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Nonequilibrium growth processes are frequently characterized by the width m(L, t) of the active
zone, where t is the time elapsed since the start of the process and I is the spatial interval over which
the measurement is carried out. Quite generally, vu(L, t) obeys a scaling forin tv(L, t) LC f(tL '),
and many workers have attempted to determine the dynamic universality class of such processes
by a measurement of the exponents ( and z. In this paper, we calculate the steady-state width
distribution P(w ) for several three-dimensional growth processes and show that, expressed in a
suitable form, P(m ) can be used to distinguish between difFerent possible universality classes. We
also reanalyze experimental data obtained by scanning-tunneling or atomic-force microscopy and
show that P(m ) provides valuable information on the nature of a growth process.

PACS number(s): 05.40.+j, 61.50.Cj, 68.55.Bd

I. INTRODUCTION

A number of nonequilibrium processes such as the
growth of films by molecular beain epitaxty (MBE) or
other deposition processes, the etching of materials by
ion bombardment, the invasion of porous media by Bu-

ids, and many others display scaling behavior in space
and time similar to that found at equilibrium critical
points. An important aspect of such nonequilibrium pro-
cesses is the existence of an active zone in which growth
occurs. Generically, the width of this active zone grows
as a function of time and is controlled, in the long time
limit, only by the physical dimensions of the system and
one finds that the expectation value of the width w(L, t)
of the active zone obeys the scaling form [1]

(m(I, t)) = L~f(tL '),

where the scaling function has the asymptotic form

f(x) ~ const as x + oo and f m x~~' as x ~ 0. In
(1.1) the quantity L is the distance over which the width
is measured (in simulations, often the size of the sample)
and t is the time since the beginning of the process. The
exponents ( and z or P = (/z are &equently measured
(in experiment or in simulations of discrete models) in an
attempt to determine the universality class of a nonequi-
librium growth process. While this can be done in princi-
ple, there are &equently difBculties and ambiguities due
to crossover effects. A more detailed characterization of
the active zone is provided by real-space correlation func-
tions and by the structure factor. However, while these
are easily calculated in a simulation. , they are not always
available to an experimentalist. Thus, it is of interest to
6nd other more detailed descriptions of the interface or
active zone of a nonequilibrium process. In this paper,
we argue that the probability distribution for the width
P(in ) in the limit t » L' provides significantly more
information than simply the width (zv) and can be used
to identify universality classes.

In the following discussion, we conlne ourselves to

situations in which particles are deposited onto a two-
dimensional substrate and where the growing 61m is free
of voids or overhangs. The surface of the resulting solid-
on-solid (SOS) model can therefore be described in terms
of a single-valued function h(r, t), where r is a point on
the substrate and h is the height of the surface above the
substrate. This restriction is mostly for convenience. It is
commonly assumed to be appropriate for a description of
MBE and is liberal enough to also allow the discusssion of
models that fall into the Kardar-Parisi-Zhang (KPZ) [2]
universality class. The mean square width is then given
by

(1.2)

where N, refers to the number of samples in a simulation
or the number of equivalent patches of dimension I of
a surface in a set of experimental measurements and 6,
is the average height of the patch above the substrate.
Clearly, if there is a sufFiciently large number of such
equivalent patches, or samples, one can also construct
a histogram for the probability distribution P(w2). In
earlier work, Foltin et al. [3] and Plischke et aL [4] have
shown that for certain (1+1)-dimensional models, io2 de-
pends on only a single length scale and, therefore, that
P(io2) can be written as

(w ) P(u) ) = 4 (io /(io ))

in the steady state. Furthermore, they found that the
scaling function 4 is a universal characteristic of a given
growth process. In this paper, we extend this approach
to (2+1)-dimensional systems which have considerably
more diversity. We also compare the function 4 obtained
for several simple models of MBE to atomic-force and
scanneling-tunneling microscopy scans of MBE grown
materials.

The structure of this paper is as follows. In Sec. II,
we review some of the models that have been used to
describe nonequilibrium growth processes. Section III
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contains a description of how the function 4 can be cal-
culated for various continuum models. In Sec. IV, we
compare the calculated 4 with simulations of models that
are well known to be in the saxne universality class as the
continuuxn models mentioned above. We relate this ap-
proach to experiment in Sec. V and conclude with a short
discussion in Sec. VI.

II. CONTINUUM AND DISCRETE MODELS FOR
NONEQUILIBRIUM GROWTH PROCESSES

In this section, we discuss several Langevin equations
that have been used to model growth and deposition pro-
cesses as well as discrete models, suitable for Monte Carlo
calculations, that have the same scaling behavior as these
Langevin equations.

A. Kardar-Parisi-Zhang —Edwards-Wilkinson
equation and the single-step model

Two of the early but still widely useful continuum mod-
els of growth and deposition models are the Edwards-
Wilkinson (EW) [5] and the KPZ [2] model. The KPZ
model is defined through the Langevin equation:

their neighbors; (ii) deposition occurs with probability p
to one of the eligible sites, evaporation with probability
1—p. The substrate is a square lattice and initially h(r, 0)
is either 0 or 1 so that the nearest neighbors of sites of
height 0 are all of height 1. The parameter p determines
the universality class of this process: for p = 0.5 the
surface is, on the average, stationary and the KPZ term
vanishes in the continuum description; for any p g 0.5,
the long-wavelength behavior crosses over to a "strong
coupling fixed point" with the exponents quoted above
[10]. We use this model for illustrative purposes in the
next section.

B. Mullins-Herring equation and curvature-driven
dynamics

Next, we consider some of the models that have been
proposed specifically for the description of growth by
molecular beam epitaxy. It is generally assumed that,
under ideal MBE conditions, particles deposited on the
substrate do not reevaporate and relax through surface
diffusion. Moreover, it is also generally assumed that
there are no voids or overhangs. The continuum descrip-
tion of MBE growth then begins with a conservation law

[»]:

Bh(r, t) 2 A

Bt '
2

= vV' h(r, t) + —(Vh(r, t)) + g(r, t), (2.1)
Bh(r, t) + V j([h]) = g(r, t), (2.2)

where v ) 0 and g represents Gaussian white noise. The
Edwards-Wilkinson equation is obtained when A = 0 in
(2.1). These equations were originally proposed as mod-
els for sedimentation (EW) and for growth processes like
the Eden model (KPZ) in which growth occurs in a direc-
tion locally perpendicular to the existing interface. Both
are also useful in other contexts, including as models
for MBE [6]. In the context of thin film growth, the
parameter v is a surface tension paraxneter which may
be xnicroscopically due to evaporation, or to nonequi-
libriuxn effects such as slope-dependent surface diffusion
currents [7]. The coefficient A multiplies a term that pro-
duces a growth velocity that depends on the magnitude
of the slope and we, therefore, expect this term to be
present if there are voids and overhangs in the growing
film or, as xnentioned above, if the growth direction is lo-
cally perpendicular to the interface. The linear Edwards-
Wilkinson equation is exactly solvable and is character-
ized in (2+1) dimensions by z = 2 and t,

' = 0 (logarithmic
dependence of the average width on L). The KPZ equa-
tion is still not fully understood in the (2+1)-dimensional
case. Computer simulations of models that are expected
to be in the KPZ universality class (and certainly are in
one dimension) yield [8] ( 0.385 and z 1.615.

A discrete xnodel that interpolates between the EW
and KPZ limits is the so-called single-step model [9,10].
In this model, particles of height 2 are deposited or evapo-
rated according to the following rules: (i) only sites which
are by one unit of height lower than their nearest neigh-
bors are eligible for deposition; conversely, evaporation
can only occur at sites that are one unit higher than

where the noise term q is due to Buctuations in the beam
intensity. In the simplest version of this model, the di8'u-

sion current j is assumed to depend only on the curvature
of the surface: j oc V(V2h(r, t)), leading to the linear
Mullins-Herring (MH) equation [12]:

Bh(r, t)
Bt

v4b, b,h(r—, t) + g(r, t) . (2.3)

As is the case for the EW equation, this Langevin equa-
tion is exactly solvable and, when the noise term g is
nonconserved Gaussian white noise, leads to the expo-
nents ( = 1, z = 4 in (2+1) dimensions.

There has been considerable confusion in the literature
with regard to the continuum description of discrete mod-
els designed to model MBE. Originally, it was thought
that models of the Wolf-Villain type [13,14] fell into the
universality class of Eq. (2.3). However, recent work
[15] has shown convincingly that these models have a
more complicated scaling behavior than that predicted
by Eq. (2.3). There are two discrete models that seem
to clearly fall into the universality class of (2.3). One is
the n = 2 model of Siegert and Plischke [6], the other is
the "larger curvature model" of Kim and Das Sarma [16]
and Krug [17]. Both of these models have the feature
that the probability of a particle hopping to a neigh-
boring site depends only on the discretized form of the
local curvature. In the following sections, we will use
the n = 2 model to compare P(mz) for the discrete and
continuum models and we, therefore, brie8y describe it
here. In this model, the energy of a configuration is given
by E = P&...&[h(r) —h(r')]z, where r, r' are nearest-
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neighbor sites on the substrate. The transition rate S'
for the process h(r) ~ h(r) —1, h(r') ~ h(r') + 1 is
then given by 7 W = [exp(PAE) + 1],where r is an
attempt &equency, AE the change in energy due to the
hop, and P is the inverse of the temperature. It is easy to
see that with the quadratic energy function, W depends
only on the gradient of the local curvature.

where N is a normalization constant and where the ef-
fective Hamiltonian Q will be defined later. In Eq. (3.1),
the functional integral is assumed to be carried out over
all configurations and

h' = — d2rh'(r).
L

C. Conserved KPZ equation and Arrhenius
dynamics

There have been a number of proposed modifications
of Eq. (2.3) that incorporate the lowest order relevant
nonlinearities. Because of the conservation law (2.2) the
KPZ term is forbidden. However, a conserved version of
the KPZ term is allowed and was originally included by
Villain [ll]. This yields the Langevin equation:

Bh(r, t) A

|94
= —v46b, h(r, t) + b, [Vh(r, t)] +—q(r, t)

2

(2.4)

Because of the nonlinearity, this equation is not exactly
solvable. At the one-loop order of a dynamic renormal-
ization group analysis [18], the predicted exponents are

s and z = s . There is at present no compelling
evidence that this equation describes a particular dis-
crete model exactly. The exponents of a simple nearest-
neighbor SOS model with Arrhenius dynamics are, how-
ever, quite close to these predicted values [19) and, in
the following sections, we shall use this model in connec-
tion with Eq. (2.4). The energy function in this model is
E = e g&...~

~h(r) —h(r')
~

and transition rates are calcu-

lated in the following way [20]. The coordination number
nL, of a particle attempting to hop is given by the num-
ber of nearest-neighbor columns of height greater than or
equal to that of the hopping particle and an attempted
hop is accepted with probability W = exp( —PnL, e). In
the next section, we shall discuss the calculation of the
distribution P(u)~) for the continuum models presented
above.

where, without loss of generality, we have taken h = Q.

The generating function is easily calculated if '8[h] is a
quadratic function of h. We, therefore, begin by consid-
ering the two linear Langevin equations [Eq. (2.1) with
A = 0 and (2.3)]. In these cases, the effective Hainilto-
nian is known. For the EW equation,

&Ew = —(&h)'
2

(3.3)

where g is a constant of dimension [I 2], whereas for the
MH equation, we have

~MH = g (~'h)',

where, in this case, the constant g is dimensionless.

(3.4)

A. Mullins-Herring equation

We begin with this case since its analysis is straightfor-

ward as compared to the EW equation where divergent

sums appear. In the MH case, we proceed by writing

2' (nax+ny) /L
~r) = g c 6 (3.5)

It is useful also to define the generating function for the
distribution P:

G(h) = f dxP(x)e

=A/ fD[h]expI —f d r )d[h[+ —eh (r)

(3.2)

III. CALCULATION OF THE WIDTH
DISTRIBUTION FUNCTION

Foltin et al. [3] and Plischke et al. [4] have shown how
the distribution function P(u)2) can be calculated exactly
for the one-dimensional versions of the EW and MH equa-
tions and we shall only outline the method here. In two
dimensions, we are unable to evaluate P(u)2) in closed
form but it can be put into a form useful for numeri-
cal evaluation, using the methods of [3,4]. We begin by
writing P(u)2) in terms of a path integral:

where m, n = 0, +1,k2, . . ., excluding m = n = 0 since
h = 0. Inserting this into Eq. (3.2) and writing c
a „+ip „,where a „,p „are real and using c
c' „,we obtain the generating function as an infinite
product:

I OG QC)

G(h) = jd d dr „xpI—(
na, n

+p' „),(n'+ m')'+ 2A
16m4g

P(ee*) = A' fD[h]d (ree —he —h*)
arnn

~ -- %+a
m, n

(3 6)

xexp — d rQh (3.1)

where a = 87r g(n +m2)2/L2. Because c = c'
the values of m, n that appear in (3.6) are given by m )
0, —oo ( n ( oc, and m = 0, 1 & n ( oo, hence the
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notation g'. The expectation value of the width is given

by
4(x)

1.5—
—----5 oles

poles
31 poles

(3.7) 0.5—

'LOO

P(u7 ) = . dAG(A)e"
2%i

(3 8)

The sum over m, n converges rapidly and {u7 ) can easily
be evaluated to arbitrary accuracy.

To obtain P(iu2), we must invert the Laplace transform
(3.2). Formally,

0
0 05 I 15 0 25

X

FIG. 1. Approximate calculation of C'(z) for the MH model
on the basis of Eq. (3.8) using the residues of n poles closest
to the origin with n = 5, 15, and 31.

Unfortunately, the generating function has an infinite
number of poles and, in contrast to the one-dimensional
case, we are unable to sum all the residues. However, it
is straightforward to construct a sequence of approxima-
tions keeping more and more poles. Figure 1 shows the
function 4'(z) = (tu2)P(is2) plotted as function of the
scaled variable z = tu2/{u72) for three approximations in
which the 5, 15, and 31 poles closest to the origin have
been retained in the integration. Clearly, the scaled dis-
tribution function is converging to a limit function. We
estimate that the best approximation is accurate to bet-
ter than i%%uo except near z = 0, where the function van-
ishes rapidly and in a singular manner. In this region, 4
is primarily determined by poles far from the origin that
have been neglected.

size L. Then (3.10) is well defined since (n~, (m( & L
and S = S(L) is finite. Consequently, we can write the
scaling function in the form

4 (z) = (in') P(in' )

dz, — I t' zS
I 1+,~

~

27ri "
g n2+ m2)—LOQ TL7m

(3.ii)

The scaling function now depends not only on x but also
on L (through S). In the lixnit L 7 oo, we have S
lnL ~ oo and, thus, S i in Eq. (3.11) can be used as
a small parameter in the following approximation. We
exponentiate the product in (3.11) and expand the sum
of logarithms in the exponential. We then find

B. Edwards-Wilkinson equation
8z a2

4(z) = exp z(z —1) + —z
27ri 2

The Edwards-Wilkinson equation is special in that it
is necessary to introduce a short-distance cutofF. This
is in marked contrast to the case of the MH equation,
where the only length scale necessary for a complete de-
scription of the width distribution is the average value of
the width itself. This emergence of a second significant
length is familiar from other situations such as the Gaus-
sian approximation to critical phenomena: This model is
ill defined without the explicit introduction of a cutofF.
Nevertheless, we shall see that we can derive interesting
results for the function 4(z) by taking appropriate limits.

The analog of Eq. (3.6) in the EW case reads,

where

and, in general,

ag+ ~ ~ o + g + o ~ ~

k J'

1 I 1
S2 ~ - (n2 + m2) 2

A 7m

(—1)" .I 1
S" ~ - (n'+ mz)"

'

fL 7 TYL

(3.i2)

(3.i3)

(3.14)

27r'g(n' + m')
.". A + 27r2g(n2 + mz) '
m7fL

(3.9)
Since the sums in (3.13) and (3.14) are finite when I —7

oo, one can see that all ap —+ 0 and, for an infinite system,
we find a b-function distribution:

and the average of m2 is given by

1 .I 1 8
( ) 2..)m 7A

(3.10)

The problem with this calculation is now clear: (io )
diverges unless the sum S in (3.10) is restricted to a finite
n»mber of terms. This can be enforced by introducing
a microscopic cutofF (discretizing the system). We take
this cutofF to be unity and consider a system of finite

lim 4(z) = h(z —1) .Imoo
(3.15)

1 (z —1)c'(*) = exp
+27ras 2a2

(3.16)

For finite but large L, the leading corrections to the b

function are obtained by retaining only the term propor-
tional to az in Eq. (3.12). This results in a Gaussian
distribution,
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where u2 ——c(lnL) with c = 2.99. . . /7r2. Thus, for
large systems, the function t(z) asymptotically becomes

proaches zero in the thermodynamic limit as ~ink~
The maximum of this distribution 4 grows wit sys-
tem size as tIk gir/6 ln L

1.5 T

les
oles
oles
oles

C. phenomenological Approach: k F models

In the case of nonlinear Langevin equations, such as
the KPZ equation (2.1) or the conserved KPZ equa-
tion (2.4), we do not know the efFective Hamiltonian.
In this section we carry out a purely ad hoc calcula-
tion of the function 4(x) on the basis of the following
phenomenological considerations. The width of the in-
terface in the steady state can be related to an integral

over the structure factor S(k) = )t(k))t( —k)), where

h(k) is the Fourier transform of h(r). This function
generically diverges as ~k~

~ at long wavelength, where

p = 2(+ d with d the substrate dixnension. For the
linear EW and MH models, 'R[h(k)] (x S i(k) and the
poles that enter into the inverse Laplace transform (3.8)
are precisely at A = —bS (k), where b is a constant and
k = 2vr(n, m)/L. Therefore, we conjecture that a nonlin-
ear Langevin equation that has a structure factor which
diverges at long wavelength with a clean (i.e. , crossover-
free) power law [k[ ~ will have a width distribution given
by

dA q k —.t bS '(k)
.„.. X+ bS-i(k) (3.17)

Writing A = z(w ) with (u) ) = b 'QqS(k), we

arrive at the form

dz
4 (x) = .e'* , . (3 iS)„zS(k)Z,S(q)] '+1

W«emark that Ct(x) does not depend on the constant b

The calculation then proceeds as for the MH model
with a finite number of poles retained in the evaluation
of the contour integral (3.18). In Fig. 2, we show suc-
cessive approximations to 4'(x) calculated in this manner
for p = 3. This value of p was chosen because it is quite
close to the value of 10/3 appropriate for the conserved
KPZ equation (2.4) and closer still to the value measured
[19] for the case of Arrhenius dynamics in three dimen-
sions. The convergence to a limit function is substantially
slower than for p = 4 (MH model) but the final form of
the scaling function can easily be inferred from the curves
plotted.

We make no attempt to justify this procedure formally.
Certainly, we do not expect it to be exact or to yield rea-
sonable results in cases where there is crossover between
difFerent power laws in S(k). However, as we shall see in
the next section, it does provide a very good fit to 4(x)
for the Arrhenius model and a reasonable representation
of C for the single-step model.

t

0 05 1 15 2
X

1

I I

2.5 3

FIG. 2. Calculation of 4t(z) for a phenomenological eifec-
tive Hamiltonian with 'R[h(q)] = q ~h(q)~ . The approxima-
tion scheme is the same as cn r ig. 1.

IV. COMPARISON WITH COMPUTER
SIMULATIONS

In this section, we show the width distribution for a
number of growth models and, where possible, compare
with the calculations of Sec. III.

A. KPZ —Edwards-Wilkinson class

L=32

s9

es

0.5 1.5 2.5

FIG. 3. The universal function Ct(z) for the single-step
model with p = 1.0 and 0.9. For each value of L, the data
were obtained from a minimum of 100 samples. The solid line
is the phenomenological 4 calculated on the assumption that
S(q) ~q~, appropriate for the KPZ equation in d = 2.

We begin with the single-step model described above.
When the deposition rate p is not equal to 0.5, this model
has the property that S(k) ~k~

~ with p = 2.70; when
= 0.5 = 2.0 the EW value. In Fig. 3, we show Ct(z)

d for 5 = 128for several substrate sizes for p = 1.0 an~ or
for p = 0.9. The collapse of the data to a single curve
is quite remarkable. We remark that since 4(z) is nor-

malized and collapses extremely well at both large and
small x, it must also have a universal maximum va ue

and the seeming scatter of points near the peak is sim-

l due to sampling errors. Also shown in this figure ispy ue os
the phenomenological calculation of 4 yb the methods
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of Sec. III C with p = 8/3, appropriate for the single-
step model. In this calculation we have retained the
42 poles closest to the origin in the integral. At this
level of approximation, the fit is not perfect but the peak
is in the correct location and successive approximations
with more poles show a very encouraging convergence to-
ward the simulations. We have also simulated the single-
step model with p = 0.75 for systems up to L = 256.
For this value of p the crossover between the Edwards-
Wilkinson and KPZ universality classes is clearly visible
in the structure factor. However, even for a system of
size 256 x 256 the effective exponent p determined from
the smallest q vectors is only about 2.5, i.e., the crossover
is extremely slow. However, the function 4 does seem to
be approaching the same limiting function as in Fig. 3,
supporting the conclusion that there is a single scaling
function for the KPZ universality class.

The scaling function 4 for the case p = 0.5 contrasts
sharply with those obtained for a moving interface. As
mentioned above, the case p = 0.5 is well described by
the EW equation and should, therefore, produce a scaling
function that approaches a b function centered at z = 1
as I ~ oo [Eq. (3.16)]. In Fig. 4, we display 4(z) for
L & 128. The scaling function clearly becomes more nar-
row for increasing L. A fit of the peak height to the form
4 = a+ b lnL produces b 0.7, in very satisfactory
agreement with the prediction of (3.16).

B. Mullins-Herring class

@(x) 4- X
XX

X
ooo

o L=32
o L=64
x L=128

Eq. (3.16) for L=128

The driven discrete Gaussian model with surface dif-
fusion governed by Metropolis transition probabilities is
known [6] to be in the universality class of the MH equa-
tion. In Fig. 5, we show 4(z) for this model for a 32 x 32
substrate, a deposition rate of 0.1 and Pe = 1.0. Also
shown is our best approximation to Eq. (3.8), where we
have kept 31 poles in the inverse Laplace transform. The
agreement between the two functions is quite good. How-
ever, more important is the fact that the function 4 for
this case is clearly distinguishable from that of the single-
step model or, equivalently, of the two-dimensional KPZ
equation. The distribution is considerably broader and
cuts off at a much smaller value of x. As we have shown
for the one-dimensional version of this class of models [4],
the distribution is insensitive to changes in the micro-

4(x)

1.5-- o L=32
31-pole Approximation

0.5-

0
0 0.5 1.5 2 2.5 3

X

FIG. 5. Comparison of the width distribution for the n = 2
model for a 32 x 32 substrate and the best approximation to
Eq. (3.8).

scopic growth rules and parameters. Thus even simple
measurements, such as the peak height or the value of
the small-z cutofF provide a criterion that can be used to
assign growth processes to universality classes.

V. RELATION TO EXPERIMENT

With the development of scanning-tunneling (STM)
and atomic-force microscopy (AFM) as standard tool of
condensed matter physics it has become possible to char-
acterize surfaces in unprecedented detail. In particular,

1.5--

4(x)
~ q3

C. Arrhenius dynamics

As a Bnal example, we compute the function 4'(z) for
the SOS model with Arrhenius dynamics described in
Sec. II. This discrete model has exponents close to those
of the conserved KPZ equation (2.4). Therefore, we have
another example of the variation of 4 with universality
class, as well as a check on the phenomenological analyt-
ical calculations of Sec. III C. The results are shown in
Fig. 6 for L = 32 and for the 42-pole approximation to
Eq. (3.17). The agreement between the simulation and
the phenomenological approximation is excellent, provid-
ing support for the conjecture that the function 4(z) is
determined primarily by the long-wavelength behavior of
the heigh-height correlation function. The function 4
lies between the corresponding distribution of the KPZ
model and the MH model as one would expect, given that
the exponent p is intermediate between those of the KPZ
and MH equations.

0.5—

0
0.5 1.5 0

0
FIG. 4. 4(z) for the single-step model for p = 0.5. This

model is in the EW universality class and the growth of the
peak height and decrease of the width as function of L is
consistent with the predictions of Eq. (3.16).

FIG. 6. Comparison of 4(z) for the SOS model with Ar-

rhenius dynamics for L = 32 with the best approximation of
Fig. 2.
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it is now possible to measure h(r) over a wide range of
r of a film grown to a particular thickness. From such a
measurement one can extract the width of the interface,
as has been done, [21,22] but also more detailed infor-
mation such as the probability distribution of the height
[21] and the function 4 as we now show.

The discussion of the previous sections has been for
the width distribution in the steady state. In computer
simulations on finite systems, the steady state is easy to
recognize —one simply waits until the expectation value
(to2) has saturated. In an experiment, films are typically
grown to some thickness ranging from one to several hun-
dred nanometers. Given that the substrate size L is in-
variably much larger than the thickness, these films are
globally far &om the steady state. It is necessary then
to characterize experimental samples in terms of a hor-
izontal correlation length f(t) where t is the thickness
of the film. For distances [x —x'[ « ( or wave vectors
k )) ( i, the height-height correlations or the structure
factor have attained thickness-independent values. Con-
versely, for larger distances or shorter wavelengths, the
film is still in a nonequilibrium state. To calculate the
function 4 &om an STM or AFM scan one can proceed
as follows. We assume that the film profile exists as an
array h(x, y). The correlation length ( can then be esti-
mated by calculating the function

g(r) = ) h(r+ r') —6 h(r') —h /(K, m2), (5.1)

where N, is the number of sites r' included in the sum-
mation and m is the square of the width calculated over
the entire data set. The function g(r) goes to zero at
distances of order (. Once ( is known, the substrate can
then be divided into square patches of linear dimension
L & (. Each of these patches yields a value for the width
and these "independent" samples can then be combined
to produce P(in2) and from this 4.

This procedure is, in principle, straightforward. How-
ever, there is a potential problem when one applies it
to small patches because the &ee-boundary conditions,
which allow tilted interfaces, are diH'erent &om the pe-
riodic boundary conditions and large-size (thermody-
namic) limit used in the theoretical calculation of C. We
do not expect that this will cause a problem when the
patch is large enough. At the moment, however, we have
no criterion for determining a minimum patch size, where
boundary conditions become irrelevant [23].

We have carried out the analysis described above for
sample B3 of reference [21]. This sample consists of an
AFM scan of a 5 pmx5 pm surface, with a horizontal
resolution of 10 nm for a 42 nm thick film of CuCl grown
on a substrate of CaF2 The data consists of a 512 x 512
set of values of h(2:, y). The correlation length ( of this
sample, calculated from the point at which g(r) of (5.1)
crosses zero, was estimated to be between 200 nm and 300
nm. We then divided the data into bins of size 8 x 8, 16 x
16, and 32, yielding &om 4096 to 256 values of m which
were then used to calculate 4. Our experience with the
discrete models discussed in previous sections indicates
that I'(x, L) does not depend on the substrate size L at
all unless there is a crossover, as in the single-step model.

In this paper we have provided compelling evidence
that the scaled probability distribution 4 of the width
of an interface in the steady state of a nonequilibrium
growth process is a universal function characteristic of
that process. In particular, this function seems to be de-
termined entirely by the exponent p that characterizes
the divergence of the static structure factor at small q,
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Sample B3
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q' Model
— Single Step Model
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FIG. 7. Comparison of the experimental data of [21], and

the universal function 4 for the MH, q, and single-step mod-

els.

In the case of sample B3, however, the function 4 is quite
diferent for the three di8'erent values of L and we are,
therefore, unable to draw firm conclusions regarding the
universality class of this system. We show it in Fig. 7 for
L = 32 together with the universal functions for KPZ,
MH, and Arrhenius dynamics. . Clearly, none of these
models provides a convincing fit to the data although the
MH model does seem marginally better than the others.
However, this method can only yield reasonable results
if the function 4 is insensitive to the choice of patch size
L at least for some range [24].

We have also carried out the same analysis for the STM
data of Palasantzas and Krim [22]. These data consist
of five 1500 nmx1500 nm scans over the surface of a 702
nm thick Ag film grown on a quartz substrate. Each data
set consists of 400 x 400 values of h(z, y). Henceforth, we
take the horizontal spacing of 3.75 nm to be our unit of
length. The steady-state exponent ( for this sample is

( = 0.82 6 0.05 [22]. The results for the scaling function
are shown in Fig. 8 for L = 5, 10, and 40. The correla-
tion length of this sample, again defined to be the first
zero of g(r) is ( = 25, so that for the smaller values of L
the data should collapse to a single curve characteristic
of the steady state. For the larger value of I there may
still be nonequilibrium contributions to 4. Indeed, the
data for L = 5 and 10 collapse quite nicely, especially
in the large x regime. Rermarkably, these data are fit
very well by the function C of the one-dimensional MH
model. At the moment, we have no eplanation for this.
We conjecture that there may be some anisotropy in the
deposition or surface diffusion process that manifests it-
self in anisotropy in the steady-state width distribution
at least on length scales of 20—40 nm. For the larger
value of L the data, as already mentioned, are not fully
equilibrated. Nevertheless, they are described better by
the two-dimensional MH model than by any of the other
models for which we have calculated 4.

VI. DISCUSSION
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FIG. 8. The function 4(z) calculated for L = 5, 10, and 40
nm for a 702 nm thick Ag film [22]. The curves correspond
to the one-dimensional and two-dimensional MH model.

or equivalently by the exponent g that characterizes the
dependence of the width on L. Thus, it appears that a
single static exponent determines the shape of 4 (x) and,
consequently, that this function can only be used to dis-
tinguish the static universality classes of surface growth.
It should be noted, however, that in all the models of
surface growth discussed above, as well as in others cur-
rently under investigation, the dynamics and statics are
strongly coupled: Their dynamic exponent z is related
to the static exponent through a scaling law [9,13,25,26j.
Provided this scaling law is known, 4'(x) completely de-
termines the universality class of the process. As far as

the experimental determination of 4 (x) is concerned, we
have demonstrated that this function is experimentally
accessible through AFM or STM measurements of the
profile of a film. Thus, we believe that this distribution
function may provide an important tool for the determi-
nation of »~iversality classes of growth processes.

Clearly, there are a number of directions for further
investigation. As we saw in the previous section, experi-
mental data on Ag films for small L are more consistent
with a One-dimensiona/ model for the steady-state distri-
bution than with any of the two-dimensional models that
we have studied. This makes it important to understand
the role of spatial anisotropy in this formalism. As well,
it would be useful to have more extensive data on systems
with larger correlation lengths so that the parameter L
in the analysis of the data can be varied over a larger
range.
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