = 0, P = 0, and z = 2. The
scaling form of the correlation function in Eq. (3) cannot
apply to that of Eq. (4), since both a and P vanish (but
with a finite ratio).

In this phase the efFect of the discreteness (or the lat-
tice) is not relevant. This behavior is equivalent to that
of a &ee surface in which the surface tension is the only
interaction determining its properties.

In this regime the macroscopic mobility de6ned as the
ratio between the average velocity u = (&~) and the
"force" F driving the surface, is finite.

In the smooth phase C(L) is independent of L, and
the mobility vanishes. The mobility has a finite jump
&om a finite value to zero at the roughening temper-
ature. The growth process at low temperatures is by
nucleation of higher "islands" on top of the smooth sur-
face. This "activated" growth has drastically different
dynamic properties which are determined by the diffu-
sion of the deposited particles on the surface and their
attachment to the "islands. "

While we study here the surface properties in depo-
sition of cubic (or tetragonal) rigid particles, our study
applies as well to the growth of crystalline surfaces if the
rigidity of the solid is large enough. Our theory will apply
if the surface height is smaller than the scale on which
the random deviations in the substrate cease to affect
the positions, along the growth direction, of the lattice
ions. This scale will be larger the stronger is the Young's
modulus which measures the longitudinal rigidity.

It turns out that the same stochastic equation of mo-
tion also describes the behavior of other random two-
dimensional (2D) systems. The most important case is
a system of vortex lines in a superconducting film with
the applied magnetic field parallel to the film. (Charge
density waves at 6nite temperature is another such sys-
tem. ) Therefore the conclusions of our investigations also
apply to 2D vortex glasses [11—14]. We shall come back
to these implications in the last section.

The outline of this paper is as follows. In Sec. II we
present the stochastic equation of growth and the related
MSR generating functional. In Sec. III the RG scheme is
outlined and the recursion relations are derived. Section
IV is devoted to the discussion of the results and their
physical implications. The 6nal section, V, is dedicated
to a summary of the important conclusions. In the Ap-
pendixes we provide more details of the RG calculations.
A short Letter announcing the xnost important results
was published elsewhere [6].

p
'—h(z, t) = vV2h(z, t) + p —sin(p[h(z, t) + d(z)])a

+((z, t)+P . (7)

d(z) is the local deviation of the disordered substrate
as depicted in Fig. 1. The associated "phase" O(z) =

is uniformly distributed between 0 and 2x, and is
uncorrelated for different locations x on the substrate.

Then the equation of the growth process becomes

P,
' ( ' ) =P +v[V2h(z, t)]

+—sin[ph(z, t) + O(z)] + ((z, t), (8)

where a is the lattice constant in the horizontal plane.
To investigate this stochastic equation systemically,

one can utilize the Martin, Siggia, and Rose formalism

[7] by introducing an auxiliary Beld h to force Eq. (8)
through a functional integral representation of a b func-
tion. The generating functional for Eq. (8) takes the form
as [after averaging over g(z, t)]

p, is the microscopic "mobility" of the upper surface, v is
the "diffusion constant" for the particles on the surface,
F is proportional to the averaged deposition rate which
is very small (large deposition rate will be discussed in

a second paper), and ((z, t) is the local fiuctuation from
the averaged deposition rate, which obeys

(6)

We can define the efFective "temperature" of this sys-
tem by the Einstein relation: T = Dp, .

If the discrete nature of the particles is taken into ac-
count the height h of every column of particles must be
an integer multiple of the vertical size of the particle b.
This discrete constraint leads to a periodic b-function po-
tential on h. This periodic potential may be expanded
in Fourier series of which only the basic harmonic is rel-
evant. On a Bat substrate there will be an additional
term of the form p+ sin[ph(z, t)] on the right hand side

of Eq. (5) (p = 2s and + is the amplitude of the periodic
potential) .

In the presence of a random substrate the minixna
of the potential will be randomly, and independently,
shifted for each column. Hence the equation of motion
becomes
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where

h(x)

Ss[h "I = f d'*dt Dp*h' —h
[

—"—ixtt'h1
qBt )

d(x)

FIG. 1. A two-dimensional cut (along a lat tice plane
perpendicular to the disordered substrate) of the
three-dimensional system.

Za[J, J] = fDh Dhexp 'Se[h, h]

+St[Ah]+ f dsz, dt(dh+dh)

The generating functional Z[J, J] can be directly aver-
aged over the quenched disordered d(x) because Z[J =
J = 0] = 1 [20]. One may calculate any averaged correla-
tion and response function by differentiating the generat-
ing functional with respect to the current J or auxiliary
current J and setting J = J = 0.

After averaging over the disorder the effective generat-
ing functional reads

(Za[d, d])d;, d „=f 17 h17h exp(f d zdt Dd h —h
]

—h —tsxsP h
]

]t Bt )
-2 2-+, d zdtdt'h(xt)h(z, t') ccs(1, [h(zt) —h(z, t')]),),2G

where g = y . If we choose D = Tp, , the system will evolve into the configurations weighted by a Boltzmann factor
e +)'+, which obeys the Huctuation-dissipation theorem [8]. To simplify the calculation, we redefine those physical

parameters as pv = p, Dv = D, g = gv, v = vv, F = —.Then the equation of motion becomes

](d
' ' = I'+ [V h(z, t)]+ —sin[ph(x, t) +O(z)]+((z, t), Bh(x, t) 2 „py

a

Here (((xi, ti)((x2t tq)) = 2Dbi l(zq —x2)h(ti —t2). The resulting generating functional for the present case reads

where

Zafd d] = fDdDd p [
S [d dl+ S [t) t)1+f d**«(&d+ dd) [, (14)

~o[4»4'] = d'z«DI '0' —4 l

—0 —V&'0
~(Bt )

Sl —— d ddt sing x t +ox

where h(x, t) = ttt(z, t) and h(x, t) tttt(x, t) In the same .way, we arrive at the averaged efFective generating functional:

(za[&, &])a. d- = f DdDdexpI f d*zdt Dp'd' —d l s d —p&'d
](Bt )

+ d xdtdt' x, t x, t' cos p z, t — x, t'
2Q
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In the generating functional in Eq. (17), the term
which contains the cos[p(P(z, t) —P(z, t')] is nonlocal in
time and will be responsible for the creation of nontrivial
Edwards-Anderson correlations.

In the renormalization process it turns out that this
term generates a new "quadratic" term, also nonlocal in
time, of the forxn

We therefore add this terxn to the generating functional
and will follow the fiow of v as well (as shown below it
will play a crucial role in altering the long-range height-
height correlations) .

Here we treat the last term in Eq. (17) as a perturba-
tion to the free action, and expand the theory in orders of

g and b'(= ~4 "—1). The RG scheme will be discussed in
the next section and details are given in the Appendixes.

arbitrary spatial function constant in tixne. As a result
P(z, t) cannot be renormalized and Zy = 1 [17] to all
orders in g.

We also mention that the lattice effects and the
quenched disorder in the substrate violate the Galilean
syxnmetry, which provides another Ward identity z+ n =
2 [10] for the system without these efFects.

The calculations of the Z factors are exemplified in the
Appendixes, in which the explicit calculations of some of
them are given.

A. Recursion relations

Once the Z factors are known to the leading order in
g, the recursion relations are obtained via the so-called
P functions [18—20]:

8111Z~ gp2

III. THE RENORMALIZATION SCHEME
AND THE RECURSION RELATIONS

Dp = ZDD) gp = Zgg)

mo& ™&R &o&' = &'&R2 2 2 2

P = Z4, PR gP = (Z4, )gPR

(20)

The renorxnalization group scheme we follow is based
on the sine-Gordon 6eld theory developed by Amit et al.
[16]. The extension to the dynamics was performed by
Goldschmidt and Schaub (GS) [17]. Since they presented
many details of their calculations, we shall not repeat
them here. Rather we only outline the approach and pro-
vide Appendixes with detailed explanations which com-
plement these given by GS.

The following renormalization constants are de6ned
through the relations between the bare and the renor-
malized couplings:

(8ln ZD & ( p2g+cb

(8&)s ( 8K )s ( Dp )
(24)

27t. 2

(8K) s ( 8K ) s (Dp)

(8v lt

(8~) s 4(Dp)'

where subscript b xneans that all bare parameters are
fixed when one performs the differentiations [18—20] and
r, is a mass scale. The renormalization of the couplings
may also be related to the same P functions. Their fiow
under a scale change by a factor li = exp(l) is given by
minus the related P function, in addition to the naive
dependence which originates in the rescaling of x ~ bx
k ~ b k, and t ~ b't. The recursion relations so ob-
tained are as follows:

The subscript R labels the renormalized 6eld variable,
and 0 the bare variable or the coupling constant.

For convenience, we define Z&
——[Z&] .

The renormalization of p depends on Z4, and Z&, and
no additional Z factor for renormalization is required.
This is due to the FDT, which ixnplies

dv
0

dl

dv

dl
xy -2

2

4v(Djc)

dD ( gp'~)c)
2 —z+

dl ( DPv )

(27)

(28)

(29)

g~'Vc&
2 —z+ p,dl ( Dpv ) (30)

Here 8(t) equals 1 for t ) 0, and 0 for t ( 0.
Equation (21) is obtained by substituting Eq. (20) into
Eq. (22). As we will show later, Dp will not suffer any
renorxnalization. Therefore it is not necessary to calcu-
late ZD in the harxnonic model, which obeys the FDT.

As outlined by GS, the model has a very important
symmetry, P(z, t) ~ P(z, t) + f(z), where f(z) is an

dg & p'DI- &2— g — gdl ( 2zv ) (Dp)2

In the next section we discuss the asymptotic scaling be-
haviors implied by these fIow equations.
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IV. DISCUSSION P (I) = ~(0)e

Recalling that the texnperature of the system is T =
Dp, we find that

&&
——0. Hence the temperature is not

renormalized. The behavior of the system is governed
by the renormalization of the coupling g. The Bow of
g depends crucially on the texnperature. I et us de6ne
T,„=" . The recursion relation for g takes the form

Bg f T l 2x ,
Bl i T,„& T'

Therefore for T & T,„gBows to zero, while for T & T,„
g Bows to a 6xed point of order —b = 1 —

& with a
continuous line of fixed points (see Pig. 2).

We now analyze the dynamics in each phase separately.

A. The high-temperature phases: T & T„

Since g ~ 0 in this phase the equilibriuxn properties
are the same as in the high-temperature rough phase if
a surface on a smooth substrate C(L) —ln(L).

Way above T,„ the mobility of the surface is 6nite.
However, as T,„ is approached the mobility becomes
smaller and eventually vanishes at T = T,„.

Integrating the recursion relation we find that

where P = ~- ~, and
DP,v '

-bg(0)e
—b —og(0) + ag(0)e

with o. =
(~~)'

Now we can obtain the xnacroscopic mobility, p,

p(l -+ oo), in the linear response regime (I" -+ 0) for
the high-temperature phase.

~(&=~) =P (t=0)
I I

-I~I ' (86)
(~~(0) + I~I)

where ~ = 2~c - 1.78.
As T m T+, pM vanishes continuously as demon-

strated above. In the low-temperature phase g(l) fiows
to a finite value. Its 6xed-point location changes with
the temperature. More explicitly, the set of 6xed points
of diferent temperatures forms a fixed line in the plane
of g and T, in which g'(T) ~ T,„—T, to first order
In this phase the scaling equilibriuxn properties and the
dynamics, as well as the transport properties, are drasti-
cally modified. Most of the forthcoming discussions are
devoted to this new, super-rough phase.

f T
s -Pol

(Ts~ ) B. The low-temperature (T ( T,„}super-rough phase

with 2+c = 1.78.
The dynamic exponent remains z = 2 throughout

this phase, although the asymptotic scaling behavior is
—1

reached only on scales L & L~ where L~ go~ is the
scale on which g decays to zero. The scale Lg diverges as
T ~ T,„since ln(Ls) (& —1)

As long as one sits at a texnperature T ) T,„,the decay
of g under the flow will not alter the asymptotic scaling
behavior for L ) Lg, except that the amplitude in the
correlation function depends on the bare value of g.

In the high-temperature phase, the fiow of P(l) can be
calculated in terms of g(t):

The regime of temperatures below the transition pro-
vides the most exciting new physics. The theoretical pre-
dictions which follow are: (i) The correlations will change
from C(L) lnL to C(L) (lnL)2. Hence the surface
is even rougher than that in the rough phase at T & T,„.
This behavior was dubbed by Toner and DiVincenzo as
super-rough [21]. They found it first in the surface of
crystals with bulk disorder. (ii) The dynamic critical ex-
ponent z now displays a temperature dependence. It in-
creases continuously Rom its value above T,„,z = 2, and
z —2 is to first order linear in T,„—T. (iii) The linear
response macroscopic mobility vanishes. The response
becomes nonlinear [5], at least close to the transition,
such that the average velocity v scales with the external
force I" as v E~+~, where g is also a temperature-
dependent exponent (related by scaling to the dynamic
exponent z).

In the following we concentrate on each of these phys-
ical manifestations separately.

1. Super -rough eqtailibHum co~latione

FIG. 2. The Sow diagram for y(l} with two difFerent fixed

lines for T larger and smaQer than T,„.

For T,„& T, g approaches a line of fixed points
g* = (T,„—T) jm (see Fig. 2). As was shown by Toner
and DiVincenzo [21], the correlation function of the 2D
surface acquires a second logarithmic factor. Since they
used the static replica formalism for a model with bulk
disorder, we explain here how this behavior is obtained
within the dynamics forxnulation, for the case of disorder



50 DYNAMICS OF PARTICLE DEPOSITION. . . I. . . . 3551

in the substrate.
The Fourier transformation of C(L, 0) two-point vertex

function I'p z(q, t = 0) is defined as before:

I p,2(q, t = 0) = ((h(q)h( —q)))z,. (37)

For systems with vanishing g, I'p 2(q) =,. Once

the term v JJf dxdtdt'Vh(z, t) Vh(z, t') has to be ac-
counted for, the height-height correlation functions are
obtained Rom the quadratic part of the Hamiltonian
which contains this term. One obtains the equal-time
dynamic correlation (namely, the static correlation func-

tion),

1 vq2I', ,2(q, t = o) = , +
vq vq

(38)

h(q)h( —q)) = r»(q; ~, u(0), g(0))
= e"I'p 2[e'q; v, v, g(l)]. (39)

The first term in Eq. (39) comes &om the naive dixnen-

sion of (h(q)( —q)). Using Eq. (38) with the renormalized
values one obtains

The first term is the equal-time correlation originating
&om the time-dependent part of the correlation. The sec-
ond term arises &om the so-called time-persistent part,
which will be explained in Appendix A.

The second term is proportional to ~ as the first.

However, because P(l) increases with l (while v remains
unchanged with /), it carries another scale dependence.
The height-height correlation function, under a scale
transformation by the factor b = e changes as

The behavior found above persists in the regime L ((
z/z

For L && 7 ~' simple scaling implies a dependence of
(lnr)2 on 7. The derivation of the intermediate behavior
of C(L, 7) is beyond the scope of this paper [it requires
the knowledge of I'p 2(q, ~)]. However, simple physical
considerations hint very strongly that its behavior is of
the form C(L, w) (ln Lf[r/L'])~

The dynamic exponent

To calculate the value of the dynamic exponent z in
the low-temperature phase one should look at the re-
cursion relations of D and p, . To locate the fixed point

one can require that both of "&& and ~&& be equal to

zero. Then z is obtained as z = 2 + 4+c[b[, where the
fixed-point value of g, g* =:,was inserted. As far as
we know, this is the first example in which the dynamic
exponent z varies with texnperature continuously (besides
the random anisotropy XY model which is described by
a similar field theory [17]). The physical implications of
the increasing z can be understood from the fact that the
relaxation time to reach the equilibrium state is longer
as the temperature is lowered below T,„. This is to be
expected in the phase where the disorder is relevant, and
the surface turns super-rough as explained in the pre-
ceding section. Since the surface stretches itself to find
the configurations with the lower &ee energy, it will leave
these locations slowly. The slower dynamics implies also
a graduated increase in the averaged free energy F(L)
barriers, associated with a scale I, due to the disorder.

3. The nonlinear me@once

I'p 2(q, t = 0) =
~

A —B ln(qa) ~,
1 f (g')'

(41)

where A = 1,B = 4~, . Consequently the static correla-
tion function is

C(L) = &' »
I

—
/

+ &'»'
I

—
/

.
Eai

(42)

Hence the behavior found by Toner and DiVincenzo
[21] for the bulk disorder is also reproduced in the system
under consideration, where only the substrate is disor-
dered. Experimentally, it might be diKcult to distinguish
ln( —) from ln ( —). However, the dynamical behavior in
both phases is apparently different and their difference
may be detected by the experimental observations.

ve2'q2
g v ) vq2 g v )'

(4o)

Apart from a finite part, v(t) increases as (g') l.
By choosing l such that e~q = 0 = a i (where 0, the
momentum cutoff, can be chosen as the inverse lattice
spacing), the vertex function, I'p 2(q, t = 0), is found as

In the last section, addressing the high-temperature
rough phase, we have found that the linear response mo-
bility vanishes as (T —T,„)i'rs, when T is reduced to T,„.
Below T,„ the linear response mobility pM vanishes.

As we show in the following the response becomes non-
linear. Again the physical origin of this behavior takes
roots in the preferred configurations of the surface which
are local minima of its &ee energy. Applying a small
force F will not move the surface in a uniform veloc-
ity. Actually a somewhat similar situation occurs in the
smooth phase of a surface growing upon a Hat substrate,
where the mobility jumps from a finite value to zero at
the roughening temperature.

If the pinning is even stronger the surface grows by ac-
tivation of higher islands. If the substrate is disordered,
the preferred and inhomogeneous locations of the surface
are enough to slow the motion and then to cause the lin-
ear response mobility to vanish. However, it still allows
for a uniform motion with average velocity which van-
ishes as F +" (g ) 0) when F ~ 0. Hence the velocity
vanishes faster than F. The force F is a relevant field
which increases as F(L) FpL with the length scale.

Even for small Fo there is a scale L' aFO for which
the scaled force is of order 1, namely, it is not a neg-
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ligible quantity. On the scale, L ) I the behavior is
not "critical. " The large force moves the surface with a
uniform velocity. The ratio between the force and the
velocity is determined by the mobility p at the boundaryI' between the "critical" (L & L') and the "noncriti-
cal" (L & L') regimes. Within the scaling picture L'
can serve as a "cutoff length. " Hence it is the mobility
p(L') for a piece of the interface with linear extent L'
that is determining the mobility of the whole surface on
scales L & L'. Note that p(L) is not exactlyP, (L*) but
the ratio between them is finite since no "critical scaling"
holds for L & I'. The scaling of/ (L) for L & L' may
be derived kom its definition as

(43)

Under rescaling L + L/b we already know that t ~
t/b' and F -+ Fb2 while h does not suffer any renormal-
ization. To make both sides scale similarly we must have
p, m pb ' and defining p ~ ppb ~ we obtain

C. T at and just below' T,

The discussion we presented so far for T & T, ap-
plies on length scales for which g is already close to its
fixed-point value g*. If the temperature is very close to
T,„ these scales become very large and it will be neces-
sary to account for the crossover regime. The recursion
relations can be integrated as before and yield, for the
scale-dependent mobility,

j(z) = p(o)Ii+, g(o) 2h (a)
(47)

From this expression we see that if ( —) ~ ~ && 1 the

results of the preceding section apply. If the force F is
not small enough for the associated scale L* to satisfy
this condition the relation between the velocity and the
applied force changes to

rI = (z —2)/2 = 2+eh =—1.78~b~ . (44)
—1.78

v/F-~1+ —(F ~~ —1)
~T' 2h

(48)

fL'l
&(L') = » l l

= VoFo" = voFoga&
where we have used the relation between L' and Fp.

So we have identified the dependence of pM on Fp &om
which we obtain the averaged velocity:

(45)

That implies that y, (L) on a scale L & L' is made smaller
by ( —)

2" with respect to its bare value. In particular,
we find

At T = T,„(b = 0) this expression yields

(1+ g(0) I-(F)T2

namely, v/F vanishes as F ~ 0 due to logarithmic cor-
rections. They originate from the effect of g which is
marginally irrelevant and decays to zero so slowly that it
still causes v/F to vanish.

~/2
poFo Fo = poFp = goFo (46)

Thus as temperature is lowered the velocity (for the
same tiny force Fo) becomes smaller. How far below T,„
do these relations holds The scaling picture is based on
a local equation of motion of h. Therefore it implicitly
assumes the existence of a single solution for the equation
of motion in the limit of vanishing uniform force. Just
below T,„ this is a valid assumption since even if more
than one minima exists the scale associated with the dif-
ference between the minimizing configurations (which di-
verges as T -+ T,„) is larger than the scale we discussed
here. At lower temperature this may no longer hold. The
existence of multiple minima might be felt on the rele-
vant scale (i.e., I'). In the regime where many minima
are relevant the dynamics will be activated. In other
words, the slower processes are going to be related to
the height of the barriers between these minima. Some
works [22,13] have been devoted to estimating these bar-
riers and drawing the conclusions based on "activated
dynamics. " It is not clear, however, how reliable these
heuristic estimates are (e.g., the barriers are identified
with the fiuctuation in the minima of the &ee energy).
Unbounded barriers between configuration unrelated by
symmetry will also lead to broken ergodicity which can
be reBected in "replica symmetry breaking. " Such a pos-
sibility was found recently within a variational approach
[23].

V. SUMMARY

To summarize the main conclusions of our investiga-
tion on the effect of disorder in the substrate on the sur-
face dynamics: There exists a phase transition between a
high-temperature, rough phase, and a low-temperature,
super-rough phase.

In the rough phase correlations and response functions
have the same scaling properties as in the pure case. The
disorder and the periodic potential are irrelevant in this
phase. As the transition temperature T,„ is approached
from above the macroscopic mobility vanishes continu-
ously as (T —T,„) (contrary to t'he flat substrate in
which it has a finite jump).

The properties of the low-temperature phase are
unique. The height-height correlations are C(L, r)
[lnL] as I « r ~', and C(L, r) [in')2 as L && 7'~'
with z = 2+ 4+c(1 —

& ) to first order in (1 —T/T, „),
namely, the dynamic exponent increases continuously
&om its Gaussian value of 2 as the temperature is lowered
below the transition.

The linear mobility has a scale dependence which
causes it to vanish on a large scale. We have shown
that this scale dependence results in a nonlinear rela-
tion between the applied force and the average velocity:
v Fi+", where g = 1.78(1—

& ) is also a temperature-
sr
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dependent exponent.
All these results also apply to the 2D vortex-glass sys-

tem in a film of type-II superconductors.
We discussed these implications elsewhere [14]. The

xnost important one is the nonlinear relation between the
voltage V and the current I: V I +" with g given
above.

Our RG calculations give the same static behavior as
obtained by the replica approach with unbroken replica
symmetry.

Other works have shown the symmetry to be broken
within a nonperturbative variational harmonic approxi-
mation which is equivalent to the N ~ oo limit. It is still
unsettled whether the replica symmetry is indeed broken
for N =1.

Preliminary numerical results for a 2D vortex-glass [27]
and a random growth model [28] show a transition in the
dynamic properties at a teinperature within 10%%up of the
analytic RG result. Looking at the static correlations be-
low T,„,however, the possibility of the replica-symmetry
breaking may not be excluded. However, it is too early
to draw firm conclusions &om those preliminary results.
It is to be expected, therefore, that more analytical and
numerical works would be necessary to reconcile the dif-
ferent results and to reach a complete understanding of
this exciting and challenging problem.

ment»m and time representation, they are given by

(A3)

(&(g t)&(—g t')) =
q2+ m2 (A4)

d2 ~
C,(z t)

"g e'eu ~(e'+ ')
(2z.)2

q +m
y2 —ge2 +~2

(A5)

R,(;,t) = '(') .—"."--'".
4xpt

(A6)

Furthermore, the following equations are very valuable
to extract the asymptotic behavior of &ee propagators
[»]:

In this manner, both the &ee response and &ee corre-
lation functions possess a xnass dependence in their de-
nominators as one can see from Eqs. (Al) —(A4).

The short-distance cutoE is introduced for regulariz-
ing the ultraviolet divergence in two dimensions. The
regularized Co and Ro are
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as m (z + a ) « mpA~t[ && 1, (A7)

Cp(x = O, t) = ——ln(2+cmpA~t[) + 0
~ ~, (A8)

1 (a')
4m' (Ap[tf)

'

where Cp(z, t) = DIJCp(z, t), and C is Euler's constant
—0.5772. In the limit m2pA~t[ && m2(x2 + az) && 1, the
equal-tixne correlation behaves as

APPENDIX A: RESPONSE AND CORRELATION
FUNCTIONS Cp(z, t = 0) = ——ln[cmp(z + a )] + O(z ). (A9)4'

(&(g ~)&( g-~)) = „,- (A1)

2Dp2

where m is the mass of the Beld P. We have introduced
the mass m to regularize the infrared divergences which
appear in the upcoming loop calculations. In the mo-

Two kinds of propagators, the response function and
the correlation function, arise from the free (Gaussian)
portion in the efFective action in Eq. (17) (consisting of
a quadratic form in the field P and the auxiliary field
P). One can calculate the free response and correlation
functions directly &oxn the &ee part of the action So in
Eq. (15). In the momentum and frequency representa-
tion, they are

The zero-order Quctuation-dissipation theorem relates
the response function to the correlation function as fol-
lows:

1 d
e(t) —„C,(x, t) = R, (z, t). (A10)

(1) Basic diagrams. In Fig. 3 the wavy line represents
the auxiliary field P; the straight line represents the field

The dashed line is set to separate two difFerent time
coordinates. The dot points represent the abbreviation
of the other P lines.

(2) Pree propagators. Correlation function Cp(z, t) and
response function Rp(x, t) are shown in Fig. 4.

In general, the equal-tixne correlation function,
C(x, t = 0) = (P(x, t)P(0, t)), is identical to the static
correlation function ((t(z)P(0)) averaged by the Boltz-
mann weight. As a special case for the connection, one
can refer to Eq. (A4). On the other hand, the response
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stands for the vertex function with I external P lines and
N external P lines. The factors, Zy and Z&, are set to
remove the divergent parts of the vertex function I'.

APPENDIX C: THE CALCULATION OF ZA

I'z z(qod; p, v, g)= Z- I'i x(qod; po, mo, go)
- X/2

= Z- I'g g(qod; yZ:, m, Zsg).
- X/2 —1 (C1)

The contribution &om the action of the first order in g
to Z& can be calculated by considering

V, +M, +M
bM(Z, t)hM(o, o)

(C2)

Prior to the calculation, we make some remarks
about the notations of the parameters. Since m~ and p~
satisfy Eq. (19) and Eq. (20) with Z~ being 1, we have
mo ——m and po ——p. Thus there should be no confusion
if we use them interchangeably.

Before entering the calculations of the Z factors, one
should make reference to the relations between the var-
ious vertex functions. For the calculation of the Z& fac-

tor, one should focus on the vertex function [17], I'q q.
Inferred from Eq. (B3), their renormalized and bared
counterparts are related by

FIG. 5. The Feynman diagram for the vertex function F&,&.

where

2 2

V. (d, d) = ",', ' -f d zdtdf'd(d, t)d(*, ~')

x cos(p[P(z, t) —()I)(z, t')]). (C3)

Figure 5 shows one representative of the diagrams cor-
responding to I'q q in Eq. (C4). The dots inside the circle
stand for the contractions of P(z, t)s and P(z, 0)s, which

results in e~ '(o'~) in Eq. (C4). The dots near the left
"ears" represent the contractions of (()(z, t) s and ()I)(z, t) s,
which result in e ~ +'(o'o) in Eq. (C4). The roles of the
dots near the right "ears" are similar.

In the &equency representation, the integral coming
&om the contractions of inner lines can be written as

( OO OO

e' 'dt's(o, t)e ~ '( )+~ '( ') —(iod) dte' 'e ~

rp D p
(c4)

1 d—P co(o,o) dtei~ dt + C (0 t) [ee o( ) 1]
p2D dt

Qp (Q,Q) ~

dt iwt p cp (o,t) 1

o
(c5)

Combining with the prefactors and using g
go(cm2a2)s, we have

F, o(q, ~; p, g) = Z~I'2 o(q, od; Z~Id, , Zsg). (D1)

1/m A

(—i~)p2cm2
2 g

PoDo ~~/z 2/cm2 pot
(c6)

The associated diagram is illustrated in Fig. 6. After
taking the contraction of the inner lines, we are left with

Finally, Z& is found as
M(z, t') M(z, t), (D2)

2 c
2* pD

(C7)

where e = cm is the scale at which one can impose the
prescription for the vertex functions corresponding to the
renormalized parameters [26].

times 2(cos(p[P(z, t) —4)(z, t')] j)o, where the contents in-
side the angle brackets are averaged with respect to the
&ee action. The latter term contributes to the renormal-
ization of the two-point vertex depicted in Fig. 6. The
calculation of this term can be performed with ease as
shown below. In the time representation, it reads

APPENDIX D: THE CALCULATION OF Zg)

1o calculate the factor Z~, we consider the vertex
function I'2 p. The bare vertex function I"2 p is related to
I'z o through Z&. They can easily be seen from Eq. (83):

2 2 OO

—2 ~ 7 —&'c, (o,o) dt ~ c,(o,t) '~t
2G

In the limit u —+ 0, it reduces to

(D3)
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2
Finally we inherit Zrp = 1+ ~ &'s ln(cm2a2). There
should be no confusion if me put either the bare or the
renormalized values of D and p in the denominator in
the above equation. Up to this order, there will be no
difFerence between these two possibilities.

FIG. 6. The Feynman diagram for the vertex function F&,0. APPENDIX E: THE EXPRESSION OF Z~
AND THE RENORMALIZATION OF 0

2 2 2
OQ

2 ~+0+0 —y cP {0,0) gg P cP (0,4)

2G
(D4)

—2 e ~ '~ ' l ln(cm a ) + finite terms.
2as 2+em'p

(D5)
Then,

2Dp =—(Z&) ( 2Dppp—+ p +cgppln(cm a )). (D6)

With the aid of the formula given in Appendix A, the
divergent part of this term can be obtained by proceeding
in the same manner as in the preceding section:

It is a tedious calculation to Gnd Z~ by considering
the vertex function I'2 p(q, u). Since quenched disor-
der is present in the system, one may instead consider
I'2, p(j, ti, —j, t2), in the hmit It& —t2

To obtain the scaling equation of v, one should consider
the j-dependent part of I'2 p(g, ti, —g t2) with ~ti —t2[ m
ao. The contractions of 6elds vrhich connect the points
tq and t2 make no contributions. The q-dependent part
of I'2 p up to order g2 involves seven diagrams, which are
classi6ed into three sets as illustrated in GS [17]. Those
terms can be expressed as the first seven terms in (7.3)
of GS [17]. The first set [referred to Fig. 1(a) in GS]
contains only one diagram, as shown in Fig. 7(A). The

(x&, t) (x2, t

(x2, t') (x2 t2)

(xl, t ") (xl, tl )

(A)

(x2, t) (x2, t2)
(x2, t) x2, t

FIG. 7. Four Feynman diagrams contributing to the renormalization of&.
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second set contains three diagrams, corresponding to (B),
(C), and (D) in Fig. 7. The third set can be obtained
from the second set by swapping (zq, tq) ~~ (x2, t2) and
(z~, t") mm (x2, t')

In the following, we only present the calculations which
are not explicitly given in GS [17]. In the calculation, we
only concentrate on the time-dependent part, neglecting
the prefactors. This should not be a cause for confusion
when one retrieves them later. By changing the variables
T' = tq —t' and 7."= t2 —t" the 6rst term is recast into

x sinh p [
—Co (z, r') —Co (z, v")], (El)

where x = xq —x2.
With the identity of FDT for Rp and Cp and the inte-

gration by parts, it is simpli6ed into

—1,„ t'd, , i (d
d7'd7. " ~, sinhp Co(z, 7')

~ ~
„„cosh' Co(z, ~")

~

I'd 2, ) t'd
, cosh' Co(z, ~')

) (
„sinhp Ce(z, r")

[

sinh[p Ce(z, 0)](cosh[p Co(x, 0)] —1). (E2)

By changing the variables v' = tq —t' and r" = t' —t" in the second term [see part (B) in Fig. 7] and 7' = t" —t' and
T" = t2 —t" in the 6fth term, they become

dT' dT"Rp x, T' Rp z, T" exP P Cp O, T'+T" sinhP Cp X, T —Cp X, T" (E3)

By changing the variables 7' = tq —t' and r" = t' —t" in the third term [see part (C) in Fig. 7] and 7' = t2 —t" and
T = t" —t' in the sixth term, they become

dT dT Rp z 7 Rp Q, T +T exPP Cp 0 T +T coshg Cp z T —Cp z T" (E4)

By changing the variables v' = t" —t' and 7" = t' —tq in the fourth term [see part (D) in Fig. 7] and 7' = t' —t" and
T" = t" —t2 in the seventh term, they become

dT d'T x T Rp 0 —T —T exPP Cp 0 7 +T coshg Cp x, T —Cp X, T" (E5)

With the FDT identity, Eq. (ES) can be futher simplified into

d7' dv" exp' Co(0, 7'+ r")],cosh7 Co(z, 7') „sinhp Cs(z, ~")
p dTI dTII

„cosh' Ce(z, 7"),sinhp Co(z, r') . (E6)QTII dT'

By using the FDT and the integration by parts, one can reduce Eq. (E4) into

d~' d~" exp[p Cp(0, r'g r")],cosh' Cp(z, ~') „sinhp Cp(z, r")
~l (d7 dT

cosh' Co(z, 7") sinhp Co(z, 7') + the boundary term . (E7)

Similiarly, Eq. (E5) is recast into
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I
OO —T

d7' dr" exp[p Co(0, r'+ r")],cosh' Co(x, ~'), sinhp Co(x, 7.")

cosh' Co(x, r") sinhp Co(x, r') + the boundary term . (E8)

Combining Eq. (E6), Eq. (E7), and Eq. (E8) terms excluding the boundary terms, we have

OO 0
d7' d7" exp[p Co(0, ~'+ ~")],cosh' Co(z, ~') „sinhp Co(*,7")

, cosh' Co(z, ~"),sinhp Co(x, ~') . (E9)

The above integral vanishes since the integrant is antisymmetric with respect to the transformations ~' ~ —&" an~
7 H —7

II I

The boundary terms in Eq. (E4) and in Eq. (E5) cancel each other also. For example, the boundary term in
Eq. (E4) reads as

f
OO OO

d~' [sinhp Co(z, r')] + d~'exp[p Co(0, 0)]
0 0

x sinhp Co(z, r') cosh' Co(z, r') —— cosh' (z, r') sinhp Co(z) —~') . (E10)
dTI d7-I

To sum up, the only contribution is from Eq. (E2). Extracting the singular contribution [17,19] gives vs = v +
~(g ), ln(Kzaz).
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