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Transient multimodality in relaxation from an unstable state
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We analyze a relaxation process &om an unstable state during which transient multimodality
occurs. This phenomenon is investigated experimentally on an electronic analog circuit which mimics
an overdamped bistable oscillator driven by Gaussian white noise. The oscillator potential is a
sixth-order polynomial U(x). The measured times and positions at which new maxima appear
in the probability distribution function agree well vrith the theoretical predictions. Although the
initial stage of relaxation is governed by the noise the occurrence of transient multimodality is of
the deterministic nature only. It is shown that the shape of the potential allows for the coexistence
of three probability distribution peaks during a sizable interval of time, even though there is no long
"Hat" region in the potential where U'(x) is very small. Finally, the concept of marginality with
reference to unsteady states is discussed.

PACS number(s): 05.40.+j, 02.50.—r

I. INTRODUCTION

Consider a dynamical system subject to random noise.
Its state may be characterized by the probability distri-
bution function, in which the number of maxima is the
dominant feature. As certain parameters associated with
the system are altered, it evolves towards a new state hav-
ing, perhaps, a different number of probability distribu-
tion peaks. If, for some period during the evolution, the
number of probability distribution maxima is larger than
in the initial and stationary states, one speaks about the
phenomenon of transient multimodality (TM). It means,
that for a sizable interval of time, the given system can be
found with comparable probability in any one of a num-
ber of states that is larger than the member of its steady
states. Such behavior was first reported by G. Nicolis
and co-workers [1—3) in the theoretical study of explosive
chemical reactions and combustion. Later on the possi-
bility of the appearance of TM was mentioned for some
optical bistable systems [4—7] and for a Brownian particle
in shear fiows [8]. The theoretical predictions were con-
firmed by means of numerical simulations [1,2,4—6,9,10]
and experiments on optical bistability [7,10—13], an elec-
tronic circuit [10],a laser with a saturable absorber [14],
a semiconductor laser [15],electrohydrodynamic convec-
tion in nematic liquid crystals [16],combustion processes
[17], and also through studies of the dynamics of error
growth in numerical calculations [18].

The theoretical description associates TM with evolu-
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tion in a potential having a Bat plateau, for which critical
slowing down occurs [4,6). The fiuctuations driving the
system accelerate the evolution of some stochastic real-
izations over the Hat region, after which the system is
rapidly switched to the vicinity of a stable state x, . Since
some stochastic realizations still remain at the plateau re-
gion one observes the "bunching" of trajectories in two
places, namely at the plateau and i.n the bottom of the
potential well. So the probability distribution possesses
two maxima. This phenomenon arises some time af-
ter the initial probability distribution peak reaches the
plateau and it disappears again once an appropriate mass
of probability distribution (i.e., a sufficient proportion of
stochastic trajectories) has left the Bat part of the po-
tential. Thus, there is a discontinuity in the evolution of
the probability distribution maximum.

It was argued [19,20] that such behavior can occur if
the evolution of a system is characterized by two difer-
ent time scales. The longer one results &om the long
induction stage at the potential plateau. It is of the or-
der of the mean first passage time (MFPT) T needed to
reach the edge of the Hat region. However, due to the
essential role played by Suctuations at this stage of the
evolution, the actual value of this time for a given real-
ization is distributed within an interval of the order of
the standard deviation LT of the MFPT. The shorter
time scale tg is associated with the deterministic tran-
sit &om the edge of the plateau to the bottom of the
potential. In terms of these quantities the type of evolu-
tion can be characterized by the ratio rl = td/AT TM.
is possible provided that 4T is of the order of the long
time scale T, i.e., q ( 1. In contrast, if g ) 1, most of
the stochastic trajectories leave the plateau region before
any of them reach the vicinity of x, . Thus the probabil-
ity of 6nding the system somewhere between the plateau
and the bottom is large and, consequently, the proba-
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bility distribution peak travels continuously towards its
stationary position. The relation rI & 1 is also known [21]
to apply close to a marginal state [U'(z) = U"(z) = 0]
but not in the vicinity of an arbitrary unstable state
z„[U'(z„) = 0, U"(z„) & 0]. Hence some authors
[6,14,20] conclude that, generally, TM is not expected
during relaxation &om the top of a potential barrier. The
parabolic curvature of the barrier seems to be too steep
to generate a distribution of T wide enough that AT and
tg are of difFerent time scales. It should be noted, how-

ever, that this conclusion stemmed &om the analysis of
only one type of potential, namely the quartic potential

U(z) = —,'b*'+ —,'oz',

(with b ) 0, a & 0) that is usually considered while deal-
ing with the decay of an nonstable state (e.g. , [22]).

Recently, however, one of the present authors [23]
proved that TM can also arise during the evolution &om
an unstable state x„. This eKect applies to a very wide
class of systems, even very far &om marginality. It turns
out that the type of evolution (with or without TM ef-

fect) to be anticipated depends only on the sign of the
fourth derivative of the potential in the unstable state —if
it is negative some new peaks must appear before the ini-
tial maxim»m at x„disappears. However, it also means
that the potential curvature at the imitable state is much
steeper than in the parabolic case, so that the system
should leave the vicinity of x„very quickly. How can one
reconcile this result with the previous discussion in terms
of time scales? The main aim of the present paper is to
answer this question.

We consider a one-dimensional overdamped osci11ator
subject to the force derived &om a double-well potential
and a Gaussian white noise. Its evolution is governed by
the Langevin equation

*= —U (*)+~(t)

with a symmetrical sixth-order polynomial potential

II. ELECTRONIC ANALOG SIMULATIONS

The utility of electronic analog techniques for model-

ing stochastic dynamics has been demonstrated in many
contexts (see, e.g., [25,26]). An electronic circuit is in
many ways the simplest "real physical systexn" in which
a required theoretical problexn can be investigated. The
actual circuit used to model (2)—(4) is shown schemati-
cally in Fig. 1 (cf. [27]). It is based on three analog mul-

tipliers (Analog Devices, AD534) and a Miller integrator.
Two independent random signals " and Z are supplied
&om standard exponentially correlated Gaussian noise
generators [28]. Since the noise correlation times are of
the order of one tenth of the tixne constant of the Miller
integrator, they are perceived as effectively white noises

[26] with correlation functions

(:"(r):"(r'))= 28(Vt h'(r —r') (5)

(Z(r)Z(r')) = 2er, vc S(r —r'), (6)

dv
d7-

= —AV + Z((r). (7)

Since the half-period of the switching signal is much
longer than the relaxation time of this circuit the station-
ary distribution of (7), namely a Gaussian distribution
centered at V = 0, is generated. During the second half-
period the main circuit comes into action (as in Fig. 1)
giving [29]

where V& and V&2 are the variances of the noise voltages

[29].
A square-wave signal operates periodically a solid-state

switch 8 (DG303ACJ) to alter the system between two
versions of the circuit. The fust one (disconnected in
Fig. 1) prepares the required distribution of initial con-
ditions and it operates within a linear Langevin equation
[29]

U(*) = —,'c*'+ —,'b*'+ —,'oz'. (3)

= —pV.' —PV,V.' —(o.,V + o.,V,') V. + =(r). (8)d7.

After the simplifying scaling V = Az and r = Bt
The parameter a & 0 6dfills the requirement of instability
at z„= 0, b determines the sign of U (0) and c ) 0
ensures the existence of stable states +z, . The noise ((t),
of zero mean, is characterized by its correlation function

(&(t)&(t')) = 2«(t —t')
o+x
0+ -0

Vb V,

~O
x+ 0

x
0+ -0

~--VhM

S
where q is the noise strength.

To confirm that TM really occurs during the decay
of an unstable state we performed some electronic ana-
log experiments. The experixnental arrangements are de-
scribed in Sec. II. The results are reported and compared
with previously obtained [24) analytical formulas charac-
terizing TM in Sec. III. The problem of the diR'erent
time scales and the possibility of the appearance of TM
are discussed in Sec. IV and soxne conclusions are drawn
in Sec. V.

V V v v v

V„ir

FIG. 1. Block diagram of the electronic circuit used to in-
vestigate the evolution of Eqs. (2)—(4) with randomly dis-
tributed initial conditions. The minus and plus signs inside
the multipliers mean respectively that there is or is not a
change of sign during the multiplication. The signals con-
nected to the top of the multipliers are added to the results
of the multiplication.
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(also determined by circuit values) one obtains from (5)
and (8) the required Eqs. (2)—(4) while Eqs. (6) and (7)
@~exantee Gaussian initial distribution with a variance
po. The four voltages V, Vp, Vg, and Vt are set externally
to vary the parameters of the potential U(x), the noise
strength q, and the width po of the initial distribution.

The output, a time-dependent voltage V (t), was ana-
lyzed by means of a Nicolet 1080 computer system. For
each realization of z(t) an initial state was first prepared
according to (7) with the required statistics (an appro-
priate value of po). Then, as the system was switched
to the main circuit, the Nicolet analog-to-digital conver-
tor was triggered and an input sweep was acquired: 1024
values of V (t) were digitized and recorded at equal time
intervals, with 12-bit precision. The sweep was analyzed
by examining each 16th value and incrementing the cor-
responding point of a 64-level distribution. The process
then repeated, building up a set of 64 64-point distri-
butions separated by equal intervals of time, and was
continued until the statistics were adequate. It turned
out that 2 x 104 realizations was a sufBcient number.

0.2

-2

I'

III. EXPERIMENTAL RESULTS
0.015

The appearance of TM in (2)—(4) was confirmed imme-
diately by the experimental results. An example of the
time evolution of the probability distribution W(z, t) for
b & 0 is exhibited as a three-dimensional plot in Fig. 2(a).
The existence of a time regime within which three prob-
ability distribution peaks coexist is clearly evident. A
comparison of the instantaneous experimental probabil-
ity distribution with the same parameter values for sev-
eral times in the stage of evolution when the new maxima
appear is shown in Fig. 2(b). Notwithstanding the sta-
tistical fiuctuations in the shape of W(z, t), the trimodal
character of the probability distribution at certain times
is clearly demonstrated.

It follows Rom [24] that, for the potential (3), TM can
appear not only for b ( 0 but also for some positive val-

ues of b, namely for b & b, = —3ac. Examples of the

instantaneous probability distribution measured for pos-
itive b at three times are given in Fig. 3. It is seen, that,
within the experimental accuracy, the evidence of TM
is very weak. Over a comparatively long period of time,
the probability distribution remains very Bat, almost uni-
form, and the di8erence between the heights of maxima
and minima is very small, so that the effect of TM is
rather insignificant. As the value of b was reduced &om
b, the phenomenon of TM became more clearly resolved,
although it lasted for a very short time. As b crossed zero
the coexistence of three probability distribution peaks be-
came evident and the TM persisted for a very long time.
Such behavior agrees well with the previous analysis [24]
which distinguished short-life (0 & 6 & 6 ) and long-life
(b & 0) forms of TM. In the former case, the properties
of the potential determine the finite time of coexistence
of the three peaks, while in the latter case, it is only the
strength of the noise that determines the time at which
the middle peak disappears. Hence, if q is very small, the
efFect will be observed over rather a long period and TM

0.01

0.005

0.0
-2

I

0

0.03—

FIG. 3. Cuts through the probability distribution W(z, t)
for a = —2, b = 0.99, c = 1, po ——0.01, q = 0, at times t = 0.93
(dotted line), 0.9S (solid line), and 1.04 (dashed line).

FIG. 2. Time evolution of the probability distribution
W(z, t) for a = —2, 5 = —2.47, c = 1, po = 0.01, and

q = 0.02: (a) a three-dimensional plot and (b) a plot of
the lower part of instantaneous probability distribution for
t = 0.56 (short-dashed line), 0.58 (dotted line), 0.60 (solid
line), 0.63 (dot-dashed line), and 0.65 (long-dashed line).
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eventually seems to disappear because of the experixnen-
tal indistinguishability of the middle maximum and the
mlnlma.

It was shown in [24] that both sources of random-
ness, i.e., the random initial conditions and the stochastic
force acct the appearance of TM. The sixnpler case for
theoretical treatment is that of deterxninistic evolution
with randomly distributed initial states. In [24] some
calculations for small po were performed. In particular,
the formulas for the critical tixne t and position z,„of
the appearance of new maxima [i.e., values which satisfy
W'(z, „,t ) = W"(z, t ) = 0] read

2.0

1.5

0.5

I

~ leR
h right

1 ( c, bl
t,„—ln po —5—z —3—

~2a ( a ai

+ 2
z ln 1+

2a(z!+p) '
& p i

z2 l
+pin

/

1—
za i

13b 7 (bl 200a
20c 20 I,ci 49c (10)

0.0 I I I I I I I I I I I I I

-3 -2 -1 0 1 2 3

FIG. 4. The absolute value of the position z,„at which new

extrema appear, plotted as a function of b for a = —2, c = 1,
po = 0.01, and q = 0. The solid line represents the theory
of Eq. (10) and the data points represent the experimental
results for the extrema located to the left (dots) and to the
right (triangles) with respect to the unstable point z„. The
position of the stationary maximum z, (11) is shown by the
broken line.

where the stable states +z, of the potential U(z) are
given as

6 1
z,' = ——+ —gb2 —4ac,

2C 2C

and

b
p = —+ —gb2 —4ac.

2C 2C
(12)

These formulas, which approximate well the exact nu-
merical data of [24], are compared with the present ex-
perimental data in Figs. 4 and 5 for several values of p0
(q = 0). The dependence of z,„on the initial distri-
bution width po is small compared to the experimental
inaccuracy, so only the experimental data for pp = 0.01
are shown on Fig. 4. Due to some slight asymmetries
in the circuit the probability distribution is not exactly
symmetric, and so the positions of left and right critical
points are indicated separately; the averages of the left
and right critical time values are shown by the data in
Fig. 5.

The experimental fluctuations in the shape of W(z, t)
make it impossible to identify the exact time of appear-
ance of a new maximum. To be sure that a given sxnall
hump is indeed a new probability distribution peak, and
not just a Buctuation, the value of t is overestimated a
little. Thus, the experimental data in Fig. 5 are slightly
greater than the analytical ones. Similarly, since a new
maxim»m tends almost immediately after its appearance
to the vicinity of its stationary position (see Fig. 3 in [24])
the experimental values of x are a little higher than the
theoretical ones. Another source of error, but one that
we believe was»~important, comes from the Bnite grid
of voltage values —the whole range of voltages, which

was about 15—20% greater than the distance between the
stationary maxima, was divided into 64 intervals. De-
spite the nonideality introduced by this coarse graining,
rexnarkably good agreement is obtained between the the-
oretical and experimental results.

It was argued in [24] that, for q (( 1 the formulas
of deterministic evolution (9) and (10) may be used to
describe the stochastic evolution if po in (9) is replaced
by p = po —q/a. This is a consequence of the low-

noise limit for which a stochastic solution may be ap-

1.0
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FIG. 5. The time t,„at which new extrema appear, plotted
as a function of b for a = —2, c = 1, and q = 0. The solid
lines represent the theory of Eq. (9) and the data points
represent the experimental results, taken as the average of
the times at which the left and right maxima appear. The
variance of the initial distribution, from top to bottom, is

po
——0.01, 0.02, 0.05, 0.10, and 0.20.
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proxixnated by a deterministic evolution with a time de-
pendent "initial distribution" [30]

W;„(x,t) = [2xp(t)] '~ exp[ —x /2p(t)],
1.0

I
'

I I
'

I

where

p(t) = pp ——[1 —exp(2at)].a

IV. SHAPE OF POTENTIAL AND TIME SCALES

Let us return now to the discussion of Sec. I on the rela-
tionship between the shape of the potential, time scales,
and the possibility of TM occurring during the relaxation
&om an unstable state. The sufhcient condition for TM

~ left
right

0.5

0.0 I 1 I 1 I i I 1 I 1 I 1

-3 -2 -1 0 1 2 3

Since, as follows &om [24], t„]lnq ~, the expression
(14) for p(t) may be approximated by its asymptotic
value p . The comparison of experiment and theory
for evolution exactly &om the unstable state x„= 0
(within the experimental accuracy), i.e., with pp = 0,
and with spread initial distribution with po ——0.01 is
shown in Figs. 6 and 7. As before, the position of 2; „
is reconstructed quite well by (10), but the consistency
of theory and experiment for the critical time t,„ is less
good. There are a number of reasons for this discrep-
ancy. First, at present, the experimental Buctuations of
the shape of the probability density seem to be stronger
due to the perman nt operation of the stochastic force on
the system, so that the overestimation of t,„ is greater.
The other reasons are of a theoretical character. The use
of formula (9) to approximate t,„using p instead of
pp assumes that, during the whole time interval [0, t,„]
the stochastic evolution takes place retaining the fixed
width of the "initial distribution. " In fact, it depends on
time and it changes during this interval &om p(0) = pp
to p(t ) g p and pp, p(t, ) ( p [cf. (14)]. Conse-
quently, the actual value of t shiRs towards the values
computed &om (9) with smaller values of pp. Finally, the
formula (9) is itself an approximate one [24]. This point
will be discussed further in the 6nal section below.

0.0 1 I

-2 -1

FIG. 7. As in Fig. 5 but arith experimental results taken
for diHerent values of the pair of parameters po and q, namely
(0.01,0.00) (squares), (0.02, 0.00) (triangles), (0.00, 0.02) (di-
amonds), (0.00, 0.04) (circles), and (0.01,0.02) (dots). The
corresponding values of p are 0.01,0.02, 0.01,0.02, and 0.02,
respectively. The lines represent the theory of Eq. (9) for

pp = 0.01 (solid) and 0.02 (broken). The dotted lines are
guides to the eye.

in this case, i.e., Ui+(x„) ( 0 means that the deter-
ministic motion is accelerated as compared to the linear
evolution [23], namely

6x= U'(x)=]—af (
1 — z fz.

This is in contrast to the case of a quartic potential (1)
for which the parameter b in (15) is positive, so that it
slows down the deterministic movement. Due to the ac-
celeration that occurs when b ( 0 a stochastic trajectory,
which is just thrown out &om the @+~table state and out-
side the probability distribution peak, leaves the vicinity
of x„and reaches the bottom of the potential well be-
fore the initial distribution peak has emptied. In other
words, although the evolution near z„develops in a much
shorter time than the evolution across a Hat plateau or
near a marginal point, nevertheless the transit regime
towards the bottom of the potential also occurs much
faster. Consequently, since both stages of evolution (i.e. ,

both time scales) are accelerated, the ratio rI may still be
small enough to allow the manifestation of TM.

To reveal the diHerences between the relaxations for
the potentials (3) and (1) more clearly one must scale
the potentials to make them as similar as possible. It is
obvious that the whole process of evolution depends not
only on the shape of the potential in the neighborhood
of x„, but also on the distance between x„and x„and
on the difFerence between the potentials at these points.
Hence, to avoid any dependence on these speci6c proper-
ties of the potential wells, we scale both systems in such
a way that the potential minima are set at y, = +1 and
the height of the potential barrier is equal to 1. Thus we
obtain

FIG. 6. As in Fig. 4 but for po ——0 and q = 0.02.
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12 1 6 1 4 1
Us(y) = -y + -(p —1)y —-py

1+3p 6 4 2

where 0 & p & oo guarantees a double-well shape for the
potential. As p reaches its boundary values Us(y) takes
the following forms:

pm 0
p -+ +oo

U.(y) ~ 12(-.'y' ——.'y')

Us(y) ~ U4(y).

(18)

(19)

I
'

I

The potential Us(y) given by (17) is just an intermediate
one between the marginal (18) and quartic (16) ones.
The former is a generic potential at a subcritical pitchfork
bifurcation point [31]and the latter is a generic form for a
supercritical pitchfork bifurcation [22]. Figure 8 exhibits
a plot of the potential (17) for various p values. It is
seen that in the vicinity of the»~stable point for any

p & +oo the potential Us(y) is Batter than U4(y) which
is, at first sight, a quite unexpected property (compare
the discussion in Sec. I).

However, the character of the evolution within this Bat-
potential area is quite difFerent &oxn that near a marginal
state. In this last case, the Batness of the potential is de-
termined by the relation to the noise, namely U"(z ) is
of the order of +q [32]. Such a shape leads to critical
slowing down and this is just the case described in Sec. I.
In contrast, the Hatness in Fig. 8 stems from the com-
parison with other parts of the potential. The adjacent
parts of the potential are much steeper than in the vicin-
ity of an unstable point z„, which obviously cannot lead
to critical slowing down.

Now let us estimate the time scales of the problem.
Colet et aL [20] have investigated the relaxation dynam-
ics &om the situation at the bifurcation point of a sub-
critical pitchfork bifurcation [a = 0, b & 0 in (3)] to a
situation well above the bifurcation point (a « 0). They
have shown that the early and intermediate regimes of
relaxation may be described by the single parameter

This quantity determines the relative importance of the
linear term in coxnparison with the nonlinear one and
the noise intensity, and hence measures the distance &om
marginality (a = k = 0). In the small q approximation
the lifetime of the state x„, identified with the MFPT
of a threshold zap outside the vicinity of x„, in the two
limiting cases reads

qlbl (4) (21)

0.5520
qlbl' (23)

so it is also of the long-time scale, while for the unstable
case (k » 0) its leading term does not depend on q,
namely

ge'(0.5)
(24)

where 4' is the digamma function. Hence it is not of the
same time scale as T. This led Colet et cL [20) to suggest
that TM could not arise for the decay of an unstable
state.

In order to estimate the second tixne scale of the transi-
tion &om the vicinity of x„ towards z„one may approxi-
mate the steep part of U(x), i.e., the section lying within
the transit region between x„and z„by the tangent at
the inflection point of the potential. Thus we have

for the marginal case (k = 0), and

G Z
I I

u
I &a

(22)2]a] q

well above the bifurcation point (k » 0), i.e., for a re-
laxation &om an unstable state. Although the functional
dependence of T on q in both these forxnulas is disparate,

q dependence identifies the mean MFPT as a long-time
scale. A quite different situation concerns the standard
deviation of the MFPT. For the marginal case (k = 0) it
depends on q, i.e.,

0.0

-0.2

I U(*.) —U(*-) I

U'(x;)' (25)

-0.4

tQ
-0.6

-0.8

-10— I, I

-1-0 -0.5 0.0
I l I

0.5 1.0

FIG. 8. Scaled potentials U4(y) (16) (dotted line) and

Us(y) (17) for p = 0, 0.1, 0.4, 1, and 2 (solid lines). The
curve with p = 0 is the Sattest curve at the potential barrier.

where the dependence on the slope of the potential in its
steep part is obvious. In Table I we make a comparison
of KT and tg for the scaled potential Us (17) for q = 0.01
and a few values of p. Evidently, for the marginal case

(p = 0) the ratio g is much lower than one and, according
to the discussion in Sec. I and Refs. [19,20] TM is a natu-
ral consequence of this. For the rexnaining two cases g is
of order nmty. From the theory [23] and the experiment
(Sec. III) it follows that for p = 1, TM exists, while for

p -+ oo it does not. This meatus, that if the time scales of
the problem are of the same order TM may or may not
occur. The decisive role in determining how the system
will evolve is performed by the order of the nonparabolic,
saturation term in the potential. Naxnely, if it is of the
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TABLE I. Variance of the MFPT AT, the transit time
tg and their ratio g for q = 0.01 and three values of the
parameter p which determines the shape of the potential U6

(17). The corresponding values of the parameters a, b, c, and
A: are also given

jp

0
1

b

-12
0
4

12
3
0

k
0

20

AT
2.14
0.37
0.28

0.20
0.39
0.42

rl

0.09
1.05
1 ~ 52

sixth order (c ) 0, b = 0) TM appears whereas, if it is of
the fourth order (c = 0, b ) 0) the relaxation occurs in
the usual way, without TM. Moreover, if both the fourth-
and sixth-order terms exist (b g 0, c ) 0) the kind of re
laxation depends on the relation between them, that is,
TM appears for b ( b, . Although for 0 ( b & b, the
manifestation of TM is very weakly displayed, neverthe-
less for any b & 0 this phenomenon is very pronounced.
Hence, if b is equal to zero or if it is slightly negative so
that the parameter k is very large, TM will appear. This
shows that the conclusion of [20] does not apply to the
potential (3) considered here. Colet et aL [20] attribute
the appearance of TM to the dependence of b,T on the
noise strength similar to the relaxation within a Hat re-
gion of a potential. Here, we argue that bT need not
depend on noise at all. An appropriate shape of poten-
tial automatically guarantees that TM will arise.

V. CONCLUSIONS

The electronic analog experiments have proven that
the occurrence of TM during the relaxation from an un-
stable state is a genuine phenomenon that can occur in
real physical systems. We were able to measure a time
moment and a place for the appearance of some new max-
ima, and the existence of the multipeak probability dis-
tribution was observed over a sizable interval of time.
This phenomenon manifests itself even very far &om a
marginal case, i.e., for k && 0. Thus the prediction in
[23] about the necessity of relaxation with a discontin-
uous evolution of probability distribution maximum for
U (z„) ( 0 is consistent with the experimental evi-
dence. However, the short-life TM reported in [24] for
0 & b ( b, is probably better considered as a stage of
evolution with a very wide probability distribution, and
not really as a multipeaked case. During this stage of
evolution a system may be found with almost the same
probability anywhere between the unstable x„and sta-
ble x, states. The genuine TM implies, on the other
hand, that a system exists with a reasonable probability
in any one of only a few well-de6ned states, i.e., near
x„or near kx, . Since the probability of being between
x„and x, is very small one may speak about a rapid
switching between the»~stable and stable states. The
switching process begins at a time t „approximated by
the formula (9). The experimental results show that (9)
is quite good far &om marginality but that it grows less
accurate as one approaches marginality. This is a conse-
quence of the inapplicability of the linear approximation
at a marginal state which was used in the derivation of

(9) (cf. [30]). On the other hand, however, the applicabil-
ity of this approximation far &om the marginality comes
Rom the independence of the relaxation process on the
fluctuations. The random force is responsible only for the
beginning of the evolution, while the whole character of
the subsequent relaxation is governed by the determinis-
tic factors [33].

Considering the two difFerent time scales, which are
distinguishable during the evolution. , one must notice
that their nature is quite difFerent. The short time
scale associated with the transition between x„and x,
is strictly deterministic. The long one associated with a
random triggering &om x„depends on stochastic factors.
Nevertheless, a dispersion associated with this stochastic
stage of evolution is of a deterministic nature. Thus the
ratio g is a nonstochastic quantity, too, and hence it is
obvious that the appearance of TM during a decay of an
unstable state is a noise independent phenomenon [23].
In such a case, g is not a good parameter for character-
izing TM.

As mentioned in Sec. I some authors regard TM as a
signature of marginality. Since, as we have shown, its oc-
currence is also possible very far &om a marginal point,
the concept of marginality should be revised. Usually
one deals with a marginal equilibrium state, i.e., a state
x for which U'(z ) = U"(x ) = 0. Such a defini-
tion comes from the bifurcation (critical) behavior of a
given system —the term marginality is associated with
a steady state analysis. In contrast, TM is a time depen-
dent phenomenon. associated with unsteady states, which
are not treated by a bifurcation theory.

On the other hand, bifurcation theory deals with only
deterministic systems. It is well known [34], that the
addition of Buctuations to a deterministic system may
change radically its possible steady states —one speaks
about noise-induced transitions. Transient bimodality
occurring during the evolution across the plateau re-
gion of the potential is an analogous noise-induced phe-
nomenon relative to unsteady states. The situation de-
scribed in the present paper is noise independent, so it
is an evolutionary counterpart of the deterministic bi-
furcation theory. Within the latter, a marginal state is a
boundary state between two regions with difFerent steady
states. The region where TM occurs lies between the
regions with the number of time dependent probability
distribution peaks determined by the number of steady
states. Thus, in analogy to the bifurcation theory, we

may call this region a marginal one. Provided that the
concept of marginality is generalized in this way, one may
still speak of TM as a signature of the marginality of a
system but taking it as an intermediate case between
two regions where the probability distribution maxima
develop continuously.
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